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Abstract. Automated image restoration in microscopy, especially in
Differential Interference Contrast (DIC) imaging modality, has attracted
increasing attention since it greatly facilitates living cell analysis. Previ-
ous work is able to restore the nuclei of living cells, but it is very chal-
lenging to reconstruct the unnoticeable cytoplasm details in DIC images.
In this paper, we propose to extract the tiny movement information of
living cells in DIC images and reveal the hidden details in DIC images
by magnifying the cell’s motion as well as attenuating the intensity vari-
ation from the background. From our restored images, we can clearly
observe the previously-invisible details in DIC images. Experiments on
two DIC image datasets demonstrate that the motion-based restoration
method can reveal the hidden details of living cells, providing promising
results on facilitating cell shape and behavior analysis.

1 Introduction

Automated image restoration, transforming an observed image that is challeng-
ing for direct analysis into a new image that can be effortless analyzed, has
valuable applications in biological experiments, because it may make the seg-
mentation and detection of specimens much easier and greatly facilitate the
behavior analysis on specimens [1][2]. As predominantly phase objects, living
cells are transparent and colorless under a traditional brightfield microscope,
because they do not significantly alter the amplitude of the light waves passing
through them, as a consequence, producing little or no contrast under a bright-
field microscope. Differential Interference Contrast (DIC) microscopy technique
(refer to Chapter 10 in [3]) has been widely used to observe living cells because
it is noninvasive to cells. DIC microscopy converts the gradient of cells’ optical
path length into intensity variations which are visible to human.

Although the nucleus and some big organelles are visible in DIC microscopy
images, there are many cell details which are not obvious in DIC microscopy
images such as the cytoplasm and cell membrane, and they are difficult to be
observed by human eyes. Fig.1(a) shows two DIC microscopy image patches and
Fig.1(b) shows the ground truth cell mask obtained by combining the observation
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from corresponding phase contrast microscopy images. Fig.1(c) is the average
segmentation mask by ten human annotators, from which we find that even
humankind is likely to ignore the unnoticeable cytoplasm which spreads out into
the background, but these hidden details can be informative to analyze cells’
shape and behavior. In this paper, we focus on restoring the invisible (as well as
visible) details in DIC microscopy images.

Fig. 1. Challenges in restoration of the hidden details in DIC microscopy images. (a)
Two original DIC images. (b) The ground truth mask, which indicates where the cells
are. (c) The mask indicates where the cells are by ten annotators merely with their
naked eyes. (d) The restoration results by line integration [6]. (e) The restoration results
by Wiener filter [7]. (f) The restoration results by preconditioning [8].

1.1 Related Work

The common techniques employed for microscopy image restoration include edge
detection, thresholding [4], morphological operations [5]. These methods often
fail when the cells are in low contrast with background. For the purpose of
restoration in DIC microscopy images, lines are integrated along the shear di-
rection inspired by the gradient interpretation property of DIC images [6], but
this method introduces streaking artifacts and is sensitive to gradient noise, as
shown in Fig1(d). General image processing technologies such as deconvolution
by Wiener filter [7] have been investigated to restore the optical path length from
DIC images. A preconditioning approach was proposed in [8] where the DIC im-
age is reconstructed by minimizing a nonnegative-constrained convex objective
function. However, neither Wiener filter nor the preconditioning method can re-
veal the hidden details in the DIC images and the cells are miss-segmented, as
shown in Fig.1(e,f).

1.2 Our Proposal and Algorithm Overview

Although the details of living cells in a DIC image are unnoticeable by human
eyes, they are likely to keep moving when we observe them in a continuous series
of images, hence we are motivated to think of the following intriguing problem:

Can we extract the tiny movement information of living cells in DIC images
and reveal the hidden details in DIC images by magnifying the cells’ motion?

