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Abstract. Computed tomography (CT) is a widely used medical tech-
nology. Adding 3D imaging to a mobile fluoroscopic C-arm reduces the
cost of CT, as a mobile C-arm is much less expensive than a dedicated CT
scanner. In this paper we explore the technical challenges to implement-
ing 3D reconstruction on these devices. One of the biggest challenges
is the problem of uncertain geometry; mobile C-arms do not have the
same geometric consistency that exists in larger dedicated CT scanners.
The geometric parameters of an acquisition scan are therefore uncertain,
and a näıve reconstruction with these incorrect parameters leads to poor
image quality. Our proposed method reconstructs the 3D image using
the expectation maximization (EM) framework while jointly estimating
the true geometry, thereby improving the feasibility of 3D imaging on
mobile C-arms.

Keywords: Cone-beam reconstruction, Expectation maximization,
Mobile C-arms.

1 Introduction

Cone-beam CT reconstruction is typically done using large, expensive systems
such as dedicated CT scanners and fixed-room C-arms. Mobile C-arms are ex-
tremely popular surgical tools due to their affordability and small footprint.
Because mobile C-arms are designed to produce high quality 2D images, they
have several characteristics that make 3D imaging challenging. Most mobile C-
arms are non-isocentric, have limited angular range, and have low-power X-ray
acquisition systems. There are currently a few mobile C-arms with 3D imaging
in use, however, these C-arms are all isocentric.

Another major limitation of mobile C-arms is their uncertain geometry. For
cone-beam reconstruction, we must know the true geometry of the system at
each acquisition. This geometry consists of location and orientation in space of
the gantry (known as the extrinsic parameters) and the internal alignment of
source and detector (known as the intrinsic parameters). Even in fixed room
systems, these geometric parameters do not remain constant over the life of the
system. Therefore, these systems are often corrected using dedicated calibration
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phantoms [6]. In mobile C-arms, our uncertain geometry problem is even more
challenging: the geometric parameters are not repeatable from scan to scan. Oth-
ers have proposed image-based calibrations using the Nelder-Mead optimization
[3,5].

In this paper, we introduce a novel method for 3D imaging in the presence
of uncertain geometry. We derive and implement a full gradient based parame-
ter optimization within the expectation maximization framework. Our method
jointly estimates the reconstructed image using an ordered subset expectation
maximization and estimates the geometry by performing conjugate gradient up-
dates of the geometric parameters. With this method, we show we are able to
improve 3D reconstruction on mobile C-arms.

There are two main applications for our method. First, our method reduces
the need for expensive hardware improvements in mobile C-arms to introduce
3D imaging. Since we are estimating the true geometric parameters, the only
added cost is computation. Second, our method can be used to retrofit existing
mobile C-arms with 3D imaging, even if these C-arms are non-isocentric. This
would decrease the cost of and increase the prevalence of 3D imaging, particularly
important in developing countries.

2 Mobile Acquisition Setup

We built an experimental system by retrofitting an existing mobile C-arm. We
started with a small-footprint GE-OEC 6800 system (see Figure 1(a)) and in-
stalled improved acquisition and control components. The clinical applications
of the original C-arm device included orthopedic cases performed on human ex-
tremities. The original low-watt monoblock was replaced with a pulse-capable
high-power source block, and the image intensifier was replaced with a mid-size
flat panel detector.

(a) (b) (c)

Fig. 1. Left: original C-arm. Center: modified gantry. Right: image from retrofitted
system

The orbital range of the imaging gantry was extended to a complete short-scan
of approximately 200 degrees with near-centric offset.
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Thoughwehaveprecision tubeanddetector components, the electro-mechanical
characteristics of the new gantry are still considered approximate. For instance,
the nominal value of the source-to-detector distance (SID) that corresponds to a
weightless model of the gantry is 600mm.When the gantry is loaded with imaging
components,moves along a circular trajectory, and facesgravitational acceleration,
the SID becomes a complicated function of several static and dynamic parameters.

