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Abstract. Segmentation of vasculature is a common task in many ar-
eas of medical imaging, but complex morphology and weak signal often
lead to incomplete segmentations. In this paper, we present a new gap
filling strategy for 3D vascular networks. The novelty of our approach is
to combine both skeleton- and intensity-based information to fill large
discontinuities. Our approach also does not make any hypothesis on the
network topology, which is particularly important for tumour vascula-
ture due to the chaotic arrangement of vessels within tumours. Syn-
thetic results show that using intensity-based information, in addition to
skeleton-based information, can make the detection of large discontinu-
ities more robust. Our strategy is also shown to outperform a classic gap
filling strategy on 3D Micro-CT images of preclinical tumour models.

1 Introduction

Gap filling methods for vascular networks have recently generated significant
interest. Many methods for the segmentation of the vasculature rely on the
generation of a likelihood or vesselness map. To obtain a final segmentation,
these maps are usually binarized, meaning that important vessel information
may be discarded. Under-segmentation in this sense can lead to discontinuities in
the segmentation, which will have implications for any analysis of the branching
structure. In this paper, we then propose a novel method to incorporate image
intensity information, additional to the final segmentation, to reconnect the gaps
in the segmentation. This method is motivated by the extraction of tumour
vasculature which is highly leaky and poorly perfused, leading to an irregular
distribution of signal within the vasculature (see Fig. 1). No strong hypotheses
can therefore be made on their chaotic and highly irregular topology.
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Preliminary approaches to perform gap filling or to improve robustness in
the segmentation of vascular structures were proposed in [10,13,9]. A gap filling
strategy for large 3D images with a discontinuous segmented vasculature, based
on a tensor voting strategy [4], was proposed in [11]. This approach, however,
only makes use of the skeleton of segmented structures. Another tensor voting
strategy was proposed in [7] to segment noisy tubular structures in an itera-
tive fashion. However, this only applies to relatively small gaps. An interesting
learning strategy was proposed in [5]. This approach utilizes human interac-
tions to learn appropriate graph connectivity. The decomposition of directional
information, orientation scores, has been explored [2], but with application to
crossing vessels. This high level strategy is complementary to lower level ones
like in [11], where only local image features communicate to fill the gaps. In the
same vein, the simultaneous reconstruction and separation of multiple interwo-
ven tree structures using high-level representation of the trees was also proposed
in [1], and a physiologically motivated strategy based on a simplified angiogen-
esis model was proposed in [12] to correct the vascular connectivity. Closer to
our strategy, [3] derived intensity based information within a tensor model to
perform the robust segmentation of tubular structures. However, this strategy is
dedicated to robust vessel segmentation in a noisy context, which would typically
lead to small discontinuities, and not to the detection of large discontinuities in
the segmented network. Note finally that a review of 3D vessels segmentation
strategies was recently published in [6].

From a methodological perspective, we define a gap filling strategy adapted to
large discontinuities. Our approach works on very low level features and places
few priors on the structure, distribution and topology of the vessels. Its key
novelties are (1) the incorporation of both skeletal and image intensity informa-
tion whilst enforcing minimal priors on the resultant reconnected morphology,
and (2) a new communication model between the different image features, with
the clear separation of oriented- and non oriented-information. This paper is
structured as follows: Section 2 presents our new gap filling strategy. Results are
presented section 3 and discussions are drawn section 4.

2 Methodology

2.1 Method Overview

Suppose we have the following inputs defined on the image domain Ω:

1. A skeletonized vascular network, typically obtained from a segmented vascu-
lar network. We denote si, i ∈ {1, · · · , I} the set of network segments which
contain the set of points between two topological branch points or between a
branch point and an end point. The ej , j ∈ {1, · · · , J} are the set of segment
ends connected to any other segment.

2. A list of uncertain points pk, k ∈ {1, · · · ,K} and their intensity wk, wk ∈
[0, 1]. Intensities are normalized so that wk close to 0 means that point pk is
unlikely to be part of a vessel and wk close to 1 means that pk is very likely
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to be part of a vessel. These intensities can be directly extracted from the
original image or as the scores of a probabilistic segmentation algorithm.

Fig. 1 illustrates these image features. From each segment end ej , a path Pj will
eventually be generated to fill a gap in the skeleton. To do so, the user has only
to define two simple parameters:

1. Characteristic distance σ which represents the typical size of the gaps to fill.
2. Characteristic angle θ ∈]0, π/2[ of the paths, which permits more or less

curvature to an optimal path. A typical value for θ is π/5.

