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Abstract. Ideal reference standards for comparing segmentation algo-
rithms balance trade-offs between the data set size, the costs of reference
standard creation and the resulting accuracy. As reference standard qual-
ity impacts the likelihood of detecting significant improvements (i.e. the
statistical power), we derived a sample size formula for segmentation ac-
curacy comparison using an imperfect reference standard. We expressed
this formula as a function of algorithm performance and reference stan-
dard quality (e.g. measured with a high quality reference standard on
pilot data) to reveal the relationship between reference standard qual-
ity and statistical power, addressing key study design questions: (1) How
many validation images are needed to compare segmentation algorithms?
(2) How accurate should the reference standard be? The resulting for-
mula predicted statistical power to within 2% of Monte Carlo simulations
across a range of model parameters. A case study, using the PROMISE12
prostate segmentation data set, shows the practical use of the formula.

Keywords: Segmentation accuracy, statistical power, reference stan-
dard.

1 Introduction

Segmentation of anatomy and pathology on medical images plays a key role in
many clinical scenarios, such as the delineation of the prostate to plan radiother-
apy [2]. As a result, many algorithms for supporting or automating segmentation
have been developed, and segmentation remains an active area of research [5].

Selecting reference standards (e.g. expert manual segmentations) to evalu-
ate and compare segmentation algorithms involves balancing trade-offs between
sample size, quality, and cost. An ideal reference standard would match the
anatomy (or pathology) perfectly; however, anatomic/pathologic variation, am-
biguous anatomical definitions, clinical constraints, and interobserver variability
can introduce errors into the reference standard [8]. The quality and cost of the
reference standard may be affected by the time and effort devoted to segmenta-
tion accuracy, the number of observers and the expertise of the observer(s). For
example, the PROMISE12 prostate segmentation challenge [5] used two refer-
ence standards (see Fig. 1), a high quality one created by one experienced clinical
reader and verified by another independent one, and a low quality one created
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Fig. 1. Left: Prostate MRI segmentations by algorithms A (blue) and B (yellow), and
low (L; red) and high (H; green) quality reference standards from the PROMISE12
data [5]. Relative to H, L oversegmented anteriorly, affecting accuracy measurements of
A and B using L. Right: Apical segmentations showing regions of different segmentation
outcomes ABLH (overbar denotes negative classifications). The statistical power of
segmentation evaluation studies are modeled using outcome probability distributions.

by an inexperienced nonclinical observer. Due to the high costs of creating high
quality reference standards, affordable lower quality ones are commonly used.

Reference standard errors can introduce uncertainty into performance mea-
sures, and impact the probability of detecting a significant difference (i.e. the
statistical power) in validation studies [1]. Thus, there are trade-offs between
generating large (and expensive) data sets to mitigate the uncertainty from
imperfect reference standards, generating highly accurate reference standards
(requiring substantial clinician time and expertise), and successfully finding sig-
nificant differences. To balance these trade-offs, it is important to quantify the
impact of reference standard quality on the statistical power of experiments
comparing segmentation algorithm performance.

In the first steps towards this goal, we present the derivation of a new segmen-
tation sample size formula that relates the statistical power to reference standard
quality and algorithm performance measured with respect to a higher quality
reference standard. After estimating the reference standard and algorithm per-
formance (e.g. in a pilot study), this formula can inform key questions affecting
study design: (1) How many validation images are needed to evaluate a
segmentation algorithm? (i.e. given a reference standard with an estimated
error rate, what is the sample size needed to show a clinically important im-
provement? (2) How accurate does the reference standard need to be?
(i.e. given a data set of a fixed sample size, what level of reference standard
accuracy must be attained to show a clinically important improvement)

2 Derivation of the Sample Size Formula

Since sample size formulae are analysis-specific, this paper focuses on one per-
formance metric (differences in the mean segmentation accuracy between a pair
of algorithms), and one statistical analysis comparing the performance of two
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algorithms using a paired T test on the same data set of images. The sample
size formula can then be expressed in a generic form as

N =
(
Tα/2σ0 + TβσAlt

)2
/δ2R, (1)

where N is the number of images needed to detect a population difference in ac-
curacy δR with respect to the reference standard R, σ2

0 and σ2
Alt are the variances

of the differences in accuracies under the null hypothesis (δR = 0) and alternate
hypothesis (δR �= 0), respectively, and Tα/2 and Tβ are N − 1-degree-of-freedom
Student T quantiles controlling type I and type II study error rates, respectively.
A segmentation-specific sample size formula is derived in Section 2.1.