The system also utilizes gravitational acceleration vector as measured by a
9DOF MEMS sensor as its initial orientation estimate. By reading the gravity
vector from the 3-axis accelerometer during the scan, the system can provide an
accurate representation of its orientation prior to reconstruction.

The systematic deviations of the gantry motion can be learned prior to sur-
gical operations and compensated for during a scan of the patient. Within the
image reconstruction framework, we intend to re-use some of the repeatable
scan chacteristics and refine the non-repeatable portion of the pose during the
optimization-based iterative process.

3 Joint Reconstruction and Geometry Estimation

To describe the reconstruction framework, we first define the cone-beam system.
The cone-beam system consists of an X-ray source (assumed to be a point)
and a 2D X-ray detector (assumed to be flat). Given 2D projection data with
corresponding geometric parameters, we estimate the 3D image. The projection
data is defined by its projection coordinates (u, v) ∈ R

2 and the reconstructed
image I(x) is defined by its world coordinates x = (x, y, x) ∈ R

3. To relate these
two coordinate systems, we introduce camera coordinates x′ = (x′, y′, z′) ∈ R

3.
The origin of the camera coordinate system is the X-ray source, and the x′ and
y′ axes point in the same direction as the u and v axes, respectively. The z′ axis
points directly at the piercing point, the unique point (u0, v0) on the detector
plane that is closest to the source. The distance from the source to the detector
is the source-to-image distance (or SID) l ∈ R

+. Together, the SID and piercing
point are the intrinsic parameters of the system, and they describe the internal
characteristics of the C-arm.

The orientation and offset of the projection system relative to world coordi-
nates are described by a 3D rotation R ∈ SO(3) and a 3D translation T ∈ R

3.
These together are called the extrinsic parameters. With this, we define the re-
lationship between a point p′ described by its camera coordinates and the same
point p:

p = R(p′ + T ). (1)

The projection operator defined at a point (u, v) is the line integral of at-
tenuating coefficients from the source to that point. We write this path as
p′(s) = (s(u−u0), s(v−v0), sl), with s ∈ [0, 1]. Therefore, the projection operator
is defined as

P{I(x);T , R, u0, v0, l}(u, v) = γ

∫ 1

0

I(R(p′(s) + T )) ds. (2)
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Since we integrate from 0 to 1, we multiply the integral by the real length of the
integral path γ = ||p′(1)||.

3.1 Image Update

Our algorithm alternates between two steps: estimating the image and estimating
the geometric parameters. For our image update, we take one iteration using
ordered subset expectation maximization (OSEM) [2]. The update is

I(x) �→ I(x)∑
j P

†
j {1}(x) + λ∂U(I)

∂I(x)

∑
j

P †
j

(
f∗
j

Pj{I(x)}
)
. (3)

In this equation, 1 is a 2D image of all ones, P † is the backprojection operator,

f∗ is the projection data, and ∂U(I)
∂I(x) is the derivative of a total variation (TV)

regularizer. The strength of this regularizer is adjusted by the scalar λ. We use
the TV stencil found in [4].

3.2 Geometric Parameter Update

Each projection is paired with current estimates for its extrinsic and intrinsic
parameters. We estimate these parameters by using our current estimate of I(x)
and comparing it to the projection data. We therefore minimize the following
energy functional for each projection:

Ej =
1

2

∫
Ωd

||Pj{I(x)}(u, v)− f∗
j (u, v)||2, (4)

where Ωd is the detector. We take the derivative of this functional, which re-
quires that we analytically solve for the gradients of the projection operator with
respect to the geometric parameters. We will not derive them here, but these
derivatives are:

∂

∂T
P{I(x)}(u, v) =γ RT

∫ 1

0

(∇I)(R(p′(s) + T )) ds, (5)

∂

∂R
P{I(x)}(u, v) =γ

∫ 1

0

(∇I)(R(p′(s) + T ))×R(p′(s) + T ) ds, (6)

∂

∂τ
P{I(x)}(u, v) =−((u, v, 0)− τ )

||(u, v, 0)− τ ||2P{I}(u, v)

− γ(u, v; τ )RT

∫ 1

0

s(∇I)(R(p′(s) + T )) ds. (7)

Here we combine the intrinsic parameters in a single variable τ = (u0, v0,−l),
and we update R using Rodrigues’ rotation formula.

