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Abstract. Neutrophils are a primary type of immune cells, and their
identification is critical in clinical diagnosis of active inflammation.
However, in H&E histology tissue slides, the appearances of neutrophils
are highly variable due to morphology, staining and locations. Further,
the noisy and complex tissue environment causes artifacts resembling
neutrophils. Thus, it is challenging to design, in a hand-crafted manner,
computerized features that help identify neutrophils effectively. To better
characterize neutrophils, we propose to extract their features in a learn-
ing manner, by constructing a deep convolutional neural network (CNN).
In addition, in clinical practice, neutrophils are identified not only based
on their individual appearance, but also on the context formed by mul-
tiple related cells. It is not quite straightforward for deep learning to
capture precisely the rather complex cell context. Hence, we further pro-
pose to combine deep learning with Voronoi diagram of clusters (VDC),
to extract needed context. Experiments on clinical data show that (1)
the learned hierarchical representation of features by CNN outperforms
hand-crafted features on characterizing neutrophils, and (2) the combi-
nation of CNN and VDC significantly improves over the state-of-the-art
methods for neutrophil identification on H&E histology tissue images.

1 Introduction

Identification of a primary type of immune cells, neutrophils, is of great medical
importance. Because the number and the locations are key features for acute
inflammation diagnosis [6]; further, quantitative analysis of the distribution pat-
terns of neutrophils may help provide deep insight into acute inflammation.

In H&E histology tissue images (Fig. 1(a)), neutrophils are characterized as
having multiple lobes in their nuclei, and almost invisible cytoplasms (Fig. 1(b)).
But, in practice, it is highly challenging to identify them for the following reasons.
First, there are lots of variations in neutrophil appearances due to, e.g., staining,
shape, and size. In fact, large portions of neutrophils do not show common
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“textbook” characteristics (Fig. 1(c)). Second, the background is quite noisy and
complex with a mixture of different biological structures, such as other types of
immune cells (e.g., lymphocytes, eosinophils, and plasma cells, see Fig. 1(d)) and
some tissue layers (e.g., glands and villi). These structures greatly complicate
the neutrophils identification task. For example, each lobe of a neutrophil could
be classified incorrectly as a single lymphocyte. Artifacts resembling neutrophils
are often created by other structures in H&E histology tissue images (Fig. 1(e)).

(b)

Fig. 1. (a) H&E histology tissue image examples; (b) neutrophils; (¢) neutrophils with-
out obvious “textbook” appearances; (d) a lymphocyte (top), an eosinophil (middle),
and a plasma cell (bottom); (e) artifacts resembling neutrophils.

The first and state-of-the-art method for neutrophils identification on H&E
histology tissue images was proposed very recently in [8]. But further improve-
ments can be made as illustrated below.

One key to effective identification of neutrophils is to well capture the features
of individual cells (such features should be invariant to different factors). The
method in [8] conducted feature engineering in a hand-crafted manner, which is
quite challenging, since the characteristics of neutrophils become highly subtle
in the noisy and complex tissue environment. Hence, we advocate to automati-
cally learn features in such settings. In computer vision literature, deep learning
[2,1,7] was recently shown to outperform highly-tuned state-of-the-art methods
on many problems (e.g., recognition, detection) using the automatically learned
hierarchical low, mid, and high level representations of features.

Another key to effective identification of neutrophils is to model cell context,
i.e., related cells in a certain neighborhood help determine cell types on one an-
other. In fact, cell context is commonly utilized by pathologists, especially when
identifying neutrophils without obvious “textbook” appearances. Therefore, the
method in [8] proposed to exploit such cell context, extracted based on Voronoi
diagram of clusters (VDC) [3] of “trustable” neutrophils. However, because their
“trustable” neutrophils are identified based on hand-crafted features and Ran-
dom Forest, it is likely that some of the “trustable” neutrophils thus identified
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are actually not neutrophils. Clearly, using context built on a not so “trustwor-
thy” version of “trustable” neutrophils means propagating noisy or even wrong
information on the appearances of neutrophils to the neighborhood.

