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Abstract. Multiple surface segmentation with mutual interaction be-
tween surface pairs is a challenging task in medical image analysis. In
this paper we report a fast multiple surface segmentation approach with
truncated convex priors for a segmentation problem, in which there ex-
ist abrupt surface distance changes between mutually interacting surface
pairs. A 3-D graph theoretic framework based on local range search is
employed. The use of truncated convex priors enables to capture the sur-
face discontinuity and rapid changes of surface distances. The method
is also capable to enforce a minimum distance between a surface pair.
The solution for multiple surfaces is obtained by iteratively computing a
maximum flow for a subset of the voxel domain at each iteration. The pro-
posed method was evaluated on simultaneous intraretinal layer segmen-
tation of optical coherence tomography images of normal eye and eyes
affected by severe drusen due to age related macular degeneration. Our
experiments demonstrated statistically significant improvement of seg-
mentation accuracy by using our method compared to the optimal sur-
face detection method using convex priors without truncation (OSDC).
The mean unsigned surface positioning errors obtained by OSDC for nor-
mal eyes (4.47± 1.10)µm was improved to (4.29± 1.02)µm, and for eyes
with drusen was improved from (7.98±4.02)µm to (5.12±1.39)µm using
our method. The proposed approach with average computation time of
539 sec is much faster than 10014 sec taken by OSDC.
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1 Introduction

The surface detection methods [6][10] with a global optimization property have
been used for various image segmentation applications but they may have a
problem in cases with presence of steep surface smoothness changes (surface
discontinuity) and abrupt surface separation (distance) changes between a pair
of interacting surfaces. Some examples are spectral-domain optical coherence
tomography (SD-OCT) volumes of subjects with severe glaucoma [9], and drusen
due to age-related macular degeneration (AMD) [1] (Fig. 1). The optimal surface
detection method [6][10] uses hard smoothness constraints that are a constant
in each direction to specify the maximum allowed “jump” of any two adjacent
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Fig. 1. Steep change in surface smoothness can be seen in SD-OCT image of an eye
with severe glaucoma (left). Abrupt changes in surface separation between surface 2
(S2) and surface 3 (S3) can be seen in SD-OCT image of an eye with AMD (right).

voxels on a feasible surface. It uses surface separation constraints to specify
the maximum and minimum allowed distances between a pair of surfaces. This
does not allow for flexibility in constraining surfaces. Methods employing trained
hard and soft constraints [2][8], use prior terms to penalize local changes in
surface smoothness and surface separation. The prior term requires learning
and may give inaccurate results when there is plenty of variations within the
data. Approaches using multiple resolution technique [5] for reduction of time
and memory consumption, need to define the region of interest at each iterative
scale. Identifying a region of interest for cases with abrupt surface smoothness or
separation changes due to presence of pathology is challenging, and may result
in suboptimal solutions. In this paper, we consider using truncated convex priors
for surface smoothness and surface separation. We also ensure the enforcement
of a minimum separation between a surface pair. A truncated convex prior is
discontinuity preserving with a bound on the largest possible penalty for surface
discontinuity. The main idea is to take advantage of a local search technique
which allows for enforcement of truncated convex priors, and is much faster than
optimal surface detection methods for large data volumes in a high resolution.
Such a method is used for single surface segmentation[7]. We further extend this
framework to simultaneously segment multiple surfaces using truncated convex
penalties and ensuring a minimum separation between a given surface pair.

2 Method

Our method segments the surfaces from the 3-D volumes directly, not slice by
slice. Consider a volumetric image I(x, y, z) of sizeX×Y ×Z. A surface is defined
as a function S(x, y), where x ∈ x = {0, 1, ...X − 1}, y ∈ y ={0, 1, ...Y − 1} and
S(x, y) ∈ z = {0, 1, ...Z − 1}. Each (x, y)-pair corresponds to a column of voxels
{(I(x, y, z)|z = 0, 1, . . . , Z − 1}, denoted by col(x, y). We use a and b to denote
two neighboring (x, y)-pairs in the image domain x × y and Ns to denote the
neighborhood setting in the image domain. The function S(a) can be viewed as
labeling for a with the label set z (S(a) ∈ z). For simultaneously segmenting
λ(λ ≥ 2) surfaces, the goal of the problem is to seek the “best” surfaces Si(a)
(i = 1, 2, ...λ) in I with minimum separation di,i+1 (i = 1, 2, ...λ − 1) between
each adjacent pair of surfaces Si and Si+1. The problem is transformed into
an energy minimization problem. The energy function E(S) takes the following
form in Eqn. (1):
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E(S) =

