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Abstract. Automatically segmenting organs in monocular laparoscopic
images is an important and challenging research objective in computer-
assisted intervention. For the uterus this is difficult because of high inter-
patient variability in tissue appearance and low-contrast boundaries with
the surrounding peritoneum. We present a framework to segment the
uterus which is completely automatic, requires only a single monocular
image, and does not require a 3D model. Our idea is to use a patient-
independent uterus detector to roughly localize the organ, which is then
used as a supervisor to train a patient-specific organ segmenter. The
segmenter uses a physically-motivated organ boundary model designed
specifically for illumination in laparoscopy, which is fast to compute and
gives strong segmentation constraints. Our segmenter uses a lightweight
CRF that is solved quickly and globally with a single graphcut. On a
dataset of 220 images our method obtains a mean DICE score of 92.9%.

1 Introduction and Background

The problem of segmenting organs in monocular laparoscopic images without
any manual input is important yet unsolved for computer assisted laparoscopic
surgery. This is challenging due to multiple factors including inter and intra-
patient tissue appearance variability, low-contrast and/or ambiguous organ
boundaries, texture inhomogeneity, bleeding, motion blur, partial views, sur-
gical intervention and lens smears. In previous works a manual operator has
been needed to identify the organ in one or more training images [3,11]. From
these images, models of patient-specific tissue appearance can be learned and
used to segment the organ in other images. We present the first methodology
to accurately segment an organ in laparosurgery without any manual input. Our
solution is simple, fast and does not require separate training images, since train-
ing and segmentation is performed on the same image. We also do not require
patient-specific prior knowledge such as a pre-operative 3D model. Using a 3D
model requires registration [11] to give the segmentation (i.e. segmentation-by-
registration). This shifts the problem burden to registration, which itself is hard
to do automatically and reliably for soft organs and monocular laparoscopes [10].
Our approach uses recent work in patient-generic organ detection in laparoscopic
images [13]. It was shown that the uterus can be reliably detected in an image
without patient specific knowledge using a state-of-the-art 2D Deformable Part
Model (DPM) detector [8,15] trained on a uterus image database. The problem
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of segmentation however was not considered, which is a fundamentally different
problem.

For a given image our goal is to compute the binary label matrix £(x) € {0,1}
where £(x) = 1 means pixel x is on the organ and £(x) = 0 means it is not.
We refer to these as the foreground and background labels respectively. We
propose an energy minimisation-based approach to solve £ that incorporates
information from the DPM detector to define the energy function. The func-
tion is a submodular discrete Conditional Random Field (CRF) that is globally
optimised with a single graphcut. Much inspiration has come from graphcut-
based interactive image segmentation methods [2,14,12] where manual strokes
or bounding boxes are used to guide the segmentation. Instead of user interac-
tion, we do this using information from the DPM detector, which in contrast to
user interaction information is inherently uncertain. A second major difference is
that most graphcut-based methods for optical images use the contrast-sensitive
Ising prior from [2], which encourages segmentation boundaries at strong inten-
sity step-edges (i.e. points with strong first-order intensity derivatives). However
step-edges do not accurately model the appearance of an organ’s boundary in
laparoscopic images. We show that far better segmentations are obtained using
a physically-motivated trough-sensitive Ising prior, which is computed from the
response of a positive Laplacian of Gaussian (LoG™) filter (i.e. a LoG filter with
negative responses truncated to zero). This encourages segmentation boundaries
at points with strongly positive second-order intensity derivatives.

2 Methodology

Segmentation pipeline. The main components of our method are illustrated in
Fig. 1, which processes an image in five stages. In stage 1 we detect the presence
of the organ with the DPM uterus detector from [13]. We take the detector’s
highest-confidence detection and if it exceeds the detector’s threshold we assume
the organ is visible and proceed with segmentation. The highest-confidence de-
tection has an associated bounding box B, which gives a rough localisation of
the organ. In stage 2 we use B to train rough appearance models for the organ
and background, which are used in the CRF as colour-based segmentation cues.
Similarly to GrabCut [14] we use Gaussian Mixture Models (GMMs) with pa-
rameters denoted by 0¢, and 0, respectively. However unlike GrabCut, we do
not iteratively recompute the GMM parameters and the segmentation. This is
because with our organ boundary model, the first segmentation is usually very
accurate even if the appearance parameters are not. This has the advantage of
reduced computation time since we only perform one graphcut.