Motivated by the above two keys, we propose to combine deep learning and
Voronoi diagram of clusters (VDC) into one framework for identifying neu-
trophils in H&E histology tissue images. Our main idea is to first model the
appearances of individual cells by a convolutional neural network (CNN) [5]
and identify the “trustable” portion of neutrophils, and then model context by
constructing the VDC of the “trustable” neutrophils and utilize the context to
resolve the ambiguous cases (evaluated on merely individual cell appearances).

Experimental results on clinical data validate that deep learning and VDC are
efficacious complements to each other. Also, the general idea of combing deep
learning (for modeling individual object appearances) and VDC (for modeling
context) can be applicable to other similar identification problems.

2 DModeling Individual Cell Appearances by CNN

Overview. Assume that the cells (regardless of their types) have been segmented
and detected (we actually apply the iterative edge labeling method [8] to segment
and detect cells). For each segmented and detected cell, we crop a small image
patch containing it. Our goal is to capture the subtle characteristics of individual
cells, so that we can subsequently classify the image patches into neutrophils and
non-neutrophils.

Our main idea is to apply supervised deep neural networks to learn a hierar-
chical representation of the low, mid, and high level features of the cells. Such a
network maps each input image (patch), via a series of parameterized layers, into
probabilities of the target classes (in our case, neutrophils and non-neutrophils).
The parameters of the layers are learned during training, and some of them can
be viewed as filters. Responses to the filters in lower layers (i.e., closer to the
input image) usually contain low (e.g., edges, corners) or mid (e.g., correlations
between edges) level features, and responses in higher layers contain high level
semantic features related to the target classes.

Deep Learning Model Design. We construct a deep convolutional neural
network (CNN) [5]. The overall architecture of our CNN (shown in Fig. 2) ba-
sically follows that in [5], but with some important modifications to the hyper
parameters, as described below. Our modifications to the hyper parameters are
motivated mainly by two considerations. First, the size of our input image patch
is quite different from that in [5] (256 pixels). Thus, using the same set of hyper
parameters cannot describe well the characteristics of our target objects. For
example, the size of the filters in the first convolutional layer of [5] is 11 x 11,
which appears seemingly too big for the first layer filters in our case, which are
supposed to capture low level features (e.g., edges and corners). Because the
layers are closely related, an inappropriate first layer not functioning well could
impose negative influence on the subsequent layers. Second, as stated in [10], by
visualizing the network of [5] using the method in [10], some hyper parameters
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do not have appropriate values. For example, the large stride 4 of the filters in
the first layer causes aliasing artifacts in the second layer. We set the stride to
1, taking into consideration of such aliasing artifacts, our input image size, and
the influence to the subsequent layers.
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Fig. 2. Our CNN structure. Our CNN has 8 layers. The first 5 layers are convolutional.
For example, the input image patch of size 57 x 57 to the first convolutional layer is
first convolved (conv) by a set of 96 learned filters of size 5 x 5; the resulting 96 feature
maps of size 53 x 53 then pass through a rectified linear function (relu), go through
max pooling with stride 2 on each direction, and finally are locally normalized before
output to the next layer. The rest 3 layers are fully connected (fc). We minimize the
softmax cost function at the last layer. Please see [5] for the roles played by layers.

Training. Learning Algorithm. We apply stochastic gradient descent with a
batch size of 512 to learn parameters in CNN. We initialize learning rate as 0.01,
momentum as 0.9, and weight decay as 0.0005. We also decrease learning rate
three times before termination. We iterate 30000 times over the batches.

Owerfitting. To combat overfitting, we apply data augmentation [5] and drop out
[4]. For data augmentation, we sub-crop 10 images (corners and centers with or
without horizontal flips) of size 57 x 57 from the original image patch of size
64 x 64. We apply drop out at the fully connected layers (6 and 7) and set the
drop out rate as 0.5. Please see [5,4] for more details of these techniques.