With these gradients, we take one conjugate gradient step to update the
parameters, and we alternate between image updates and parameter updates
until both are converged.
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Fig. 2. Acquisition paths. The X-ray source follows the path along the blue curve,
and each red line shows the path from the source to the piercing point. Upper left:
3D view of ground truth acquisition path. Upper right: 2D projection of the ground
truth acquisition path. Lower left: 2D projection of the nominal path. Lower right: 2D
projection of the estimated path.

4 Results

4.1 Ground Truth Image and Geometric Parameters

We evaluate our results in two ways: first by analytically comparing image recon-
struction and parameter estimation using ground truth volume and parameters,
and second by visually analyzing the reconstructions with real C-arm projection
data.

Since we have no ground truth image or ground truth parameters, we create
our own simulated dataset given real parameters. We acquired geometric pa-
rameters using EM sensors along with high-attenuation markers of a 144 degree
limited-angle scan. These results were acquired on a full-size mobile C-arm. This
was performed on a non-isocentric C-arm and the gantry was rotated by hand.
We used these acquired geometric parameters to create a simulated projection
scan of a known CT dataset. We used a skull CT dataset from the University
of North Carolina (http://graphics.stanford.edu/data/voldata/) and we
simulated 144 projections with Poisson noise. We then created nominal param-
eters consisting of a 144 degree circular equal-spaced trajectory. We tested our
method by comparing three cases: reconstruction with the ground truth param-
eters, reconstructing with the nominal parameters, and reconstructing given the

http://graphics.stanford.edu/data/voldata/
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Fig. 3. Top Row: Reconstruction given true geometric parameters. Middle Row: Re-
construction given nominal parameters without parameter estimation. Bottom Row:
Reconstruction given nominal parameters with parameter estimation.

nominal parameter while jointly estimating the geometry. These three scans can
be seen in Figure 2, and the reconstructions can be seen in Figure 3. The image
quality using our joint reconstruction method provides comparable results to
reconstruction using the ground truth parameters, whereas the reconstruction
without any geometry estimation yields very poor results.

We analytically compared the reconstruction to the ground truth volume.
The L2 error between the reconstructed images and the ground truth image is:
100.1 (given ground truth parameters), 578.0 (given nominal parameters), and
119.2 (given nominal parameters while estimating geometry). We also analyt-
ically compared the results to the ground truth parameters. These results are
found in Figure 4.

4.2 Real C-Arm Data

We have tested our method on multiple real datasets, and we present results
from two of those datasets acquired using the setup described in Section 2.

We reconstructed using 274 projections of a 190 degree scan from a physical
knee phantom and a physical skull phantom [1]. We reconstructed these using
the given parameters with no estimation and using the given parameters with
geometry estimation. The results can be seen in Figure 5. The geometry estima-
tion reduces many of the ghosting artifacts found while reconstructing using the
nominal pose.
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Fig. 4. Nominal parameter error and estimated geometry error for all 144 projections.
Each red line is the distance between the nominal parameters and ground truth. Each
blue line is the distance between the estimated parameters and ground truth. Top:
translation error in R

3. Bottom: neighboring rotation error (geodesic distance).

Fig. 5. Top row: reconstruction with nominal parameters of the knee and skull physical
phantoms. Bottom row: joint reconstruction and geometry estimation
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These algorithms are implemented efficiently on the GPU, and reconstruction
with 5122 projections to a 2563 volume takes approximately 5 minutes.

5 Conclusion

In this paper, we introduced a novel method for reconstructing a 3D volume given
the uncertain geometry of a mobile C-arm. Our method of jointly estimating the
geometry and the image produces much improved results over the reconstruction
using nominal parameters. In our experiments, we found that optimizing only
the extrinsic parameters yields a nearly identical reconstruction as optimizing
over all the parameters. Therefore, for efficiency, we only optimize over rotation
and translation.
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