If the clinical goal requires true improvements in accuracy, these may be
better reflected by specifying the minimal detectable difference δR with respect
to the high quality reference standard, even if the actual study will use a lower
quality reference study. In Section 2.2, this concept is used to relate the impact
of reference standard quality on statistical power by expressing the sample size in
terms of the performance of the algorithms and a low quality reference standard,
measured against a higher quality reference standard (e.g. in a pilot study).

2.1 Sample Size for Segmentation Accuracy

We model the segmentation of an image as a set of binary classifications of n
segmentation elements (such as voxels or superpixels). For each element, these
classifications are modeled as independent samples from random variables repre-
senting the high (H) and low (L) quality reference standards and the algorithms
(A and B). The classification outcome from all four is denoted ABLH (see
Fig. 1). One image event in a segmentation study can be represented as a scaled
contingency table denoting the proportion of each type of classification outcome.
If the outcome probabilities were fixed and known, this could be represented as a
sample from a 16-element multinomial distribution with n trials, scaled by 1

n . To
model variability in the multinomial probability, the conjugate Dirichlet prior is
commonly used [3], parameterized by the mean probability vector p and precision
ω [7]. With this prior, the resulting image events are distributed as a 16-element
Dirichlet-multinomial (Pólya) distribution P with n trials, scaled by 1

n , with

mean p and covariance (n+ω)
n(ω+1)

(
diag(p)− pT p

)
. The differences in accuracy are

then distributed as a linear transformation D of P , weighting outcomes where A
outperforms B (event CA : A = L �= B) by 1, outcomes where B outperforms A
(event CB : A �= L = B) by −1, and other outcomes (A = B) by 0. This distribu-

tion has a mean δL = p(CA)−p(CB) and a variance σ2
Alt =

(n+ω)
n(ω+1) (ψ−δ2L), where

ψ = p(CA)+ p(CB). Under the null hypothesis, δL = 0, therefore σ2
0 = (n+ω)

n(ω+1)ψ.

Substituting σ0 and σAlt into Eq. 1 and factoring out (n+ω)
n(ω+1) , the sample size

for accuracy difference with respect to reference standard L is

N =
(n+ ω)

n(ω + 1)

(
Tα/2

√
ψ + Tβ

√
ψ − δ2L

)2

δ2L
. (2)
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2.2 Sample Size in Terms of the High Quality Reference Standard

Eq. 2 with δL measured with respect to the low quality reference standard can
be expressed in terms of the performance of the algorithms and the low qual-
ity reference standard with respect to the high quality reference. As ψ can be
expressed as p(AB̄ ∪ ĀB) which is independent of the reference standard, only
δL needs to be rewritten. For tractability, it is furthermore assumed that A, B
and L are conditionally independent given H . For brevity, for X ∈ {A,B,L},
we denote conditional probabilities p(X |H) using an overbar for X = 0, and
an underline for H = 0: sensitivity x = p(X = 1|H = 1), false negative rate
x̄ = p(X = 0|H = 1), false positive rate x = p(X = 1|H = 0), and specificity
x̄ = p(X = 0|H = 0). Additionally, we use the following notation: h = p(H = 1);
and h̄ = p(H = 0). Since outcomes where A = B do not affect the difference in
accuracy, δL is the probability of classification outcomes where A = L and B �= L
minus the probability of those where A �= L and B = L (Eq. 3). By assuming
conditional independence (Eq. 4), this can be rearranged algebraically (Eq. 5)
to express δL in terms of the difference in accuracy (δa = (a−b)h+(ā− b̄)h̄) and
sensitivity (δs = a− b) with respect to the high quality reference, the sensitivity
(l) and specificity (̄l) of the low quality reference standard, and the probability of
positive outcomes (h) according to the high quality reference standard (Eq. 6).
Placing this term in Eq. 2 yields the sample size formula in Eq. 7.

δL = p(AB̄LH) + p(AB̄LH̄) + p(ĀBL̄H) + p(ĀBL̄H̄)

−p(ĀBLH)− p(ĀBLH̄)− p(AB̄L̄H)− p(AB̄L̄H̄) (3)

= ab̄lh+ ab̄lh̄+ ābl̄h+ āb̄lh̄− āblh− āblh̄− ab̄l̄h− ab̄̄lh̄ (4)

=
(
(a− b)h+ (ā− b̄)h̄

)
(2̄l− 1)− 2 (a− b) (̄l − l)h (5)

= δa(2̄l − 1)− 2δs(̄l − l)h. (6)

N =
(n+ ω)

n(ω + 1)

(
Tα/2

√
ψ + Tβ

√
ψ − (

δa(2̄l− 1)− 2δs(̄l − l)h
)2
)2

(
δa(2̄l− 1)− 2δs(̄l − l)h

)2 . (7)