Based on the segment ends ej, our strategy first consists of defining a second
order tensor field T. This field is used to compute the saliency map to curvi-
linear shapes S as in [11], plus preferential directions D for the path search.
Based on the segments si and intensity based information (pk,wk), a so-called
enhancement map E is generated to indicate where each path Pj could be found
without any clear indication on its local orientation. This differs from [11], where
all input information is expressed in the tensor field with preferential directions.
Note that we build the two scalar fields S and E so that, for both of them, a
value close to 0 at point p emphasizes that p should not be part of a path Pj ,
and values similar to or larger than 1 emphasize that p is very likely to be part
of a path Pj . We describe hereafter how paths Pj are generated using the fields
S, E and D. Construction of these fields is described in the following.

Fig. 1. (left) Slice out of a 3D image of tumour vasculature. (right) Primary 3D
segmentation shown in white and intensity information shown in gray. In our model, the
primary segmentation is skeletonized and intensity information provides an additional
guide for reconnection. In the presented ROI, this additional information makes sense
to fill skeleton discontinuities.

2.2 Gap Filling

The segment ends ej can be linked to other segment ends in case of a gap
within a vessel segment, or to other segments si in case of a gap at a bifurca-
tion. We use Alg. 1 to generate the paths. Parameter δ is the step length of the
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recursive path search and is typically similar to the voxel resolution. We define h
as equal to 0.05. This is motivated by the fact that the effect of this threshold is
largely redundant with respect to σ and θ. Angles θ1 and θ2 also ensure that the
path search is relatively smooth and follows directions similar to the preferential
directions of D. We consider these parameters as secondary here and set them to
20 degrees. However, our tests have shown that they should be contained within
[10, 30] degrees to lead to satisfactory results, whatever the network. Note that
our algorithm was chosen over a Dijkstra style search algorithm for reasons of
computational complexity.

Algorithm 1. Path search from a segment end ej

1: Pj(1) = location(ej)
2: Pj(2) = location(ej) + δdirection(ej)
3: i = 2
4: while [Pj(i) does not reach a segment end or a segment]

and [max (S(Pj(i)), E(Pj(i))) > h] do
5: List all points P̂j(i+ 1) at a distance δ from Pj(i)
6: Among the P̂j(i+ 1), remove those for which the angle between Pj(i − 1)Pj(i)

and Pj(i)P̂j(i+ 1) is higher than θ1.
7: Among the P̂j(i + 1), remove those for which the angle between D(Pj(i)) and

Pj(i)P̂j(i+ 1) is higher than than θ2.
8: If there remains at least one point in the list Pj(i+1) is the one which have the

highest max (S(Pj(i)), E(Pj(i)))
9: i++
10: end while
11: If Pj(i) reaches a segment end or a segment, then join ej with this token using Pj

end

2.3 Generating the Second-Order Tensor Field T

A second-order tensor field constructed from the dyadic products of a vector
field allows for a simple mechanism of communication between vector fields. We
use a very similar technique as in [11] to define the tensor field T. Let lj be the
location of the segment end ej and dj be its (normalized) direction. For each
point p close to lj, a vector wj(p) is first generated as:

wj(p) = e

r2 + cϕ2

σ2 (2ejp(ejp · dj)− dj) , (1)

where c equals σ3/(4 sin2 θ) and (ejp ·dj) is the scalar product between ejp and
dj . Scalars r and ϕ are, respectively, the length and the curvature of an arc of
circle going through ej and p and parallel to dj at point ej (as in [11]). At each
point p, the communication between all segment ends is simply performed by
computing the sum of all tensorized vector fields wj:

T(p) =
J∑

j=1

wj(p)⊗wj(p) , (2)
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where ⊗ is the tensor product between two vectors. This strategy will allow us
to evaluate whether all vectors wj(p) have similar directions, by computing the
eigenvalues and eigenvectors of T(p).

2.4 Deriving a Saliency Map S and Preferential Directions D
from T

Our method works on the hypothesis that segments are connected when both
ends agree on some path between them. The saliency map is a measure for this
agreement by quantifying the degree to which votes from different segments at a
given point agree on a preferential direction. As in [4,11,7], each point of T can
be decomposed into eigenvectors and eigenvalues, which describe the principal
directions of T and their strength at each point p: T(p) =

∑3
i=1 σi(p)vi(p) ⊗

vi(p). Decomposition can be performed using the Jacobi algorithm. The saliency
to a curvilinear shape S(p), defining how likely each point of the domain is to
be part of a curve, is defined by S(p) = σ1(p)− σ2(p). As the weights given to
each vector field wj(p) expressing a single segment end in Eq. (1) are contained
between 0 and 1, we assume that S(p) higher than 1 means that the saliency of
p to a curve is very high.

Preferential directions D to join two segment ends can simply be the eigen-
vector v1 corresponding to the largest eigenvalue. Note that these eigenvectors
are defined on a larger domain than where S(p) > h, which will be the key for
the use of the enhancement field E.