In stage 3 we use the detection’s bounding box to extract a Region Of Interest
(ROI) R around the organ, and all pixels outside R are labelled background. This
reduces computation time because pixels outside R are not included in the CRF.
One cannot naively set R as the detection’s bounding box because there is no
guarantee that it will encompass the whole organ, as seen in Fig. 2, bottom row.
We normalise R to have a default width of 200 pixels, which gives sufficiently high
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resolution to accurately segment the uterus. The normalisation step is important
because it means the CRF energy is independent of the organ’s scale. Therefore
we do not need to adapt any parameters depending on the organ’s physical size,
distance to the camera or camera focal length. In stage 4 we construct the CRF
which includes information from three important sources. The first is colour
information from the foreground and background colour models. The second is
edge information from the response of a LoG™ filter applied to R. The third are
spatial priors that give energy to pixels depending on where they are in R. All
of the CRF energy terms are submodular which means it can be solved globally
and quickly using the maxflow algorithm. In practice this takes between 20-50ms
with a standard desktop CPU implementation.
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Fig. 1. Proposed framework for segmenting the uterus in a monocular laparoscopic
image without manual input. The top row shows the five processing stages and the
bottom row shows example uterus detections using the DPM detector [13,8].

The CRF energy function. The CRF is defined over the ROI R, which is com-
puted by enlarging the bounding box to encompass all likely foreground pixels.
This is done by scaling the bounding box about its centre x; by a factor of z%.
We set this very conservatively to x = 60%, which means all foreground pixels
will be within R when the bounding box of the detection overlaps the ground
truth bounding box by at least ~ 40%. In practice we do not normally obtain
detections with less than 40% overlap with the ground truth bounding box, be-
cause the corresponding detection score would normally be too low to trigger a
detection. The CRF energy E is conditioned on R and B and is as follows:

E([,, R, B) déf Eapp(ﬁ; R) + AedgeEedge(['; R) + )\spatialEspatial(['; R7 B)

Bapp(£;R) B T e L0 Eapp (35 056) + (1= L(x)) Epp(; Ob)
The first term E,,, denotes the appearance energy, which is a standard unary
term that encourages pixel labels to agree with the foreground and background
GMM models [14]. The term Ej ,,(x;6) denotes the negative density of a GMM
parameterised by 0. The terms E.q4e and FEspatiar denote the edge and spatial
energies, which are unary and pairwise clique energies respectively. The terms

Aedge and Agpatiar are weights that govern the relative influence of the energies.

(1)
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Fig. 2. Laparoscopic images of two uteri with different filter response maps (Sobel:
(b,f), LoG™: (c,g)), overlaid with manual segmentations. The LoG™ geodesic distance
transform D for (a) is shown in (d), with the detection’s bounding box and central
ellipse S overlaid. An illustration of the edge intensity profile across an organ boundary
edge is shown in (h).

A physically-motivated edge energy model based on the LoG™ filter. The pur-
pose of the edge energy is to encourage a smooth segmentation whose boundary
is attracted to probable organ boundaries. In nearly all graphcut-based optical
image segmentation methods, this is based on the step-edge model, which says
that a transition between labels should occur at regions with high first-order
intensity derivatives [2]. However this model does not match well with the phys-
ical image formation process in laparoscopic images. This is a combination of
the fact that the scene is illuminated by a proximal light source centred close to
the camera’s optical center, and that because organs are smooth, discontinuities
in surface orientation are rare. To see this, consider a point p on the organ’s
boundary with a normal vector n in camera coordinates. By definition n must
be orthogonal to the viewing ray, which implies n is approximately orthogonal
to the light source vector, so p necessarily reflects a very small fraction of direct
illumination. Consider now the image intensity profile as we transition from the
organ to a background structure (Fig. 2(h)). We observe a smooth intensity fall-
off as the boundary is reached, and then a discontinuous jump as we transition
to the background. Due to imperfect optics we measure a smooth version of this
profile, which is characterised by a smooth intensity trough at a boundary point.
Likely organ boundaries are therefore those image points with strongly positive
second-order intensity derivatives, which can be computed stably with the LoG™
filter. One issue is that edge filters such as LoG™ are also sensitive to superficial
texture variation of the organ. An effective way to deal with this is to apply the
filter on the red channel only, because red light diffuses deeper into tissue than
blue and green light [4]. Fig. 2 illustrates the effectiveness of the LoG™ filter for
revealing the uterus boundaries, which we compare to the Sobel step-edge filter.

