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Abstract

Despite the popularity and empirical success of patch-based nearest-neighbor and weighted 

majority voting approaches to medical image segmentation, there has been no theoretical 

development on when, why, and how well these nonparametric methods work. We bridge this gap 

by providing a theoretical performance guarantee for nearest-neighbor and weighted majority 

voting segmentation under a new probabilistic model for patch-based image segmentation. Our 

analysis relies on a new local property for how similar nearby patches are, and fuses existing lines 

of work on modeling natural imagery patches and theory for nonparametric classification. We use 

the model to derive a new patch-based segmentation algorithm that iterates between inferring local 

label patches and merging these local segmentations to produce a globally consistent image 

segmentation. Many existing patch-based algorithms arise as special cases of the new algorithm.

1 Introduction

Nearest-neighbor and weighted majority voting methods have been widely used in medical 

image segmentation, originally at the pixel or voxel level [11] and more recently for image 

patches [2,6,10,12]. Perhaps the primary reason for the popularity of these nonparametric 

methods is that standard label fusion techniques for image segmentation require robust 

nonrigid registration whereas patch-based methods sidestep nonrigid image alignment 

altogether. Thus, patch-based approaches provide a promising alternative to registration-

based methods for problems that present alignment challenges, as in the case of whole body 

scans or other applications characterized by large anatomical variability.

A second reason for patch-based methods’ growing popularity lies in their efficiency of 

computation: fast approximate nearest-neighbor search algorithms, tailored for patches [3] 

and for high-dimensional spaces more generally (e.g., [1,9]), can rapidly find similar 

patches, and can readily parallelize across search queries. For problems where the end goal 

is segmentation or a decision based on segmentation, solving numerous nonrigid registration 

subproblems required for standard label fusion could be a computationally expensive detour 

that, even if successful, might not produce better solutions than a patch-based approach.

Many patch-based image segmentation methods can be viewed as variations of the 

following simple algorithm. To determine whether a pixel in the new image should be 

foreground (part of the object of interest) or background, we consider the patch centered at 

that pixel. We compare this image patch to patches in a training database, where each 

training patch is labeled either foreground or background depending on the pixel at the 

center of the training patch. We transfer the label from the closest patch in the training 

database to the pixel of interest in the new image. A plethora of embellishments improve 
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this algorithm, such as, but not limited to, using K nearest neighbors or weighted majority 

voting instead of only the nearest neighbor [6,10,12], incorporating hand-engineered or 

learned feature descriptors [12], cleverly choosing the shape of a patch [12], and enforcing 

consistency among adjacent pixels by assigning each training intensity image patch to a 

label patch rather than a single label [10,12], or by employing a Markov random field [7].

Despite the broad popularity and success of nonparametric patch-based image segmentation 

and the smorgasbord of tricks to enhance its performance, the existing work has been 

empirical with no theoretical justification for when and why such methods should work and, 

if so, how well and with how much training data. In this paper, we bridge this gap between 

theory and practice for nonparametric patch-based image segmentation algorithms. We 

propose a probabilistic model for image segmentation that draws from recent work on 

modeling natural imagery patches [13,14]. We begin in Section 2 with a simple case of our 

model that corresponds to inferring each pixel’s label separately from other pixels. For this 

special case of so-called pointwise segmentation, we provide a theoretical performance 

guarantee for patch-based nearest-neighbor and weighted majority voting segmentation in 

terms of the available training data. Our analysis borrows from existing theory on 

nonparametric time series classification [5] and crucially relies on a new structural property 

on neighboring patches being sufficiently similar. We present our full model in Section 3 

and derive a new iterative patch-based image segmentation algorithm that combines ideas 

from patch-based image restoration [13] and distributed optimization [4]. This algorithm 

alternates between inferring label patches separately and merging these local estimates to 

form a globally consistent segmentation. We show how various existing patch-based 

algorithms are special cases of this new algorithm.

2 Pointwise Segmentation and a Theoretical Guarantee

For an image A, we use A(i) to denote the value of image A at pixel i, and A[i] to denote the 

patch of image A centered at pixel i based on a pre-specified patch shape; A[i] can include 

feature descriptors in addition to raw intensity values. Each pixel i belongs to a finite, 

uniformly sampled lattice I.

Model

Given an intensity image Y, we infer its label image L that delineates an object of interest in 

Y. In particular, for each pixel i ∈ I, we infer label L(i) ∈ {+1, −1}, where +1 corresponds to 

foreground (object of interest) and −1 to background. We make this inference using patches 

of image Y, each patch of dimensionality d (e.g., for 2D images and 5-by-5 patches, d = 52 = 

25). We model the joint distribution p(L(i),Y[i]) of label L(i) and image patch Y[i] as a 

generalization of a Gaussian mixture model (GMM) with diagonal covariances, where each 

mixture component corresponds to either L(i) = +1 or L(i) = −1. We define this 

generalization, called a diagonal sub-Gaussian mixture model, shortly.