λ∑

i=1

(
∑

a∈x×y

Di(Si(a)) +
∑

(a,b)∈Ns

Vab(Si(a), Si(b)))

+

λ−1∑

i=1

∑

a∈x×y

Ha(Si(a), Si+1(a))

(1)

The data cost term
∑

a∈x×y Di(Si(a)) measures the total cost of all voxels
on a surface Si, while the surface smoothness term

∑
(a,b)∈Ns

Vab(Si(a), Si(b))
measures the extent to which Si is not piecewise smooth. A truncated convex
Vab(.) is used to preserve discontinuity of the target surfaces and is computed on
the height changes of two adjacent surface voxels. The surface separation term
Ha(Si(a), Si+1(a)) incorporates a truncated convex penalty[7] for the separa-
tion between two adjacent surfaces, and ensures a minimum separation between
them, which takes the following form in Eqn. (2):

Ha(Si(a), Si+1(a)) =

{
∞, if (Si+1(a)− Si(a)) < di,i+1,

wa min(f(Si+1(a)− Si(a)),Mi,i+1), otherwise
(2)

where f(.) is a convex function, Mi,i+1 > 0 is the truncation factor, and wa ≥ 0.

Overview of the method: Our method is iterative in nature. The pipeline for
our method is shown in Fig. 2. At each iteration, it searches a small subset of the
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Fig. 2. Pipeline for our method. N is the maximum iteration index.

solution space defined by a label interval, consisting of a set of consecutive pos-
sible surface heights for each point in the image domain along the z-dimension.
For each surface Si, a subgraph Gi,m (m is the index for iteration and i is the
index of the sought surface) is then constructed using the technique for single
surface detection[4][7]. In addition, inter-surface arcs are added between each
pair of subsequent subgraphs, to construct the graph Gm for the simultaneous
search of all λ surfaces at the iteration m. The inter-surface arcs incorporate the
truncated convex penalty for the point-wise surface distance changes between
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two surfaces. The graph Gm is then solved by computing a minimum st-cut
which minimizes the energy function E(S). The labeling of each target surface
is then updated according to the computed st-cut at the end of each iteration
m. The iterations are continued until all the defined label intervals for each sur-
face Si has been iterated over, at the end of which the total energy E(S) of
the segmented λ surfaces is compared to the previous solution. If the energy is
found to have decreased, the entire defined label intervals are iterated over again
for each surface Si, initialized with the current solution obtained. The method
terminates while E(S) converges.

Graph construction: A constant interval length L is defined to determine a
subset of consecutive labels to be considered for all λ surfaces. An interval of
consecutive labels for surface Si is defined as Ti ⊂ z where z = {0, 1, ...Z − 1}.
Denote Ti,m shown in Eqn.(3) as the label interval for Si at iteration m, where

m = 0, 1, ...Z − 2 − ∑λ−1
i=1 d(i,i+1). Interval Ti+1,m is displaced by di,i+1 from

Ti,m to ensure the minimum separation constraint between each pair of adjacent
surfaces Si and Si+1. Since each pair of adjacent intervals are displaced from
each other, the maximum of iteration index(m) is calculated by subtracting the
sum of the minimum separation for each pair of adjacent surfaces from Z, thus
ensuring no undefined interval is formed.