We define E.gqe in a similar manner to [2] but replace the intensity difference
term by the LoG™ response at the midpoint of two neighbouring pixels x and y:

Beage(£) € 3 (e yyen Wy (L) exp (~LoG* ((x +y)/2)/20)
wx,y(AC) _ { l/d(an) ifﬁ(x) 5‘& ﬁ(Y) (2)

0 otherwise
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where A denotes the set of pixel neighbour pairs (we use the standard 8-way
connected neighbours from the pixel grid). The term wy,, € R assigns energy
when neighbouring pixels have different labels. The function d gives the Eu-
clidean distance between x and y, which reduces the influence of neighbours
that are further away. Inspired by [2] we set o automatically as the standard
deviation of the LoG™ filter across all pixels in R. The LoG™ filter has a free
parameter oy that pre-smoothes the image to mitigate noise. We have found
that results are not highly sensitive to oy, and in all experiments we use oy = 3
pixels with a filter window of 7 pixels.

Hard labels and spatial energy. We assign hard labels to pixels in the image that
we are virtually certain of either being on the organ or on the background. The
job of this is to prevent complete over or under-segmentation in instances when
the organ’s appearance is very similar to the background. We assign pixels within
a small region around the bounding box center x; the foreground label, which is
valid because the main body of the uterus is always highly convex. Specifically we
define a small elliptical region S by x € S & s?(x—x) " diag(1/w, 1/h)(x—xp) <
1, and assign all pixels in S the foreground label. This is an ellipse with the same
aspect ratio as the bounding box, where w and h are the width and height of the
bounding box. The scale of § is given by s, which is not a sensitive parameter
and in all experiments we use s = 0.2. To prevent complete over-segmentation
we assign pixels very far from the bounding box the background label. We do
this by padding R by a small amount by replication (we use 20 pixels), and
assign the perimeter of the padded image the background label.

The spatial energy encodes the fact that pixels near the detection’s center
are more likely to be on the organ. We measure distances to the detection’s
center in terms of geodesics D(x) : R — R using the LoG™ filter response as a
local metric. This is fast to compute and more informative than the Euclidean
distance because it takes into account probable organ boundaries in the image.
We compute D(x) by measuring the distance of x to S using the fast marching
method. We give a visualisation of D for the image in Fig. 2 (a) in Fig. 2 (d),
with the central ellipse overlaid in red. Dark blue indicates lower distances, and
the darkest shade corresponds to a distance of zero. One can see that for most
pixels either on the uterus body, or connected to the uterus body by ligaments or
the Fallopian tubes, the distance is zero, because for these points there exists a
path in the image to S that does cross an organ boundary. We therefore propose
a very simple spatial energy function, which works by increasing the energy of
a pixel x if it is labelled background and has D(x) = 0. We do this for all pixels
within the detection’s bounding box, and define the spatial energy as

def Z { 1 if £(x) =0and D(x) =0andx € B 3)

Bspatiar (LD, B) = 0 otherwise

xXER
The effect of Egpariar is to encourage pixels within the bounding box to be la-
belled foreground if they can reach the detection’s center by a path that does
not cross points that are likely to be organ boundaries. To improve the compu-
tation speed for Espqtiqr we compute D on a down-sampled version of R (by a
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factor of two). On a standard desktop PC this means Fgpatiqr can be computed
in approximately 100 to 200ms without significant impact on accuracy.

