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Abstract. Magnetic resonance (MR) imaging provides a unique in-vivo
capability of visualizing tissue in the human brain non-invasively, which
has tremendously improved patient care over the past decades. However,
there are still prominent artifacts, such as intensity inhomogeneities due
to the use of an array of receiving coils (RC) to measure the MR signal
or noise amplification due to accelerated imaging strategies. It is critical
to mitigate these artifacts for both visual inspection and quantitative
analysis. The cornerstone to address this issue pertains to the knowledge
of coil sensitivity profiles (CSP) of the RCs, which describe how the
measured complex signal decays with the distance to the RC.

Existing methods for CSP estimation share a number of limitations:
(i) they primarily focus on CSP magnitude, while it is known that the so-
lution to the MR image reconstruction problem involves complex CSPs
and (ii) they only provide point estimates of the CSPs, which makes
the task of optimizing the parameters and acquisition protocol for their
estimation difficult. In this paper, we propose a novel statistical frame-
work for estimating complex-valued CSPs. We define a CSP estimator
that uses spatial smoothing and additional body coil data for phase nor-
malization. The main contribution is to provide detailed information on
the statistical distribution of the CSP estimator, which yields automatic
determination of the optimal degree of smoothing for ensuring minimal
bias and provides guidelines to the optimal acquisition strategy.
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1 Introduction

A modern magnetic resonance (MR) scanner collects signal using an array of
receiving surface coils (RSC) [5], from which an image reconstruction problem is
solved to obtain the highest SNR composite image, which magnitude is of main
interest for radiological evaluation. The coil sensitivity profile (CSP) is a spa-
tially varying magnetic field generated by the RSC that characterizes how RSC
signal magnitude and phase spatially vary. In most MRI applications, an array
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of RSCs is used because it provides stronger MR signal near the coil location.
On the other hand, RSC-measured signal rapidly decays with the distance to
the coil and the signal phase is not as spatially homogeneous as with the RBC.
Since RSCs are distributed around the coil array, conventional MR imaging suf-
fers from a shading artifact that pertains to an important signal loss at the image
center, impairing tissue contrast or abnormality detections. Moreover, a number
of accelerated MRI acquisition strategies have been devised in the literature to
enable the collection of more images in shorter scan times (see [2] for a compre-
hensive review). They rely on sub-sampling the k-space and resort to inferential
procedures for recovering missing data, which represents an additional source of
noise, called g-factor noise, that is strongly increased by poor CSP estimates.

A number of methods have already been proposed in the literature for ad-
dressing this problem (see [10] for a detailed review). With the latest methods
emerged the idea of using the RBC measurement to help with the CSP estima-
tion of RSCs. For instance, Siemens online reconstruction offers the possibility to
compensate for intensity inhomogeneity via the method proposed in [3], which
define the CSP estimator as the ratio of the two low-pass filtered magnitude
images measured by the RSC and RBC respectively. In our opinion, these state-
of-the art methods present two major limitations. First, they primarily focus on
the magnitude of the CSPs, while neglecting phase variations, while it is known
that the linear combination of RSC images that yields highest SNR composite
image involves complex-valued weights that depend on (i) the real-valued covari-
ance structure of the coil array and (ii) the complex-valued CSPs [9]. Second,
they only provide a voxelwise point estimate of the CSPs, while ignoring the
distribution of the underlying CSP estimator, which is of critical importance
to reason about the choice of the parameters of such estimators or the optimal
acquisition strategy to ensure consistent CSP estimates.

The scope of this work is to provide a novel statistical framework for the esti-
mation of complex-valued CSPs. In the same line as [3], the CSP estimator that
we aim at studying uses low-pass filtered RSC and RBC images, where the RBC
measurement enables phase normalization to mitigate phase-variation artifacts.
The important difference with respect to [3]’s estimator resides in the use of
complex images rather than their magnitude only and in RBC normalization
only affecting the phase of the estimator. The focus is on understanding the
statistical distribution of the proposed CSP estimator, for which we derive the
analytic expression of bias and variance, which ultimately leads to the automatic
determination of the optimal degree of smoothing for ensuring minimal bias. We
apply this new approach to the image reconstruction problem. We provide a
comparison of the reconstructed image using our CSP estimator, optimized via
knowledge of its statistical distribution, and using the approach proposed by [3].

