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Abstract. Accurate segmentation of anatomical structures in medical
images is very important in neuroscience studies. Recently, multi-atlas
patch-based label fusion methods have achieved many successes, which
generally represent each target patch from an atlas patch dictionary in
the image domain and then predict the latent label by directly applying
the estimated representation coefficients in the label domain. However,
due to the large gap between these two domains, the estimated repre-
sentation coefficients in the image domain may not stay optimal for the
label fusion. To overcome this dilemma, we propose a novel label fusion
framework to make the weighting coefficients eventually to be optimal
for the label fusion by progressively constructing a dynamic dictionary
in a layer-by-layer manner, where a sequence of intermediate patch dic-
tionaries gradually encode the transition from the patch representation
coefficients in image domain to the optimal weights for label fusion. Our
proposed framework is general to augment the label fusion performance
of the current state-of-the-art methods. In our experiments, we apply
our proposed method to hippocampus segmentation on ADNI dataset
and achieve more accurate labeling results, compared to the counterpart
methods with single-layer dictionary.

1 Introduction

Accurate and fully automatic segmentation is in high demand in many imaging-
based studies. For instance, hippocampus is known as an important structure re-
lated with Alzheimer’s disease, temporal lobe epilepsy and schizophrenia. Conse-
quently, many neuroscience and clinical applications aim to seek for the imaging
biomarker around hippocampus, which is indispensable of accurate segmentation
of hippocampus from the MR brain images.

Recently, multi-atlas patch-based segmentation methods [1-5] have achieved
many successes in medical imaging area. In current multi-atlas based methods,
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a set of patches, collected in a searching neighborhood and across all registered
atlases, form a patch dictionary to represent the target image patch. In these
methods, the assumption is that the representation profile obtained in the im-
age (continuous) domain can be directly transferred to the (binary) domain of
anatomical label. However, there is no evidence that such profile is domain-
invariant. As a result, representation coefficients may not guarantee the optimal
label fusion results.

To alleviate this issue, we propose a novel label propagation framework to
progressively transfer the representation profile from the image domain to the
anatomical label domain. To achieve it, we construct a set of intermediate dictio-
naries, which are eventually a sequence of milestones guiding the above domain
transition. Then we apply the label fusion techniques (e.g., non-local mean [1,
2] and sparse representation [3, 6]) in a leave-one-out manner to obtain the rep-
resentation profile for each atlas patch in each layer dictionary where all other
instances are regarded as the atlas patches. Then, we can compute a label prob-
ability patch by applying the obtained representation profile to the respective
label patches. Repeating the above procedure to all patches, we can iteratively
construct the higher layer dictionaries, as the probability map within each label
probability patch becomes sharper and shaper, until all label probability patches
end up to the binary shapes of the corresponding label patches.

Given the learned multi-layer dictionary at each image point, the final weights
for voting the label are also estimated in a progressive way. Starting from the
initial layer, we gradually refine the label fusion weights by alternating the fol-
lowing two steps: (1) compute the representation profile of target image patch
by using the patch dictionary in the current layer; and (2) refine the label prob-
ability map within the target image patch by applying the latest representation
profile to the binary label patches, where the new probability patch is used as
the new target in the next layer. In this way, we can gradually achieve the op-
timal weights for determining the anatomical label, under the guidance of the
intermediate dictionary at each layer.

The contributions of our proposed multi-layer dictionary method include: (1)
Since we harness the multi-layer dictionary to remedy the gap between patch
appearance and anatomical label, our label fusion essentially seeks for the best
label fusion weights, instead of only the optimal patch-wise representation; (2)
The evolution of intermediate dictionaries allows us to use not only appearance
features but also structure context information [7], which significantly improves
the robustness in patch representation; (3) the framework of progressive patch
representation by multi-layer dictionary is general enough to integrate with most
of conventional patch-based segmentation methods and improve their segmen-
tation performances instantly. Our proposed method has been evaluated in a
specific problem of segmenting hippocampus from elderly brain MR images in
the ADNI dataset. More accurate segmentation results have been achieved, with
comparison to the state-of-the-art non-local mean [2] and sparse patch-based
label fusion methods [6].
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Fig. 1. The framework of proposed method. Given the image dictionary (green dash
box) and the label dictionary (blue dash box). In order to overcome the significant gap
between two different dictionaries, our method uses a set of intermediate dictionaries
(red dash boxes) to gradually encode the transition from the representation coefficients
in image domain to the optimal weights for label fusion. In the label fusion stage, we
sequentially go through the intermediate dictionaries and obtain the final binary label
via a set of probability maps, which become sharper and sharper as the layer increases.