3 Experimental Results

We have evaluated on a new dataset consisting of 235 uterus images of 126 dif-
ferent individuals, which extends the 39-individual database from [13] (Fig. 3).
The dataset includes common difficulties caused by pathological shape, surgical
change, partial occlusion, strong light fall-off, low-contrast boundaries and over-
saturation. The dataset was gathered from patients at our hospital (12 individu-
als) and demonstration and tuition images from the web (114 patients). 35.0% of
the patients had uteri with pathological shape, caused mostly by uterine fibroids.
For each image we computed the best-scoring detection from the uterus detector
using the accelerated code of [7]. A detection was considered a true positive if
the overlap between the detection’s bounding box and the manually-computed
bounding box exceeded 55% (which is a typical threshold in object detection
literature). In total 220 images had true positive detections. In the other 15
images false positives were caused nearly always by strong tool occlusions. We
then segmented all images with true positive detections. Because our method is
the first to achieve completely automatic organ segmentation in laparoscopic im-
ages, there is not a direct baseline method to compare to. We therefore adapted
a number of competitive interactive and seed-based segmentation methods, by
replacing manual inputs with the output of the uterus detector. These were as
follows. (i) GrabCut-I [14]: we replaced the user-provided bounding box required
in GrabCut with the bounding box from the detection, and replaced hard labels
from the user with the same hard labels as described above. (i) Non-iterative
GrabCut (GrabCut-NI): This was the same as GrabCut-I but terminating af-
ter one iteration (i.e. the appearance models and segmentation were not itera-
tively refined). (i) GrowCut [15]: we used GrowCut with S as the foreground
seed region and the perimeter of R as the background seed region. (i) Edge-
based Levelset Region growing (ELR) [9]: we used a well-known levelset region
growing method, using S as the initial seed region. For GrabCut-I, GrabCut-
NI, GrowCut and our method, we tested with RGB and illumination-invariant
colourspaces. We found negligible differences between the common illumination-
invariant colourspaces, so report results with just one (CrCb). The free param-
eters of the baseline methods were set by hand to maximise their performance
on the dataset. The free parameters of our method (Aeqge and Aspqariar) were
set manually with 20 training images, giving Aeqge = 90 and Aspatiar = 7. The
training images were no included in the 220 image dataset and were of different
patients. We did not use separate training images for the baseline methods, so
we could measure their best possible performance on the dataset.

DICE coefficient boxplots (from Matlab’s boxplot) and summary statistics
are given in Fig. 4. We report p-values using the two-sample t-test with equal
variance. The suffixes (RGB) and (CrCb) indicate running a method with RGB
and CrCb colourspaces respectively. We also tested whether our method could
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Fig. 3. Example images from the test dataset and segmentations from our method.
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Fig. 4. DICE performance statistics of our proposed method in four configurations
(1-4), baseline methods (5-11) and a sensitivity analysis of our method (12-15).

be improved by iteratively retraining the appearance models and resegmenting
in the same way as GrabCut (denoted by Proposed-I). Finally, we included a
sensitivity analysis of our method, by computing results with Acgge and Asmootn
perturbed from the default by +25%. We observe the following. The best per-
forming configurations across all statistics are from the proposed method. There
are virtually no differences between our method using RGB or CrCb colourspace,
which indicates shading variation does not significantly affect segmentation ac-
curacy. There is also no improvement in our method by iteratively updating the
appearance models and resegmenting (Proposed (RGB): p = 0.998, Proposed
(CrCb): p = 0.941). We also see that our method is very stable to a considerable
perturbation of the parameters. Fig. 3 shows visually the segmentations from
our method (Proposed-NI (CrCb)). The images on the far right show two failure
cases. These were caused by a tool occlusion that completely bisected the uterus
and a uterus significantly occluded by the laparoscope’s optic ring.

4 Conclusion

We have presented a method for segmenting the uterus in monocular laparoscopic
images that requires no manual input and no patient-specific prior knowledge.
We have achieved this using a patient-independent uterus detector to supervise
the training of a CRF-based patient-specific segmenter. High accuracy and speed
has been obtained by using a physically-motivated organ boundary model based
on the LoG™ filter. There are several directions for future work. Firstly, we will
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transfer many functions, such as training the GMMs and evaluating the graph
constraints onto the GPU for realtime computation. Secondly we will investigate
combining our method with a tool segmentation method such as [1]. In terms
of applications, our method can be used as a module for automatic laparoscopic
video parsing and content retrieval, and for solving problems that have previously
required manual organ segmentation. These include building 3D organ models
invivo [5] and inter-modal organ registration using occluding contours [6].
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