Ti,m = {l | m+

i∑

j=1

d(j−1,j) ≤ l ≤ min(m+

i∑

j=1

d(j−1,j) + (L − 1), Z − 1)} (3)

In iteration m, we search for each surface Si in the sub-volume x× y × Ti,m of
I using the subgraph Gi,m. Each subgraph Gi,m incorporates all intra-column
arcs for surface monotonicity for data cost volume Di,m(for searching Si at
iteration m) and inter-column arcs for surface smoothness(truncated convex
penalty) to search a single surface Si[4][7]. At iterationm, denote the set of labels
given by Eq.(3) for corresponding columns col(a, i)(resp., col(a, i+1)) is Ti,m =
[qa,i, qa,i+1, . . . qa,i+L−1] (resp., Ti+1,m = [qa,i+1, qa,i+1+1, . . . qa,i+1+L−1]),
i.e., Ti,m(resp.,Ti+1,m) includes all possible surface positions that Si(resp.,Si+1)
can change into at iteration m. We refer each node in the graph with its cor-
responding label. Inter-surface arcs are added between corresponding columns
of subgraphs Gi,m’s to construct the graph Gm. Denote the initial surface posi-
tion of Si on column col(a, i) at the beginning of iteration m as Si,m−1(a). At
each iterationm, a labeling can either retain its current label Si,m−1(a) or can be
changed to a label in interval Ti,m. We distinguish four such cases for a given pair
of corresponding columns. Case 1: Si,m−1(a) ∈ Ti,m and Si+1,m−1(a) ∈ Ti+1,m,
Case 2: Si,m−1(a) /∈ Ti,m and Si+1,m−1(a) ∈ Ti+1,m, Case 3: Si,m−1(a) ∈ Ti,m

and Si+1,m−1(a) /∈ Ti+1,m, Case 4: Si,m−1(a) /∈ Ti,m and Si+1,m−1(a) /∈ Ti+1,m.
Case 1 is the base case where the current labels of both the columns belong

to the given interval and encodes the convex penalty using the second derivative
of the convex function f(.). These convex penalty arcs are also common for the
remaining three cases and additional arcs are added to truncate this convex
penalty. Case 2 and Case 3 are symmetric cases where one of the current labels
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Fig. 3. (a)Example graph construction for Case 1. Additional arcs added to (a) for
(b)Case 2, (c) Case 3, (d) Case 4. Length of interval L = 3

does not belong to the given interval. Case 4 is the combination of case 2 and case
3 when both the current labels do not belong to the interval in consideration.

Case 1 (base case): The convex penalty is enforced by adding the following
arcs. For all k ∈ [0, L−1], k′ ∈ [0, L−1] and k �= k′, we add an arc with a weight of
wa

2 (f(k−k′+1)−2f(k−k′)+f(k−k′−1)) between nodes qa,i+k and qa,i+1+k′ in
both directions. For all k = k′ except when k = k′ = 0, we put in an arc of weight
wa

2 (f(1) + f(−1)) from node qa,i+1 + k′ to qa,i + k, and a minimum separation
arc of weight +∞ in opposite direction ( These +∞ arcs ensure that minimum
separation constraint is not violated within the interval). For each k ∈ [0, L− 2],
a weighted arc with a weight of wa

2 (f(L− k − 1) + f(k + 1) is added from node
qa,i+k (resp., qa,i+1+k) to qa,i+k+1 (resp., qa,i+1+k+1). Furthermore, we put
in an arc with a weight of wa

2 f(L) from each node of qa+L−1 and qa,i+1+L−1
to the terminal node t. Using the similar techniques in Ref. [4], we can prove that
these arcs ensure the cost of any finite st-cut to be waf(k− k′)+waf(L), where
waf(L) is an overestimation constant for approximation. No finite st-cut shall
be possible when Si+1,m(a)−Si,m(a) < di,i+1 within the interval at iteration m
due to the minimum separation arcs. Thus minimum separation constraints are
not violated within the interval. An example is shown in Fig. 3(a).