2 Theory

In the rest of the paper, x represents voxel locations. Straight, curved, bold and
non-bold symbols designate random variables, fixed values, vectors and scalars,



686 Stamm et al.

respectively. The upperscripts �, � and H are the conjugate, transpose and con-
jugate transpose operators respectively.The symbols M, P , R and I denote
respectively the magnitude, phase, real and imaginary operators for any com-
plex number. Finally, τ , g and G are respectively the standard deviation, density
and distribution functions of the standard Gaussian distribution.

Let c(x) = (c1(x), . . . , cL(x))
� be the C

L-valued random variable represent-
ing the complex signals measured by an array of L RSCs. Following [9], the
linear combination of these signals that yields SNR-maximized signal s(x) is:

s(x) =
bH(x)Σ−1c(x)√
bH(x)Σ−1b(x)

, (1)

where b(x) is the CL-valued vector of CSPs at voxel x and Σ is the L×L noise
covariance structure of the coil array. The above equation can be rewritten more
conveniently as s(x) = βH(x)Σ−1/2c(x), where:

β(x) =
Σ−1/2b(x)√
bH(x)Σ−1b(x)

, (2)

is the normalized uncorrelated CSP vector that we aim at estimating.

2.1 Noise Covariance Estimation

Let c(x) and c0(x) be the CL-valued and C-valued random variables, repre-
senting the complex signals measured by an array of L RSCs and by the RBC
respectively at voxel x. It is known that the random variable c(x) follows a mul-
tivariate complex Gaussian distribution [7]. When the full k-space is sampled,
the covariance structure of the coil array can be assumed spatially-invariant [7].

For a voxel xB in the background of the image, we have c(xB) = 0. Hence, if
NB denotes the number of background voxels, we can thus think of the complex
signals measured in the background as a set of 2NB independent and identi-
cally distributed centered Gaussian variables with covariance Σ. The sample
covariance estimator on background signals provides an unbiased estimate of Σ:

Σ =
1

2NB − 1

∑
xB

[
R (c(xB))R (c(xB))

�
+ I (c(xB)) I (c(xB))

�]
. (3)

Since NB � 1 in most MR images (NB ≈ 2 millions for a 2 × 2 × 2 mm brain
image), this estimator is almost noise-free. We thus assume, from now on, that
Σ is completely known and computed via Eq. (3).

2.2 Coil Sensitivity Profile Estimation

The CSP of an RSC is the spatially-referenced map of magnetic field generated
per unit current flowing through the RSC. MR physics principles states the
following properties of CSPs:
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1. The noise-free complex signal ck(x) measured by the k-th RSC at voxel x
is proportional to the CSP bk(x) at that voxel [9];

2. The CSP bk(x) at voxel x is inversely proportional to the squared distance
between the RSC position and x and, in that respect, is spatially smooth [4].

3. Drifts in the signal phase are introduced due to a number of factors: radiofre-
quency filtering, noncentered echo, readout compensation gradients and/or
static field inhomogeneities and chemical shifts [6].

4. The covariance structure used for decorrelating the CSPs varies in time as
pre-amplifiers in the RSCs heat up [7].

5. Motion and physiological noise obviously introduce dramatic distortions.

Properties 1-3 are helpful for designing a sound CSP estimator for Eq. (2)
while properties 4-5 provide insights into what type of acquisitions is most suited
for CSP estimation. Using properties 1-3, we define the CSP estimator using
spatial smoothing and additional RBC data for phase normalization to mitigate
phase-variation artifacts. For a proper mathematical definition, let us define:

ξ(x) =

|V |∑
j=1

W

(‖xj − x‖
τ

)
Σ−1/2c(xj) , (4)

where W
(‖xj−x‖

τ

)
=

[∑|V |
�=1 g

(
‖x�−x‖

τ

)]−1

g
(‖xj−x‖

τ

)
, with Σ being the noise

covariance structure estimator defined in Eq. (3). Likewise, let ξ0(x) be the
same random variable defined from the RBC signals. Our CSP estimator can be
formulated in the following terms:

β(x) =
ξ�0(x)

‖ξ0(x)‖ · ξ(x)

‖ξ(x)‖ . (5)

The k-th component of the CSP estimator proposed in eq. (5) is the product
of two complex-valued random variables. It can be expanded as:

βk(x) = [R0(x)Rk(x) + I0(x)Ik(x)] + j [R0(x)Ik(x)− I0(x)Rk(x)] , (6)

where Rk(x) := R (ξk(x)) / ‖ξ(x)‖ and Ik(x) := I (ξk(x)) / ‖ξ(x)‖, k ∈ �1, L�,
and R0(x) and I0(x) are similarly defined as the real and imaginary parts of the
normalized RBC-related variable ξ0. Hence, determining the bias and variance
of βk(x) reduces to determining the bias and variance of Rk(x).