2.5 Generating the Enhancement Map E

We first enhance segment surroundings in E: at a point p close to a segment si,
we set E(p) = exp

(−4c2/σ2
)
, where c is the distance between p and si.

Then, in order to estimate how uncertain points pk and their intensities wk

are expressed in E, we first copy them in a temporary image R1. All other points
of R1 are null. We then define the temporary images R2 and R3 by smoothing
R1 with a kernel exp

(−4d2/σ2
)
and a larger kernel exp

(−d2/σ2
)
respectively,

where d is the distance to the kernel origin. Each point p of E is then influenced
by the uncertain points E(p) = E(p)+R2(p)/R3(p). This approach ensures that
a locally isolated point pk or a local cluster of uncertain points with the same
intensities wk will be similarly spread in R2/R3 (close to Gaussian smoothing)
with a maximum value of wk. As the intensities are sampled within [0, 1], the
influence of isolated uncertain points or groups of uncertain points is then similar
to the influence of the segments si in E and the influence of the segment ends
ej in S. All non-oriented information for the path search is then sampled on the
same scale, which facilitates the communication between skeleton- and intensity-
based information in the path search of section 2.2.
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3 Results

3.1 Synthetic Data

A synthetic example and two sets of results are presented in Fig. 2. Although
this network has no physiological meaning, it represents different configurations
which may occur in our application: (top) two segment ends, one in front of
the other; (left) segment end pointing a segment; (bottom-right) two segment
ends which are relatively close to a segment but with intensity based information
indicating that they should be linked together and not linked to the segment.
The two first cases can be easily merged using skeleton information only (right
illustrations of Fig. 2) but the third one requires intensity information (central
illustrations of Fig. 2). A comparison with [11] also led to the same results as our
strategy without intensity information. Using large values of σ a false positive
junction would be made. Using reasonable σ, as well as intensity information,
the two segment ends are properly merged (illustrations on the central column
of Fig. 2).

Fig. 2. Gap filling in a synthetic 2D network. Large blue curves represent the initial
skeleton. Gray levels represent initial intensities in the top-left image and the enhance-
ment field E in other images. They are sampled between 0 and 1. Yellow curves are
the isolines [0.3, 0.2, 0.1, 0.05] of the saliency map S. Thin red curves are the paths Pj

filling discontinuities.

3.2 3D Images of Tumour Vasculature

10 volumes of a preclinical tumour model were acquired using the CT compo-
nent of an Inveon PET/CT system (Siemens Healthcare) with an isotropic voxel
size of 32.7μm on a 300×200×170 grid size. The images were derived from a
female CBA mouse with murine adenocarcinoma NT (CaNT) implanted sub-
cutaneously on the right flank. For contrast enhanced micro-CT scanning, the
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Fig. 3. Result obtained on a 3D tumour vasculature using the proposed strategy.
(Top) Segmented network is in white and the red curves are the paths Pj filling
discontinuities. (Bottom) ROI in which intensity information made it possible to fill
a gap.

contrast agent ExitronTM nano 12000 (Miltenyi Biotec) was injected into the
lateral tail vein and segmentations were performed on the subtraction of pre-
and post-contrast agent scans with a vesselness measure derived from [14]. Our
primary segmentation was performed using a Markov Random Field approach
which leads to a largely contiguous segmentation. The skeletonization algorithm
of [8] was used on this segmentation. The secondary segmentation, from which
the guiding intensity values were drawn, was formed from a simple thresholding
operation which is slightly more permissive than the MRF technique. We com-
pared our strategy to [11], which does not make use of intensity-based informa-
tion and uses a different communication strategy between the different skeleton
elements. We tested our model with (referred by (GL)) and without (referred
by (no GL)) intensity information to measure its benefit. The same gap filling
parameters were used for all methods (σ = 400μm and θ = 25 degrees).

In total 60 gaps were filled using [11] whereas 75 and 95 gaps were filled
using strategies (no GL) and (GL) respectively. None of them are obvious false
positives.

4 Discussion

We have presented a new gap filling model using skeleton- and intensity-based
information simultaneously, which separates non-oriented (in E and S) and ori-
ented (in D) communication between the different skeleton elements. Here, the
oriented informationD is only derived from the segment ends and gives soft pref-
erential directions to fill the gaps. Therefore, it prevents unrealistic junctions.
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Saliency to curvilinear structures S is only considered in a reasonable neighbor-
hood around the segment ends, as it may make little sense at a large distance.
Finally, the enhancement maps E can help to perform long distance connections
with the soft constrains given by D. In our results, obtained on real 3D tumour
vasulature, the use of E in addition to S allowed us to fill additional large gaps
and did not generate obvious false positive junctions. We believe this to be an
encouraging result.
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