3 Simulations

We performed Monte Carlo simulations to assess the accuracy of the sample
size formula. In each simulation, we instantiated a parametric model (described
below) representing a segmentation validation experiment with an underlying
difference in accuracy, and repeatedly simulated the experiment to estimate the
simulated power (i.e. the proportion of simulations yielding true positive out-
comes) and compared it to the specified power. To exclude error due to using
�N� instead of N (because N must be a natural number), we determined �N�
using a specified power 1−β = 0.8, but compared the resulting power to 1−β�N�
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Table 1. Parameters used to estimate the accuracy of the model

n h Aa δa a/Aa δs l l̄ ω

Baseline 10000 0.4 0.8 0.05 1 0.05 0.8 0.8 100
Minimum 100 0.1 0.6 0.01 0.75 0.01 0.6 0.6 16
Maximum 100000 0.9 0.99 0.25 1.25 0 .30 1 1 1024

computed by solving Eq. 7 for N = �N�. We used 25,000 repetitions, yielding a
1% wide 95% confidence interval on the error in predicted power.

To assess the accuracy of Eq. 7, we used a parametric model with random
variables A, B, L and H , for the two algorithms and the low and high quality ref-
erence standards.A, B and L could be defined by mean sensitivities and specifici-
ties with respect to H ; however, to independently manipulate δa and δs in Eq. 7,
A and B were redefined in terms of δa, δs, the accuracy of A (Aa) and a sensitivity
factor a/Aa. H was parameterized by a mean probability of positive outcomes,
and parameter n specified the number of segmentation elements. Type I and II
error rates were fixed to be 0.05 and 0.2, respectively. A precision parameter ω
was used to model inter-image variability and variability in positive outcomes.
The segmentation outcomes were sampled from a Dirichlet-Multinomial distri-
bution parameterized by ω and p = p(ABLH) = p(A|H)p(B|H)p(L|H)p(H).
Model parameters were initialized with baseline values given in the first row of
Table 1, and were varied independently through the ranges given in rows 2-3.

4 Results

The error in the power predicted by the model over a range of parameters are
shown in Fig. 4; the 95% confidence interval bounds on prediction error were
within 2% throughout. To ensure high sensitivity to all parameter values where
the model has prediction error, multiple comparison correction, which would
widen the intervals and hide model errors, was not used. Thus, the 95% confi-
dence intervals for a perfect model would include 0% error for 95% of parameter
sets; for our model, the confidence intervals included 0% error for 89% of the
parameter sets. Three regions showed notable deviation from the simulations:
high accuracy (Aa > 0.975), large differences in accuracy (δa ≥ 0.2) and high
precision (ω = 1024), although these errors did not exceed 2% (95% confidence).

5 Case Study

Using data from the PROMISE12 prostate MRI segmentation challenge [5], this
case study demonstrates how to apply Eq. 7. In this data set, two experienced
clinicians generated a high quality reference standard, and a graduate student
generated a low quality reference standard. Although, in the challenge, algo-
rithms were compared to the high quality reference standard, this case study con-
siders comparing segmentation algorithms using the graduate-student reference
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Fig. 2. Model accuracy: 95% confidence regions on the power prediction error (%).
Values where the region does not contain the 0% error line suggest prediction error.

standard. To apply Eq. 7, one must estimate, from literature or pilot data, the
algorithm and reference performance with respect to the high quality reference
standard (a, b, l, ā, b̄, and l̄), the probability of positive outcomes (h), the pre-
cision ω, the probability of disagreement between A and B (ψ), and the desired
(or observed) performance differences (δL, δa and δs). In this case study, image
events (i.e. 16-element contingency tables) were computed for 30 cases from the
segmentations of the high and low quality reference standards and two algorithms
submitted for the challenge. If such a data set is not available, a high quality
reference standard on a small pilot data set could be generated to make these es-
timates. Precision was estimated by setting n+ω

n(ω+1) to s2/(DT (diag(p̃)− p̃T p̃)D),

where s2 was the observed variance in accuracy difference and p̃ was the vec-
tor of observed probabilities: ωL = 1600 (low quality reference standard), and
ωH = 1900 (high quality). Other parameters were estimated by combining the

counts of classification outcomes (e.g. ā = p(Ā|H̄) = ||Ā∩H̄||
||H̄|| ) and averaging over

the images: a = 0.892, b = 0.899, l = 0.892, ā = 0.998, b̄ = 0.997, and l̄ = 0.999,
h = 0.171, δL = 0.0016, δa = 0.0016, δs = −0.0066, ψ = 0.0047. Substituting ψ,
δa and ωT into Eq. 2 yielded a sample size of N = 7.2 to detect a difference of
δa using the high quality reference standard. Substituting the parameters (ex-
cept δL) into Eq. 7 yielded N = 8.4 to detect a difference of δa (as measured
with a high quality reference standard) using the low quality reference standard.
For comparison, N = 8.5 when substituting ψ, δL and ωT into Eq. 2 directly,
suggesting that assuming conditional independence introduced minimal error.
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In this case study, the low quality reference standard required only a slightly
larger sample size, and could be a suitable approach.