In this paper, we propose a motion-based DIC image restoration algorithm.
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As shown in Fig.2, DIC image at timestamp T is to be restored. We firstly ex-
tract the spatial gradient information from every DIC image within the time
sliding window [T −Δt, T +Δt]. The intensity values of a pixel location in the
gradient images form a time-series signal and we filter it by an ideal bandpass
filter to magnify small motion. The motion is further magnified in forward and
backward directions independently in the temporal domain. Finally, the restora-
tion results of two directions by motion magnification are combined to obtain
the final restoration result which uncover the hidden details in the DIC image at
timestamp T . Our work is different from the previous work which also considers
motion information [9][10], because we do not rely on cell detection and tracking.
Instead, we extract tiny motion on individual pixels and magnify it.

Fig. 2. Overview of our algorithm.

2 Methodology

For simplicity, we denote the original DIC image at timestamp t as f(t), the
pixel value of which at position (m,n) is f(m,n, t). f(T ) is the target image to
be restored at timestamp T . Let vm(t) and vn(t) denote the motion components
at position (m,n) regarding to horizontal and vertical coordinates, respectively.
If f(m,n, 0) = I(m,n), the pixel intensity at (m + vm(t), n + vn(t)), I(m +
vm(t), n+ vn(t)), can be represented by image function f equivalently:

f(m,n, t) = I(m+ vm(t), n+ vn(t)) (1)

By the first-order Tylor expansion, we have

I(m+ vm(t), n+ vn(t)) = I(m,n) + vm(t)
∂I

∂m
+ vn(t)

∂I

∂n
(2)

Therefore, the contrast between neighboring pixels in an image sequence (i.e.,
I(m + vm(t), n + vn(t)) − I(m,n)) is determined by both motion information
(vm(t), vn(t)) and spatial gradient information ( ∂I

∂m , ∂I
∂n ). Thus we can magnify

the motion by either increasing ( ∂I
∂m , ∂I

∂n ) or increasing (vm(t), vn(t)). This moti-
vates us to build a Laplacian pyramid to accumulate the spatial gradient infor-
mation (Subsection 2.1), design bandpass filter (Subsection 2.2) and accumulate
motion information in the temporal sliding window (Subsection 2.3 and 2.4) to
magnify the tiny motion caused by fine cell structures.
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2.1 Gradient Images

Fig.3 illustrates the process to extract spatial gradient information from DIC mi-
croscopy images. Given a DIC image f(t) (Fig.3(a)), we decompose it to several
levels by the Laplacian pyramid and then reconstruct them by ignoring the last
level. Fig.3(c) is the final result. Compared with the single level gradient image,
such as the first level of the Laplacian pyramid in Fig.3(b), the gradient image
combining several levels (Fig.3(c)) reveals more and clearer gradient information
about the cells. We denote the gradient image corresponding to f(t) as g(t) and
g(t) is the input of the following motion magnification process.

Fig. 3. Computing the gradient image g(t). (a). The original image f(t). (b). The
Laplacian pyramid. (c). The gradient image g(t).

2.2 Bandpass Filter

The original image f(t) may have low signal-to-noise ratio. For example, for each
image from f(T −Δt) to f(T +Δt), the pixel value of background is spatially
stable (i.e., ( ∂I

∂m , ∂I
∂n ) is small on background pixels), but it can temporally change

because of illumination variations, thus resulting in unwanted temporally motion
in the background. Motion information (vm(t), vn(t)) can be easily extracted by
the image difference of g(t), but it is likely to amplify noise which is unrelated
to cells’ movement. We need to retain the tiny motion information of cells,
meanwhile inhibiting the unwanted movement information of background pixels.