Case 2 , Case 3 (symmetric cases): For case 2, we additionally introduce fol-
lowing arcs to the construction shown in Fig. 3(a):(1) a truncation arc from node
qa,i+1 to node qa,i whose weight is waM+ wa

2 f(L) if (qa,i+1−Si,m−1(a)) ≥ di,i+1

and is +∞ if (qa,i+1 − Si,m−1(a)) < di,i+1, to encode the truncated penalty and
minimum separation constraint, (2) a label retaining arc (s, qa,i) with weight
Di(Si,m−1(a)) to allow surface Si retain its current label(Si,m−1(a)). Any finite
st-cut including the label retaining arc must also include the truncation arc
(Fig. 3(b)), hence enforcing the truncated convex penalty with possible overesti-
mation. For Case 3, we symmetrically add arcs as discussed for Case 2 (Fig. 3(c)).

Case 4 (combination case): We include all arcs of case 1, case 2 and case 3. We
additionally introduce a new node κ and a truncation arc from source node s to κ
with a weight of Ha(Si,m−1(a), Si+1,m−1(a)) ( Fig. 3(d)). Note that any finite st-
cut including both the label retaining arcs ((s, qa,i), (s, qa,i+1)), must also include
the truncation arc (s, κ), hence enforcing the truncated convex penalty.
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3 Experimental Methods

The experiment compares segmentation accuracy of the proposed method (trun-
cated convex prior) and OSDC [8]. The three surfaces simultaneously segmented
in this study are S1-Internal Limiting Membrane (ILM), S2-inner aspect of reti-
nal pigment epithelium drusen complex (IRPEDC), S3-outer aspect of Bruch’s
membrane (OBM) as shown in Fig. 1.

Comparison was done by calculating the unsigned surface positioning errors
(USPE) as absolute distances between the computed surfaces and the expert
manual tracings in each column of the image. Statistical significance of observed
differences was determined by paired Student t-tests for which p value of 0.05
were considered significant. Experiments were carried out on a Linux workstation
(3.4 GHz, 16 GB memory).

20 SD-OCT scans of normal eyes (Type I), 20 SD-OCT scans of eyes with
AMD (Type II) and their respective expert manual tracings were obtained
from the publicly available repository of datasets Ref. [3]. The 3-D volumes
(1000 × 100 × 512 voxels with voxel size 6.54 × 67 × 3.23 μm3) for our study
were randomly selected from the repository. Segmenting the surfaces simultane-
ously using OSDC [8] on original resolution is not efficient enough for large data
volumes. To make fair comparisons, we first downsample the image by a factor
of four in the x direction to reduce the computation time. The datasets were
segmented in both their original resolution and down-sampled version by our
method to demonstrate the performance and capacity of our method for large
clinical datasets. For cases where segmentation was done in the down-sampled
version, the resulting segmentation was up-sampled to original resolution for
comparison purposes. The data cost volumes (data cost term) were generated
(computed) as follows. First, a 11 × 11 × 11 Gaussian filter with a standard
deviation of 11 was applied. To detect S1 and S3, a 3-D Sobel filter (3 × 3 × 3)
emphasizing the vertical edges for the dark to bright and bright to dark transi-
tions respectively were applied. To detect S2, we apply the following operations
to each slice of the volume. Edges are extracted using a high pass filter; image
is normalized to range from 0 to 1; a binary mask is generated for the region
containing S2 by thresholding of 0.5 and finally mask is applied to the data cost
volume for S1.

Parameters are reported for downsampled version of the datasets and are
summarized in Table 1. For both the methods, we use a linear convex function
f(x) = |x|. For our method, an interval length L = 2 was used and surface S1

(resp., S2, S3) was initialized as 0 (resp., d1,2, d1,2+d2,3). The parameters and
the weight coefficients (wab, wa) were experimentally determined by testing on
a similar group of datasets (with the same data size) obtained from the same
repository [3] for best results.

4 Results

Illustrative results of our proposed method and the OSDC for downsampled
data can be seen in Fig. 4. Quantitative comparison between our method and
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Table 1. Mx, My - truncation factors in x, y directions. M - truncation factor for
surface separation of a surface pair, d - minimum separation between a surface pair.