6 Discussion

This paper derived a sample size formula for comparisons of segmentation accu-
racy between two algorithms, and expressed it as a function of performance of the
algorithms and a low quality reference standard performance measured against a
higher quality reference standard. This relationship can be used to address cen-
tral questions in the design of segmentation validation experiments: (1) How
many validation images are needed to evaluate a segmentation algo-
rithm? (2) How accurate does my reference standard need to be? The
relationship can be used in several contexts. For researchers designing novel seg-
mentation algorithms, the relationship can inform the selection of validation data
sets and reference standards needed to evaluate the algorithms. For researchers
involved in creating validation data sets and reference standard segmentations,
the relationship can guide the trade-offs between the costs of generating large
data sets and those of generating highly accurate reference standards.

While this paper considers the common approach of using low quality reference
standards directly, other approaches have been proposed to leverage lower quality
reference standards. Most notably, label fusion algorithms, such as STAPLE [8]
aim to infer a high quality reference standard from multiple low quality reference
standards. This has even been extended to use crowd-sourced segmentations by
minimally trained users [4]. These methods may be preferable, when feasible,
to using low quality reference standards; however, the need to create multiple
reference standards may increase the cost/complexity of such studies.

The predicted power was within 2% of the simulations over the tested pa-
rameters. Three conditions showed measurable deviations from 0% error. With
high accuracies, the algorithms disagreed on few classifications and accuracy
differences were not normally distributed as assumed by the T-test; this was
compounded by the low sample size (N = 11) where the T-test is more sensitive
to assumption violations [6]. Thus, statistical comparisons of highly accurate
algorithms may be challenging. Large or very consistent (high ω) accuracy dif-
ferences, yielded even lower sample sizes (N ≤ 6). Low predicted sample sizes
may have higher error, although, even in these cases, it did not exceed 2%.

Sample size formulae are inherently specific to the statistical analysis be-
ing performed. The presented formula is specific to studies comparing the ac-
curacy of two algorithms using one reference standard. As illustrated by the
PROMISE12 challenge, many segmentation evaluation studies compare multiple
measures (e.g. Dice coefficients and boundary distances) between >2 algorithms
using multiple reference standards. Deriving analogous sample size formulae for
these studies would be a valuable direction for future work.

Two key derivational assumptions may constrain the use of the formula. First,
we assumed that given the high quality reference standard outcome, the low
quality reference standard and algorithm segmentations are conditionally inde-
pendent (i.e. do not make the same error more than predicted by chance). In
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practice, segmentation elements with confounding image features (e.g. low con-
trast or artifacts) may induce similar errors in the segmentations, potentially
violating conditional independence. In the case study, any such correlation did
not substantially impact the calculation; however, other data sets may be more
prone to violations of this assumption. Additionally, segmentation algorithms
trained using the low quality reference standard may make the same types of
error as the reference standard potentially violating conditional independence.
This was not a factor in the PROMISE12 data set, as algorithms were trained
using the high quality reference standard. Using pilot data to test for conditional
independence or to evaluate the impact of such correlation (as in the case study)
may identify such situations. Second, we modelled segmentation as a set of in-
dependent decisions on segmentation elements, such as voxels or superpixels. In
practice, regularization (e.g. enforcing smooth segmentations), clinical knowl-
edge (e.g. anatomical constraints) or image features (e.g. artifacts) may cause
correlated segmentation outcomes. It is unclear to what extent the aggregation
of these outcomes in the multinomial and the variance in the Dirichlet prior mit-
igate violations of this assumption. Characterizing the sensitivity of the model
to violations of these assumptions would be a valuable direction for future work.

In conclusion, this paper derived a sample size formula for comparing the ac-
curacy of two segmentation algorithms using an imperfect reference standard,
expressed as a function of algorithm and reference standard performance (mea-
sured against a higher quality reference standard). The model was accurate to
within 2% across the tested range of model parameters, although it began to
deviate measurably from simulations when N was low. We also showed a case
study where using a low quality reference standard could cause little increase
in sample size, and where assuming conditional independence for the algorithms
and low quality reference standard introduced little error. The Medical Research
Council and the Canadian Institutes of Health Research supported this work.
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