In this subsection, g(t) is filtered by an ideal bandpass filter and the signal-
to-noise ratio of each pixel in the temporal domain is increased. The flowchart
of our bandpass filtering is shown in Fig.4 where Fig.4(a) is g(t) with t ∈ [T −
Δt, T ]1. For each pixel (m,n), we can build a vector g(m,n, T −Δt : T ) which
indicates the pixel value change at (m,n) during the time period of [T − Δt :
T ]. Discrete Fourier Transform (DFT) is then applied to g(m,n, T − Δt : T )
and Fig.4(b) shows examples of frequency vs. magnitude on two typical pixel
locations. The principle frequency is defined as the frequency with the largest
magnitude. As shown in Fig4(c), we build a principle frequency map whose pixel
value at location (m,n) is the principle frequency of g(m,n, T − Δt : T ). We
observe that in the cells’ regions, the principle frequency is lower than that in

1 As shown in Fig.2, the motion magnification processes towards forward and backward
directions in the temporal domain are similar, thus we mainly describe the forward
process in this subsection without loss of generality.
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the background (presented by black regions in Fig4(c)). This is because noise
variation in the background has higher frequency (fast changes) but with smaller
range of variation, so people may not notice it. However, the intensity change
of a pixel location caused by cell movement has lower frequency (slow changes)
but with larger variation range, thus people are possible to observe cell details
in continuous DIC images.

Fig. 4. Flowchart of bandpass filtering. (a) g(t) with t ∈ [T −Δt : T ]. (b) The DFT of
g(m,n, T−Δt : T ). (c) Principle frequency image. (d) The bitmask by thresholding the
principle frequency image, from which we can know the tentative cell and background
regions. (e) Bandpass filtering result. (f) The motion image h(t), which indicates the
motion of each pixel.

The principle frequency map shown in Fig.4(c) inspires us to tentatively de-
termine the cells’ regions and background. We set all pixel values in the principle
frequency image which are larger than the minimum of the principle frequency
map as zero, yielding a bitmask that indicates the cells’ regions and background
as shown in Fig.4(d). The bitmask can roughly tell where the living cells are,
offering us the hint on where to retain cells’ tiny movement while inhibiting the
motion from background noise.

For each pixel (m,n) in g(t), its movement pattern may not be exactly the
same during the time interval [T−Δt : T ], thus we design an ideal bandpass filter
with the aid of the bitmask to keep the most salient movement of cells as well
as the smallest movement in the background. The bandpass filtering increases
the contrast between cell motion and background intensity variation, therefore
facilitating the observation on fine details of cells.

For the tentative background regions obtained from Fig.4(d), the frequency
range to be passed in the bandpass filter is set as the frequency corresponding
to the smallest magnitude, thus all frequency components which are larger are
attenuated (rejected). Note that we do not directly set all frequency components
of the tentative background pixel as zero, because the tentative foreground and
background segmentation in Fig.4(d) may not be accurate. For the tentative
foreground regions obtained from Fig.4(d), the frequency range to be passed in
the bandpass filter is set as the frequency corresponding to the largest magnitude,
thus only the dominant frequency component related to cell motion is kept.
Fig.4(e) shows the two filtering results corresponding to Fig.4(b) with the top
being regarded as background and the bottom being foreground. After bandpass
filtering, we apply the inverse DFT to obtain the motion images h(t).



Restoring the Invisible Details 345

2.3 Motion Magnification

After the aforementioned processes, we obtain the motion images h(t) which
includes the movement information of each pixel. In this section, we further
magnify the motion in a temporal sliding window to reveal cell details. This is
implemented by the temporally weighted accumulation of motion. The magnifi-
cation formula for forward process ([T −Δt, T ]) is defined as

rfw(T ) =

T∑

t=T−Δt

e−
T−t
Δt |h(t)| (3)

The magnification formula for backward process ([T, T + Δt]) is similarly
defined as

rbw(T ) =
T+Δt∑

t=T

e−
t−T
Δt |h(t)| (4)

where rfw(T ) and rbw(T ) are the motion magnified images for f(t) by the for-

ward and backward process, respectively. e−
T−t
Δt and e−

t−T
Δt ensure that the closer

the image h(t) is to the target image h(T ), the more contribution h(t) makes to
rfw(T ) or rbw(T ).