2 Proposed Method

In general, multi-atlas patch-based segmentation aims to determine the label of
each point in the target image T by using a set of IV registered atlas images I
as well as the registered label images L, s = 1,..., N. For each voxel v in the
target image, most of patch-based approaches construct a patch dictionary which
consists of all patches extracted from the search neighborhood across all atlases.
Without loss of generality, we assume there are K candidate atlas patches in
the intensity patch dictionary X = [@g]k=1, .. K, where we vectorize each patch
into a column vector &y and turn X into a matrix. Since each atlas patch has
the label information, it is straightforward to construct a corresponding label
patch dictionary L = [lg]g=1,... x, where each lj is the column vector of labels
coupled with xy. A lot of label fusion strategies have been proposed to propagate
the labels from L to the target image voxel v, mainly driven by the patch-wise
similarity oy between each atlas patch x; in X and the image patch y extracted
at v. For example, non-local mean method [1,2] penalizes patch-wise appearance
discrepancy in an exponential way as below

ar = exp(—|ly — zx|*/20%) (1)

where o controls the penalty strength. Instead of computing aj independently,
sparse patch based label fusion method (SPBL) [3,6] casts the optimization of
weighting vector e = [a|k=1,... kx into the sparse patch representation scenario
by

argming|ly — X a3 + Alle|h (2)

where A\ controls the sparsity strength.
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Hereafter, we call the weighting vector a as the patch representation profile.
Given the profile o optimized based on appearance information, the latent la-
bel on v is assigned to the anatomical label which has the largest accumulated
weights within a. However, there is a large gap between the intensity dictionary
X and label dictionary L as shown in Fig.1. In order to make the patch repre-
sentation profile a eventually to be the optimal weighting vector for the label
fusion, we construct a set of intermediate dictionaries to augment the single-
layer dictionary X to the H-layer dictionary D = {D™|h =0,...,H — 1} and
gradually transform the representation profile from the purely appearance repre-
sentation profile a(?) to the final optimal label fusion weighting vector acf=1)
where for each a™ we get the corresponding probability map y™. As a(™
getting more and more reliable for label domain, the probability map becomes
sharper and shaper, and eventually the probability map ends up to the binary
shape y#) as shown in the top of Fig.1.

2.1 Dictionary Construction

To construct the multi-layer patch dictionary, we use the original image patch
dictionary X to form the initial layer dictionary D(® = X as shown in the
bottom of Fig. 1, i.e., D) = [d,(fo)], where d;o) = x. From the first layer, we
iteratively construct the intermediate dictionaries D" (h = 1,...,H — 1) by
alternating the following three steps.

First, starting from h = 1, for each instance dgl_l) in the previous dictionary
D=1 we seek to use all the other instances dgh_l)(j # k) in D" to rep-
resent the underlying dgl_l) by regarding that all instances in D"~1 form the
instance-specific dictionary Bgl) = [dﬁh_l)]jzl’w[(’#k, where chh) has K — 1
column vectors. Thus, we can obtain the patch representation profile ,[)',(Chfl) for
d,(chfl) via current label fusion strategy, e.g., either non-local mean in Eq.(1) or

sparse representation technique in Eq.(2). Note, ,[)',(Chfl) is the column vector of
length K — 1.

Second, since each atom in chh) is associated with one label patch in L, we
can build the surrogate label patch dictionary Ly = [l;];=1,... k,j2, by arranging
the label patches with the same order as in B,(Ch). Then, we compute the label
probability patch p,(eh) by p,(ch) =Ly - B,(ch_l).

Third, after repeating the above two steps for all instances d,(chfl), we evolve
the intermediate patch dictionary D=1 to the next level D) by letting
D" = [d,(fh)], where d,(ch) = p,gh).

2.2 Multi-layer Label Fusion

Given the multi-layer dictionary D, the conventional single-layer patch represen-
tation turns to the progressive patch representation where the weighting vector
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o is gradually refined from a(%) at the initial layer (optimal for the patch ap-
pearance representation only) to a” =1 in the last layer (eventually optimal for
the label fusion).

In the initial layer, we use the original intensity patch dictionary D© to
present the target image patch vector y(®) = y located at v and thus obtain the
representation profile a?) of the initial layer. Conventional label fusion meth-
ods stop here and then vote for the label via the weights in a(?). Instead, our
progressive label fusion method computes the label probability vector y) by
letting y = La(©). It is worth noting that the intensity target image vector y
turns to the probability vector at this time. After the initial layer, we iteratively
refine the probability map within the target image patch until it approaches the
binary shape of labels. Specifically, we use ) as the new target and continue to
represent y(!) by the intermediate dictionary D) in the same layer, obtaining
the new label probability vector y(2). Then, we continue to represent y® in the
second layer through the intermediate dictionary D), and so on. After repeat-
ing the same procedure until we reach the last layer H — 1, the representation
profile a® =1 is regarded as the best weighting vector to determine the latent
label on the target image point v.
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Fig. 2. The evolution curve of Dice ratio as the number of layers in the intermediate
dictionary increases.