First, we provide a concrete example where label L(i) and patch Y[i] are related through a 

GMM with Ci mixture components. Mixture component c ∈ {1, …, Ci} occurs with 

probability ρic ∈ [0, 1] and has mean vector  and label λic ∈ {+1, −1}. In this 

example, we assume that all covariance matrices are σ2Id×d, and that there exists constant 
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ρmin > 0 such that ρic ≥ ρmin for all i, c. Thus, image patch Y[i] belongs to mixture 

component c with probability ρic, in which case Y[i] = μic + Wi, where vector 

consists of white Gaussian noise with variance σ2, and L(i) = λic. Formally,

where N(·; μ, Σ) is a Gaussian density with mean μ and covariance Σ, and δ(·) is the 

indicator function.

The diagonal sub-Gaussian mixture model refers to a generalization where noise vector Wi 

consists of zero-mean i.i.d. random entries whose distribution has tails that decay at least as 

fast as that of a Gaussian random variable. Formally, a zero-mean random variable X is sub-

Gaussian with parameter σ if its moment generating function  satisfies 

 for all . Examples of such random variables include N(0, σ2) and 

Uniform[−σ, σ].

Every pixel is associated with its own diagonal sub-Gaussian mixture model whose 

parameters (ρic, μic, λic) for c = 1, …,Ci are fixed but unknown. Similar to recent work on 

modeling generic natural image patches [13,14], we do not model how different overlapping 

patches behave jointly and instead only model how each individual patch, viewed alone, 

behaves. We suspect that medical image patches have even more structure than generic 

natural image patches, which are very accurately modeled by a GMM [14].

Rather than learning the mixture model components, we instead take a nonparametric 

approach, using available training data in nearest-neighbor or weighted majority voting 

schemes to infer label L(i) from image patch Y[i]. To this end, we assume we have access to 

n i.i.d. training intensity-label image pairs (Y1, L1), …, (Yn, Ln) that obey our probabilistic 

model above.

Inference

We consider two simple segmentation methods that operate on each pixel i separately, 

inferring label L(i) only based on image patch Y[i].

Pointwise nearest-neighbor segmentation first finds which training intensity image Yu has a 

patch centered at pixel j that is closest to observed patch Y[i]. This amounts to solving 

, where ∥ · ∥ denotes Euclidean norm, and 

N(i) refers to a user-specified finite set of pixels that are neighbors of pixel i. Label L(i) is 

estimated to be .

Pointwise weighted majority voting segmentation first computes the following weighted 

votes for labels ℓ ∈ {+1, −1}:

Chen et al. Page 3

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where θ is a scale parameter, and N(i) again refers to user-specified neighboring pixels of 

pixel i. Label L(i) is estimated to be the label ℓ with the higher vote Vℓ(i|Y[i]; θ). Pointwise 

nearest-neighbor segmentation can be viewed as this weighted voting with θ → ∞. 

Pointwise weighted majority voting has been used extensively for patch-based segmentation 

[2,6,10,12], where we note that our formulation readily allows for one to choose which 

training image patches are considered neighbors, what the patch shape is, and whether 

feature descriptors are part of the intensity patch vector Y[i].

Theoretical Guarantee

The model above allows nearby pixels to be associated with dramatically different mixture 

models. However, real images are “smooth” with patches centered at two adjacent pixels 

likely similar. We incorporate this smoothness via a structural property on the sub-Gaussian 

mixture model parameters associated with nearby pixels. We refer to this property as the 

jigsaw condition, which holds if for every mixture component (ρic, μic, λic) of the diagonal 

sub-Gaussian mixture model associated with pixel i, there exists a neighbor j ∈ N*(i) such 

that the diagonal sub-Gaussian mixture model associated with pixel j also has a mixture 

component with mean μic, label λic, and mixture weight at least ρmin; this weight need not be 

equal to ρic. The shape and size of neighborhood N*(i), which is fixed and unknown, control 

how similar the mixture models are across image pixels. Note that N*(i) affects how far 

from pixel i we should look for training patches, i.e., how to choose neighborhood N(i) in 

pointwise nearest-neighbor and weighted majority voting segmentation, where ideally N(i) = 

N*(i).

Separation gap—Our theoretical result also depends on the separation “gap” between 

training intensity image patches that correspond to the two different labels:

Intuitively, a small separation gap corresponds to the case of two training intensity image 

patches that are very similar but one corresponds to foreground and the other to background. 