Conservativeness. In our clinical setting of studying inflammatory bowl diseases,
neutrophils are usually rare (but important) comparing to other types of immune
cells (such as lymphocytes and plasma cells). But, the noisy and complex envi-
ronment of histology tissue images may cause many artifacts that look similar to
neutrophils. Hence, we adopt a conservative strategy to identify neutrophils, by
penalizing more when a non-neutrophil is misclassified as a neutrophil than when
a neutrophil is misclassified as a non-neutrophil, during the training of CNN. We
did so via multiplying by two the computed softmax loss when a non-neutrophil
is misclassified as a neutrophil.
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3 Modeling Cell Context by VDC

Overview. In clinical practice, when pathologists identify neutrophils, clusters
of neutrophils usually attract their attention (bigger clusters may attract more
attention), because such clusters can provide some cues about the local appear-
ances difference between neutrophils and non-neutrophils in the neighborhood of
the clusters, and help identify near by neutrophils that may appear ambiguous
individually. To our best knowledge, no straightforward way is known for deep
learning to model precisely such context information. Thus, to complement deep
learning and capture cell context, our main idea is to apply the model of Voronoi
diagram of clusters (VDC) [8,3], based on the “trustable” portion of neutrophils.
Note that, different from [8], we incorporate and utilize the high quality CNN
features and CNN probabilities in VDC (as described later in detail below),
which make the extracted context information more robust.

Voronoi Diagram of Clusters. We first discuss general concepts for VDC.
Different from the common Voronoi diagram, in which each site is a single point,
every site of VDC can also be a cluster of points. Due to this feature, VDC
can capture the influence of each cluster (i.e., the collective influence of all site
points belonging to the cluster) to the neighborhood regions. The tessellation of
VDC is built based on the influence function D(:,-), of each cluster C' (with site
points {p1,p2,...,Pm}) on any point p, which is defined as

m w(pi) if d(p,p;) < disty

D(C,p) = ZF(papi)7 F(p,pz) = {d(p’pi)z’ (1)

0, otherwise

where F(p,p;) measures the influence of a single point p; € C' to the point p,
which depends on both the weight w(p;) (for the “importance” of p;) and the
Euclidean distance d(p,p;) between p and p,. Note that we truncate F(p,p;)
using a distance threshold disty to reflect that a point p which is too far away
from a cluster C is not influenced by C'. In this way, a point p would be influenced
more by a cluster C' whose size is big, and/or its site points have larger weights,
and are closer to p. Thus p belongs to the geometric VDC cell of C' (i.e., this is
not a biological cell) in the tessellation of VDC.

Extracting Cell Context. We extract the cell context to classify individually
ambiguous cases by taking the following steps.

(1) Obtain a set of “trustable” neutrophils by thresholding the neutrophil
probability of each cell produced by CNN. (Actually, we also obtain a set of
“trustable” non-neutrophils for the non-neutrophil probability, based on the
same threshold value.) All the remaining cells (i.e., not “trustable” neutrophils
nor “trustable” non-neutrophils) are taken as individually ambiguous cells (thus
to be classified later on by context). Note that since the learned hierarchical
feature representation can capture well the characteristics of individual cells,
the “trustable” ones produced by CNN are actually more “trustable” than those
produced using hand-crafting features and simple classifier as in [8], even with
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similar thresholding. This reduces the chance of propagating noisy or wrong in-
formation when we resolve ambiguous cases based on the influence of clusters of
“trustable” neutrophils later on.

(2) Apply density-based clustering [9] to the “trustable” neutrophils to cap-
ture their potential clustering behaviors.

(3) Compute VDC: Each site of VDC is either a cluster of “trustable” neu-
trophils found in Step (2), or an individual “trustable” neutrophil that does not
belong to any such cluster. Assign the weight of each “trustable” neutrophil as
the neutrophil probability computed by CNN (as opposed to 1 in [8]), in the
influence function F'(-,-) defined above. By doing so, clusters of neutrophils that
are more likely to contain correct information would have larger influence to the
neighborhood. Set distr = 160 pixels. Some examples are given in Fig. 3.