Our method OSDC Our method
Surface Dataset Mx My Surface pair d M d

S1 Type I 30 5 S1-S2 30 15 30
S2 Type I 30 5 S2-S3 3 3 3
S3 Type I 10 2
S1 Type II 30 5 S1-S2 20 10 20
S2 Type II 10 5 S2-S3 3 5 3
S3 Type II 5 2

(b)(a) (c)

Fig. 4. Top two rows - image slices of Type II, bottom row - image slice of Type I.
Yellow - ILM, Red - IRPEDC and Blue - OBM. (a)Expert manual tracing, segmentation
using (b)our method, (c)OSDC.

OSDC is summarized in Table 2. For the downsampled version of the datasets,
our method produced significantly lower USPE for surfaces S1 (p < 0.05), S2

(p < 0.03) and S3 (p < 0.002) in Type II datasets. In type I datasets, our
method significantly lowered USPE for surface S3 (p < 0.05). Comparisons were
also made between the segmentations using our method in original resolution and
OSDC in downsampled version. Our method significantly improved the USPE
for S1 (p < 0.001), S2 (p < 0.006) and S3 (p < 0.001) in both types of the
datasets. For the downsampled version of the datasets, our method with average
computation time of 539 seconds is much faster than OSDC with average com-
putation time of 10014 seconds. Average computation time using our method
was 3394 seconds for datasets in original resolution.

Table 2. Unsigned surface positioning errors (USPE) (mean ± standard deviation)µm.
Obsv - Expert manual tracing.

Data in downsampled resolution Data in original resolution
Normal eye (Type I) Eye with AMD (Type II) Type I Type II

Our method OSDC Our method OSDC Our method Our method
Surface vs. Obsv vs. Obsv vs. Obsv vs. Obsv vs. Obsv vs. Obsv

S1 3.62 ± 0.23 3.67 ± 0.30 3.95 ± 0.72 4.24 ± 0.56 1.99 ± 0.36 2.07 ± 0.38
S2 5.56 ± 2.13 5.77 ± 2.41 6.86 ± 2.04 8.06 ± 2.79 4.72 ± 1.68 6.49 ± 2.46
S3 3.69 ± 0.70 3.98 ± 0.60 4.56 ± 1.40 11.65 ± 8.72 2.95 ± 0.41 3.64 ± 0.62

Overall 4.29 ± 1.02 4.47 ± 1.10 5.12 ±1.39 7.98 ± 4.02 3.32 ± 0.82 4.06 ± 1.15
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5 Discussion and Conclusion

A novel approach for segmentation of multiple surfaces with usage of truncated
convex surface smoothness and surface separation constraints was proposed. Our
method demonstrated significant improvement in segmentation accuracy and
computation time compared to OSDC, thus making our method useful for seg-
menting datasets in high resolution without using a multiple resolution approach.
Our method also demonstrated efficient and improved simultaneous segmenta-
tion of surfaces with surface discontinuity and abrupt surface separation changes.

Our algorithm does not guarantee a globally optimal solution since a truncated
convex function is submodular in nature and hence is optimized using an ap-
proximate algorithm. The difference between the results on different resolutions
are partially due to sampling technique. More advanced automated techniques
may be used for training of the parameters.

References

1. Bressler, N.M.: Age-related macular degeneration is the leading cause of blindness.
Jama 291(15), 1900–1901 (2004)

2. Dufour, P.A., Ceklic, L., Abdillahi, H., Schroder, S., De Dzanet, S., Wolf-
Schnurrbusch, U., Kowal, J.: Graph-based multi-surface segmentation of data using
trained hard and soft constraints. IEEE Transactions on Medical Imaging 32(3),
531–543 (2013)

3. Farsiu, S., Chiu, S.J., O’Connell, R.V., Folgar, F.A., Yuan, E., Izatt, J.A., Toth,
C.A.: Quantitative classification of eyes with and without intermediate age-related
macular degeneration using optical coherence tomography. Ophthalmology 121(1),
162–172 (2014)

4. Kumar, M.P., Veksler, O., Torr, P.H.: Improved moves for truncated convex models.
J. Mach. Learn. Res. 12, 31–67 (2011)

5. Lee, K., Niemeijer, M., Garvin, M.K., Kwon, Y.H., Sonka, M., Abràmoff, M.D.:
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