In this case, a nearest-neighbor approach may easily select a patch with the wrong label, 

resulting in an error.

We now state our main theoretical guarantee. The proof is left to the supplementary material 

and builds on existing time series classiffication analysis [5].

Theorem 1

Under the model above with n training intensity-label image pairs and provided that the 

jigsaw condition holds with neighborhood N*, pointwise nearest-neighbor and weighted 
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majority voting segmentation (with user-specified neighborhood N satisfying N(i) ⊇ N*(i) 

for every pixel i and with parameter  for weighted majority voting) achieve expected 

pixel labeling error rate

where Cmax is the maximum number of mixture components of any diagonal sub-Gaussian 

mixture model associated with a pixel, and |N| is the largest user-specified neighborhood of 

any pixel.

To interpret this theorem, we consider sufficient conditions for each term on the right-hand 

side bound to be at most ε/2 for ε ∈ (0, 1). For the first term, the number of training 

intensity-label image pairs n should be sufficiently large so that we see all the different 

mixture model components in our training data: . For the second 

term, the gap G should be sufficiently large so that the nearest training intensity image patch 

found does not produce a segmentation error: G ≥ 16σ2 log(2|N|n/ε). There are different 

ways to change the gap, such as changing the patch shape and including hand-engineered or 

learned patch features. Intuitively, using larger patches d should widen the gap, but using 

larger patches also means that the maximum number of mixture components Cmax needed to 

represent a patch increases, possibly quite dramatically.

The dependence on n in the second term results from a worst-case analysis. To keep the gap 

from having to grow as log(n), we could subsample the training data so that n is large 

enough to capture the diversity of mixture model components yet not so large that it 

overcomes the gap. In particular, treating Cmax, σ2, and ρmin as constants that depend on the 

application of interest and could potentially be estimated from data, collecting n = Θ(log(|

I|/ε)) training image pairs and with a gap G = Ω(log((|N| log |I|)/ε)), both algorithms achieve 

an expected error rate of at most ε. The intuition is that as n grows large, if we continue to 

consider all training subjects, even those that look very different from the new subject, we 

are bound to get unlucky (due to noise in intensity images) and, in the worst case, encounter 

a training image patch that is close to a test image patch but has the wrong label. Effectively, 

outliers in training data muddle nearest-neighbor inference, and more training data means 

possibly more outliers.

3 Multipoint Segmentation

Model

We generalize the basic model to infer label patches L[i] rather than just a single pixel’s 

label L(i). Every label patch L[i] is assumed to have dimensionality d′, where d and d′ need 

not be equal. For example, for 2D images, Y[i] could be a 5-by-5 patch (d = 25) whereas L[i] 

could be a 3-by-3 patch (d′ = 9). When d′ > 1, estimated label patches must be merged to 
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arrive at a globally consistent estimate of label image L. This case is referred to as 

multipoint segmentation.

In this general case, we assume there to be k latent label images Λ1, …, Λk that occur with 

probabilities π1, …, πk. To generate intensity image Y, we first sample label image Λ ∈ {Λ1, 

…, Λk} according to probabilities π1, …, πk. Then we sample label image L to be a 

perturbed version of Λ such that p(L|Λ) ∝ exp(−αd(L, Λ)) for some constant α ≥ 0 and 

differentiable “distance” function d(·, ·). For example, d(L, Λ) could relate to volume 

overlap between the segmentations represented by label images L and Λ with perfect overlap 

yielding distance 0. Finally, intensity image Y is generated so that for each pixel i ∈ I, patch 

Y[i] is a sample from a mixture model patch prior p(Y[i]|L[i]). If α = 0, d′ = 1, and the 

mixture model is diagonal sub-Gaussian, we get our earlier model.

We refer to this formulation as a latent source model since the intensity image patches could 

be thought of as generated from the latent “canonical” label images Λ1, …, Λk combined 

with the latent mixture model clusters linking label patches L[i] to intensity patches Y[i]. 

This hierarchical structure enables local appearances around a given pixel to be shared 

across the canonical label images.

Inference

We outline an iterative algorithm based on the expected patch log-likelihood (EPLL) 

framework [13], deferring details to the supplementary material. The EPLL framework 

seeks a label image L by solving

The first term in the objective function encourages label image L to be close to the true label 

images Λ1, …, Λk. The second term is the “expected patch log-likelihood”, which favors 

solutions whose local label patches agree well on average with the local intensity patches 

according to the patch priors. Since latent label images Λ1, …, Λk are unknown, we use 

training label images L1, …, Ln as proxies instead, replacing the first term in the objective 

function with . Next, we approximate the 

unknown patch prior p(Y[i]|L[i]) with a kernel density estimate

where the user specifies a neighborhood N(i) of pixel i, and constant γ > 0 that controls the 