(4) For each geometric VDC cell, build a Random Forest classifier, using the
“trustable” neutrophils and non-neutrophils within this VDC cell as respectively
the “+” and “-” training examples. Here, we simply use the filters’ responses
in layer 7 of our CNN as the features, because they contain high level semantic
information on the cell types. Such a classifier captures locally what neutrophils
and non-neutrophils look like in the neighborhood, and thus is referred to as the
Local Expert (LE) for the corresponding geometric VDC cell.

(5) For each ambiguous cell ¢, define its context as all the geometric VDC cells
overlapping with the circle of radius R centered at c¢. (Note that if the context
is empty, then it essentially means that likely no neutrophil cluster or single
neutrophil is around ¢, and thus we simply take ¢ as a non-neutrophil.) We use
the weighted average probabilities of the LEs of these geometric VDC cells to
determine whether ¢ is a neutrophil. We set the weight of an LE as the collective
influence from the corresponding cluster to ¢, to reflect that the decision on ¢’s
cell type favors more the “opinion” from a cluster with a larger influence to c.

Fig. 3. Some examples of VDC tessellation: The green points are “trustable” neu-
trophils; the blue curves are boundaries between adjacent geometric VDC cells; the
red curves are boundaries between adjacent geometric VDC cells and regions that
exceed the distance threshold distr based on the influence function F(-,-).



232 J. Wang et al.
4 Experiments and Evaluation

We collected histology tissue slides (scanned at 40X magnification, which pathol-
ogists commonly use to identify cell types) from patients suspected of having
inflammatory bowl diseases (the study was performed under an IRB and in
compliance with the privacy provisions of HIPPA of 1996). We manually marked
810 neutrophils (we automatically detected the cells regardless of their types; the
detected cells that are not marked as neutrophils are taken as non-neutrophil
ground truth), from 53 images as ground truth. This a larger and more chal-
lenging dataset than that in [8]. Each time, we randomly selected 21 images
for training, and the rest images for testing (we repeat 5 times to obtain the
average performance). To measure the performance quantitatively, we compute
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Fig. 4. The precision and recall curves.

Evaluation on Modeling Individual Cell Appearances. To demonstrate
the effectiveness of deep learning on capturing the characteristics of cells, we
compare the performance based on merely thresholding the probabilities output
by CNN (i.e., without VDC), and two versions of the state-of-the-art method
[8]: Hand-crafted features (color, texture, etc) + Random Forest (HC + RF),
and HC + RF + VDC. The precision and recall curves (obtained by varying the
probability threshold for both CNN and HC + RF, and varying the threshold for
determining “trustable” neutrophils for HC + RF 4+ VDC) are shown in Fig. 4.

One can see that the combination of hand-crafted features and simple classi-
fier, even after using the additional context information extracted based on VDC,
is outperformed by CNN. This validates that the learned hierarchical represen-
tation of features by CNN captures well the subtle characteristics of individual
cells, which are often further complicated by the noisy and complex environment
of H&E histology tissue images.
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Evaluation on Modeling Cell Context. The precision and recall curve (ob-
tained by varying the threshold for determining “trustable” neutrophils) of com-
bining CNN and VDC is also shown in Fig. 4. One can see that although CNN
alone already performs well, using additional context information extracted from
VDC further improves the performance. This validates that VDC is a good com-
plement to CNN, and modeling cell context can considerably help neutrophils
identification.

5 Conclusions

In this paper, we present a robust new method that significantly improves
the state-of-the-art for neutrophil identification in clinical tissue samples. Our
method constructs a CNN to characterize the features of neutrophils, which are
subtle and complicated given the cells are embedded in the noisy and complex
tissue environment. It also combines CNN with VDC to extract needed cell
context that helps identify neutrophils more effectively.
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