2.4 Combine Forward and Backward Motion Images

The final restoration image r(T ) for the original target image f(T ) can be di-
rectly defined as the elementwise min-operation on rfw(T ) and rbw(T ):

r(T ) = min(rfw(T ), rbw(T )) (5)

As shown in Fig5(a,b,c), a cell moves from the center towards the top-right.
Fig5(d,e,f) show the forward, backward and combined restoration results, re-
spectively. In Fig5, we observe that if only one direction of motion information
is used, there will be artifacts unrelated to the motion in f(T ). The artifacts are
from the accumulated motion in the past or future DIC images. If we compute
the minimum of rfw(T ) and rbw(T ), the artifacts are removed, leaving the cell
details in the current frame only.

Fig. 5. Illustration of the combination of forward and backward processes.
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3 Experimental Results

The proposed image restoration algorithm is tested in two different sets of Dif-
ferential Interference Contrast images of 1388×1040 pixels, which were captured
every 5 minutes to continuously monitor live cells. The first dataset includes
445 DIC images with each image containing about 70 cells. The second dataset
includes 500 DIC images and has a wider visual field, thus each image in this
dataset contains about 150 living cells. When labeling the ground truth of cell
masks, we found it was likely to make mistake only with DIC images. To min-
imize the human errors, we took the phase contrast microscopy images on the
same cell dish simultaneously when we took DIC images. Thus the ground truth
was labeled by combining DIC images and corresponding phase contrast images.
Δt is determined by a training dataset different from the two above-mentioned
testing datasets and the following comparison on testing datasets are conducted
when Δt = 20 which had the best restoration performance on the training
dataset.

Fig. 6. The qualitative performance. (a).The images in red, blue and green boxes are
the original DIC images, the corresponding phase contrast images and the restoration
images obtained by the proposed algorithm, respectively. (b). The upper row shows
sample DIC images during a period of 100 minutes. The bottom row is the restoration
images, from which we can analyse the shape change of a cluster of cells.
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3.1 Qualitative Evaluation

Fig.6 shows the qualitative performance of the proposed restoration algorithm.
In Fig.6(a), the images in red or blue boxes are the original DIC images and the
corresponding phase contrast images, respectively. Phase contrast images are
displayed here to observe the ground truth. Unlike the previous work [6][7][8]
which only reveals the nucleus of living cells (an example is in Fig.1), our ap-
proach can display the details such as the cytoplasm of living cells, even though
the cytoplasm is spread out and fuses with the background (images in green
boxes in Fig.6(a)). The upper row of Fig.6(b) shows some DIC images on a clus-
ter of cells within a time interval of 100 minutes. It is clearly to observe cells’
shape change and their movement, which provides more information for future
cell shape and behavior analysis.

3.2 Quantitative Evaluation

The restored image enables us to achieve the cell segmentation simply using
a global thresholding. Fig.7 shows the recall vs. precision curves by trying all
possible thresholds for four methods: our proposed approach, line integration [6],
Wiener filter [7] and preconditioning [8]. For each threshold, TP is the number of
true positive pixels. FP is the number of false positive pixels. FN is the number
of false negative pixels. Thus precision is defined as Precision=TP/(TP+FP)
and recall is defined as Recall=TP/(TP+FN). Fig.7 shows that our proposed
algorithm greatly outperforms other approaches since we can restore cell’s fine
details in addition to the nucleus.

Fig. 7. The recall vs. precision comparison with other approaches. (a). Comparison in
Dataset 1. (b).Comparison in Dataset 2.

4 Conclusion

In this paper, we propose a novel motion-based DIC image restoration algorithm.
The tiny motion of each cell pixel is magnified by filtering a time-series of gradi-
ent signals on the pixel location using an ideal bandpass filter, while the intensity
variation on the background pixels is attenuated. The motion information of a
target image is further magnified by a weighted sum of a series of motion im-
ages from time-lapse image sequences. From our restored images, we can clearly
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observe the previously-invisible details in DIC images. The restored images fa-
cilitate the cell segmentation greatly compared to three other image restoration
methods. In the future, we will further explore cell image analysis tasks based
on our restoration algorithm such as the cell proliferation event detection.
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