2.3 Distribution of the Squared Norm of the CSP Estimator

The CL-valued random variable ξ(x) from Eq. (4) is a linear combination of
multivariate complex Gaussian variables. Hence, in turn, ξ(x) is a multivariate
Gaussian variable with mean and covariance given by:

ξ(x) :=

|V |∑
j=1

W

(‖xj − x‖
τ

)
Σ− 1

2 c(xj) and Cov [ξ(x)] := σ2IL ,
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with σ2 :=
∑|V |

j=1 W
2
( ‖xj−x‖

τ

)
. Now, observe that R2

k(x) =
X

X+Y, where:

X :=
R (ξk(x))

2

σ2
and Y :=

1

σ2

⎡
⎢⎣I (ξk(x))

2
+

L∑
�=1
� �=k

(
R (ξ�(x))

2
+ I (ξ�(x))

2
)
⎤
⎥⎦.

The real-valued random variables X and Y are independent and both formed
of the sum of squared independent Gaussian variables. Hence, they both follow
non-central χ2-distributions, with respective degrees of freedom (DoF) 2α1 = 1
and 2α2 = 2L− 1 and non-centrality parameters (NcP) λ1 and λ2 given by:

λ1 =
R (ξk(x))

2

σ2
and λ2 =

1

σ2

⎡
⎢⎣I (ξk(x))

2 +

L∑
�=1
� �=k

(
R (ξ�(x))

2 + I (ξ�(x))
2
)
⎤
⎥⎦.

As a result, R2
k(x) follows a doubly non-central Beta (DNcB) distribution [8]

with DoFs α1 = 1/2 and α2 = L− 1/2 and NcPs λ1 and λ2, respectively.

2.4 Bias and Variance of the CSP Estimator

Let T = R2
k(x), α

+ = α1 + α2, λ
+ = λ1 + λ2 and θ1 = λ1/λ

+. Since T a DNcB
random variable, its first two raw moments are given by [8]:

E(T ) = E

(
α1 + θ1P

α+ + P

)
, E

(
T 2

)
= E

(
α1(α1 + 1) + (2α1 + 2− θ1)θ1P + θ21P

2

(α+ + P )(α+ + 1 + P )

)

where P is a Poisson-distributed random variable with parameter λ+/2. After
some calculations, one can show that the above equations simplify to:

E(T ) =
α1

α+ − 1
M

(
1, α+;−λ+

2

)
+

θ1λ
+

2α+
M

(
1, α+ + 1;−λ+

2

)
,

E
(
T 2

)
=

θ21λ
+

2α+
M

(
1, α+ + 1;−λ+

2

)
+

α1(α1 + 1)

(α+ − 1)α+
M

(
2, α+ + 1;−λ+

2

)

+
(2(α1 + 1)− θ1(α

+ + 1))θ1λ
+

2α+(α+ + 1)
M

(
2, α+ + 2;−λ+

2

)
,

(7)

where M denotes Kummer’s confluent hypergeometric function [1]. Now, using
the Taylor series expansion of the square root around E(T ), we can show that:

E(Rk(x)) ≈ [2P (Rk(x) > 0)− 1]

√
E(T )

8

(
9− E

(
T 2

)

E(T )
2

)
, (8)

where the probability of Rk(x) being positive can be analytically derived as:

P (Rk(x) > 0) = P (R (ξk(x)) > 0) = G

(R (ξk(x))

σ

)
.
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Equations (7) and (8) provide the first 2 raw moments of Rk(x). Similar equa-
tions for Ik(x), R0(x) and I0(x) can be straightforwardly obtained, which ulti-
mately yields analytic expressions of bias and variance of the magnitude, real and
imaginary parts of the CSP estimator βk(x) of k-th RSC proposed in Eq. (6).

In particular, the bias of βk(x) depends on the smoothing parameter τ and the

initial SNRs ‖Σ− 1
2 c(x)‖. Hence, given initial SNRs, the smoothing parameter τ

can be optimized in order to guarantee minimally biased CSP estimates.