3 Experiments

In this section, we evaluate the performance of our proposed method on hip-
pocampus segmentation. Specifically, we integrate two state-of-the-art label fu-
sion methods, i.e., non-local [2] and SPBL [6], into our progressive label fusion
framework. For comparison, conventional non-local and SPBL methods are used
as reference, which only use the single-layer dictionary. Since our method com-
putes the label fusion weights in H layers, the computation time is H times
slower than the conventional single-layer method. However, we have used var-
ious strategies to speed up our algorithm, such as parallel programming and
patch pre-selection.
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3.1 Dataset and Parameters

We randomly select 64 normal subjects from the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNTI) dataset (www.adni-info.org), where the hippocampus have
been manually labeled for each subject. In our experiments, we regard those man-
ual segmentations as ground truth. To label the target subject, we first aligned
all the atlas images to the underlying target subject. In order to improve com-
putational efficiency, atlas selection and patch selection strategies are applied.

In the following experiments, we fix the patch size as 5 x 5 x 5 voxels, where the
voxel size is 1mm in each direction, and the search window for constructing the
dictionary as 5 x 5 x 5 voxels. In non-local mean method, the penalty strength o is
set to 0.5, while in sparse patch based label fusion method the sparse constraint
A is set to 0.1. Here, we use the Dice ratio to measure the overlap between
automatic segmentation and ground truth. Also as it is common in evaluation of
label fusion method, all testing images were evaluated in a leave-one-out manner.
Specifically, in each leave-one-out case, we use FLIRT in the FSL toolbox [8] with
12 degrees of freedom and the search range +20 in all directions. For deformable
registration, we use diffeomorphic Demons method [9] with smoothing kernel
size 1.5. The iteration numbers in diffeomorphic Demons are 15, 10, and 5 in the
low, middle, and high resolutions, respectively.

Table 1. The mean and standard deviation of Dice ratio (in %) in hippocampus
labeling in the linear registration scenario

Method Left Right Overall
Conventional Non-local 85.14+5.7 84.3+5.1 84.7+4.2
*Progressive Non-local 86.8+4.5 86.2+5.1 86.5+3.7

Conventional SPBL 85.84+4.5 85.1+4.8 85.5+3.7
Progressive SPBL 87.1+3.2 86.7+5.3 86.9+3.3

Table 2. The mean and standard deviation of Dice ratio (in %) in hippocampus
labeling in the deformable registration scenario

Method Left Right Overall
Conventional Non-local 86.8+4.9 86.6+2.9 86.7+3.2
*Progressive Non-local 87.94+4.0 88.1+3.2 88.0+3.0

Conventional SPBL 87.24+3.6 87.14+3.3 87.24+2.9
*Progressive SPBL 88.2+3.6 88.5+3.1 88.3+£2.8

The evolution of segmentation accuracy with the number of layers used is
shown in Fig.2. We can see that the improvement of our progressive method is
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obvious after one layer (corresponding to the baseline methods), which offers
more than 1% improvement of Dice ratio for both non-local and SPBL methods.
Our progressive label fusion framework generally converges after the third layer.
Counsidering the computation time, we use 4 layers (H = 4) in the following
experiments.

3.2 Hippocampus Segmentation Results

Table 1 and Table 2 show the mean and standard deviation of Dice ratio on
hippocampus (left, right and overall) in linear and deformable registration sce-
narios, respectively. Compared to the baseline methods (i.e., non-local and SPBL
methods with single-layer dictionary), our progressive label fusion framework can
improve the labeling accuracy with more than 1% of Dice ratio. Maximum im-
provement is 1.8% (conventional non-local vs. progressive non-local in linear
registration case). The significant improvement of our method over the baseline
method, with p-value less than 0.05 using paired ¢-test, is indicated with “*’ in
Table 1 and Table 2, respectively.

Table 3. The surface distance (in mm) on hippocampus labeling between automatic
segmentations and ground truth with different number of layers

Number of Layers  H=1 H=2 H=3 H=4 H=5

Maximum Distance  2.83 2.00 1.52 1.22 1.21
Mean Distance 0.27 0.22 0.19 0.18 0.18
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Fig. 3. The evolution of surface distance between the automatic segmentations and

ground truth from the initial layer (a) to the last layer (e).

Furthermore, we calculate the surface distance between ground truth and the
estimated hippocampus (left and right). SPBL method is used as the example to
demonstrate the evolution of surface distance during the progressive label fusion
procedure in Fig. 3. According to the color bar shown in the right side of Fig. 3,
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the surface distances keep decreasing by increasing the number of layers in the
intermediate dictionary. Table 3 shows the corresponding surface distance on the
whole hippocampus in Fig. 3. In accordance with Fig. 3, as the layer number
increases, the mean surface distance becomes smaller and smaller. When H = 1,
which corresponds to the conventional one-layer SPBL method, the maximum
distance is 2.83mm, and it significantly decreases to 1.21mm at H = 5 by our
method.

4 Conclusion

In this paper, we proposed a progressive label fusion framework for multi-atlas
segmentation by dictionary evolution. In our proposed methods, we constructed
a set of intermediate dictionaries in a layer-by-layer manner to progressively
optimize the weights for label fusion, instead of just using patch-wise represen-
tation as used in the conventional label fusion methods. We have applied our
new label fusion method to hippocampus segmentation in MR, brain images.
Promising results were achieved over the state-of-the-art counterpart methods
with the single-layer dictionary.
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