Gaussian kernel’s bandwidth. We group the pixels so that nearby pixels within a small block 

all share the same kernel density estimate. This approximation assumes a stronger version of 

the jigsaw condition from Section 2 since the algorithm operates as if nearby pixels have the 
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same mixture model as a patch prior. We thus maximize objective 

Similar to the original EPLL method [13], we introduce an auxiliary variable ξi ∈ ℝd′ for 

each patch L[i], where ξi acts as a local estimate for L[i]. Whereas two patches L[i] and L[j] 

that overlap in label image L must be consistent across the overlapping pixels, there is no 

such requirement on their local estimates ξi and ξj. In summary, we maximize the objective 

 > 0, subject to 

constraints L[i] = ξi that are enforced using Lagrange multipliers. We numerically optimize 

this cost function using the Alternating Direction Method of Multipliers for distributed 

optimization [4]. Given the current estimate of label image L, the algorithm produces 

estimate ξi for L[i] given Y[i] in parallel across i. Next, it updates L based on ξi via a 

gradient method. Finally, the Lagrange multipliers are updated to penalize large 

discrepancies between ξi and L[i].

Fixing ξi and updating L corresponds to merging local patch estimates to form a globally 

consistent segmentation. This is the only step that involves expression F(L; α). With α = 0 

and forcing the Lagrange multipliers to always be zero, the merging becomes a simple 

averaging of overlapping label patch estimates ξi. This algorithm corresponds to existing 

multipoint patch-based segmentation algorithms [6,10,12] and the in-painting technique 

achieved by the original EPLL method. Setting α = β = 0 and d′ = 1 yields pointwise 

weighted majority voting with parameter θ = γ. When α > 0, a global correction is applied, 

shifting the label image estimate closer to the training label images. This should produce 

better estimates when the full training label images can, with small perturbations as 

measured by d(·, ·), explain new intensity images.

Experimental Results

We empirically explore the new iterative algorithm on 20 labeled thoracic-abdominal 

contrast-enhanced CT scans from the Visceral ANATOMY3 dataset [8]. We train the model on 15 

scans and test on the remaining 5 scans. The training procedure amounted to using 10 of the 

15 training scans to estimate the algorithm parameters in an exhaustive sweep, using the rest 

of the training scans to evaluate parameter settings. Finally, the entire training dataset of 15 

scans is used to segment the test dataset of 5 scans using the best parameters found during 

training. For each test scan, we first use a fast affine registration to roughly align each 

training scan to the test scan. Then we apply four different algorithms: a baseline majority 

voting algorithm (denoted “MV”) that simply averages the training label images that are 

now roughly aligned to the test scan, pointwise nearest neighbor (denoted “1NN”) and 

weighted majority voting (denoted “WMV”) segmentation that both use approximate nearest 

patches, and finally our proposed iterative algorithm (denoted “ADMM”), setting distance d 
to one minus Dice overlap. Note that Dice overlap can be reduced to a differentiable 

function by relaxing our optimization to allow each label to take on a value in [−1, 1]. By 

doing so, the Dice overlap of label images L and Λ is given by 

, where .
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We segmented the liver, spleen, left kidney, and right kidney. We report Dice overlap scores 

for the liver in Fig. 1 using the four algorithms. Our results for segmenting the other organs 

follow a similar trend where the proposed algorithm outperforms pointwise weighted 

majority voting, which outperforms both pointwise nearest-neighbor segmentation and the 

baseline majority voting. For the organs segmented, there was little benefit to having α > 0, 

suggesting the local patch estimates to already be quite consistent and require no global 

correction.

4 Conclusions

We have established a new theoretical performance guarantee for two nonparametric patch-

based segmentation algorithms, uniting recent lines of work on modeling patches in natural 

imagery and on theory for nonparametric time series classification. Our result indicates that 

if nearby patches behave as mixture models with sufficient similarity, then a myopic 

segmentation works well, where its quality is stated in terms of the available training data. 

Our main performance bound provides insight into how one should approach building a 

training dataset for patch-based segmentation. The looseness in the bound could be 

attributed to outliers in training data. Detecting and removing these outliers should lead to 

improved segmentation performance.

From a modeling standpoint, understanding the joint behavior of patches could yield 

substantial new insights into exploiting macroscopic structure in images rather than relying 

only on local properties. In a related direction, while we have modeled the individual 

behavior of patches, an interesting theoretical problem is to find joint distributions on image 

pixels that lead to such marginal distributions on patches. Do such joint distributions exist? 

If not, is there a joint distribution whose patch marginals approximate the mixture models 

we use? These questions outline rich areas for future research.
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Fig. 1. 
Liver segmentation results.
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