3 Experiments

3.1 Study of Bias and Variance of Our CSP Estimator

The goal of this simulation is to assess the behavior of the CSP estimator magni-
tude upon variation of the smoothing parameter τ and the SNR ρ0 of the RSoS
image formed from noise-free complex data. We generated a 33 × 33 2D image
centered in the voxel of interest with SNR ρ0, attributing decreasing SNRs to
the surrounding voxels proportionally to their distance in pixel units to the cen-
ter voxel. We simulated an array of 32 RSCs uniformly located on the image
anti-diagonal, with different uniform phases and magnitude inversely propor-
tional to the distance between the RSC and the voxel of interest. We used a
Gaussian kernel of standard deviation τ for smoothing. We assessed evolution of
bias and variance of the magnitude of our CSP estimator proposed in Eq. (5) by
evaluating numerically the analytic expressions provided in Eqs. (6) to (8). We
plotted them against ρ0 and τ and investigated the optimal smoothing τ� that
minimizes the bias of our CSP estimator as a function of initial SNR ρ0.

3.2 Application to the MR Reconstruction Problem

We applied our CSP estimator for imaging a healthy volunteer at 0.4 mm
isotropic. We targeted a T1 MPRAGE image and we imaged the subject with a
3T Siemens Skyra MR scanner. We additionally acquired an independent set of
low-resolution (2 mm iso) RSC and RBC images for CSP estimation. The SNR
for the RSC images was around 40 dB, which, according to the theory, requires
a spatial smoothing of τ = 1.5 mm. Additionally, we also estimated the CSPs
using [3]’s method (Siemens prescan normalize). We compare the uncorrected
high resolution reconstruction to the ones obtained after intensity inhomogene-
ity correction (IIC) using both sets of CSP estimates ([3]’s and our optimized
one). Quantitatively, we use sharpness measures (image energy M1, gradient
magnitude energy M2) to compare the results, for which higher values highlight
a better reconstruction.

4 Results

4.1 Study of Bias and Variance of our CSP Estimator

Figure 1a shows the relative bias and the variance of the magnitude of our CSP
estimator as a function of the smoothing parameter τ for different SNRs. The
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first result is that the variance decreases as the amount of smoothing and SNR
increase as expected. The two most important messages from Fig. 1a however
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Fig. 1. Bias and Variance of Magnitude of CSP Estimator. (a) bias and variance
of the magnitude of the CSP estimator as defined in Eq. (5); (b) optimal smoothing
parameter as a function of the initial SNR and corresponding value of minimal bias.

are that (i) smoothing does not systematically either introduce bias or reduce
bias but there is an optimal degree of smoothness that yields minimal bias, which
depends on the SNR. Figure 1b further investigates this phenomenon by plotting
the optimal degree of smoothness and corresponding minimal bias against the
SNR. If the initial images used for CSP estimation already have high SNR,
smoothing will introduce bias in the CSP estimates whereas, if they have low
SNR, there is a optimal smoothing that ensures minimally biased CSPs.

4.2 Application to the MR Reconstruction Problem

Figure 2 shows an axial slice of a high resolution brain MPRAGE reconstruc-
tion achieved using a SENSE1 reconstruction according to Eq. (1). Image (a)

(a) (b) (c)
M1 = 4.98, M2 = 2.7e7 M1 = 4.43, M2 = 1.8e7 M1 = 6.56, M2 = 3.3e7

Fig. 2. High Resolution brain MPRAGE reconstruction. Image reconstruction
according to Eq. (1) with (a) no IIC, (b) IIC using [3]’s CSPs, (c) IIC using our CSPs.

is obtained with no IIC, which clearly depicts the loss of signal in the center
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of the image. Image (b) illustrates pre-scan normalization, where we can see an
undesirable loss (resp., amplification) of signal in the upper right (resp., middle
left) area. Image (c) displays the IIC from our minimally biased CSPs, which is
uniform in sensitivity as desired. Sharpness measures M1 and M2 quantitatively
confirms the improvement obtained using our CSP estimates.

5 Discussion

In this paper, we generalized the CSP estimator proposed in [3] to infer complex-
valued CSP estimates. This estimator uses spatial smoothing and additional
body coil data for phase normalization to mitigate phase-variation artifacts.

The main contribution is the derivation of the statistical distribution of our
proposed estimator. This allows us to establish that, in order to achieve min-
imally biased CSP estimates, (i) there is an optimal degree of smoothing that
depends on the image SNR and (ii) high SNR in the images used for CSP es-
timation is highly recommended. In addition, from MR physics considerations,
it is even more recommended to acquire low spatial resolution data to keep
the acquisition time short and thus avoid the problem of time-varying covari-
ance structures and mitigate motion and physiological noise. To the best of our
knowledge, this is the first study that propose a detailed understanding of a CSP
estimator. It is shown to resolve intensity inhomogeneities in structural images
and to present a significant improvement over the on-line scanner pre-scan nor-
malization, especially for high spatial resolution image reconstructions (in which
case, CSPs are still estimated from an independent low-resolution scan).
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