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Abstract. Longitudinal imaging studies, where serial (multiple) scans
are collected on each individual, are becoming increasingly widespread.
The field of machine learning has in general neglected the longitudi-
nal design, since many algorithms are built on the assumption that
each datapoint is an independent sample. Thus, the application of gen-
eral purpose machine learning tools to longitudinal image data can be
sub-optimal. Here, we present a novel machine learning algorithm de-
signed to handle longitudinal image datasets. Our approach builds on a
sparse Bayesian image-based prediction algorithm. Our empirical results
demonstrate that the proposed method can offer a significant boost in
prediction performance with longitudinal clinical data.
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1 Introduction

Machine learning algorithms are increasingly applied to biomedical image data
for a range of clinical applications, including computer aided detection/diagnosis
(CAD) and studying group differences, e.g. [1,2,3] . In early biomedical applica-
tions, off-the-shelf algorithms such as Support Vector Machines were employed
on image intensity data. However, there has been a recent proliferation of cus-
tomized methods that derive optimal image features and incorporate domain
knowledge about the clinical context and imaging data, e.g. [4,5,6,7,8]. Such
customized methods can offer a significant increase in prediction accuracy.

Machine learning in general, and its application to population-level biomedical
image analysis in particular, has largely been concerned with the cross-sectional
design, where each sample is treated as independent. Yet, as data acquisition
costs continue to fall and data collection efforts become more collaborative and
standardized, longitudinal designs have become increasingly widespread. Lon-
gitudinal studies, where serial data are collected on each individual, can offer
increased sensitivity and specificity in detecting associations, and provide in-
sights into the temporal dynamics of underlying biological processes.

Real-life longitudinal data suffer from several technical issues, which make
their analysis challenging. Subject drop-outs, missing visits, variable number of
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Table 1. Data from annual ADNIMRI visits analyzed in this study. Note some subjects
had MRI visits at 6, 18, 30, 42, 54, and 66 months too.

Planned visit time (months) Baseline 12 24 36 48 60 72
Mean± Std. time (months) 0 13.1 ± .8 25.5 ± 1.2 37.7 ± 1.2 50.7 ± 2.2 62.4 ± 1.7 74.2 ± 2.0
Number of imaging sessions 791 649 518 336 216 159 131

visits, and heterogeneity in the timing of visits are commonplace. For example,
Table 1 illustrates these challenges with longitudinal data from the Alzheimer’s
disease neuroimaging initiative (ADNI) [9]. The number of subjects complet-
ing each planned longitudinal visit diminishes gradually as subjects drop out,
and scan timings are highly variable. Recently, several methods have been pro-
posed to appropriately examine this type of data in a (mass-)univariate fashion
and using classical statistical techniques suitable for longitudinal designs, e.g.,
linear mixed effects (LME) models [10] and generalized estimating equations
(GEE) [11].

To our knowledge, however, there exists no purpose-built machine learning
method that would offer the ability to optimally handle serial data, particularly
from real-life longitudinal designs. We note that the scenario we consider is
different from time-series data, which also deals with temporal dynamics. Yet
in time-series analysis (e.g., of financial data), which has received considerable
attention in machine learning, e.g. [12], temporal processes are typically sampled
densely and at uniform intervals. A common goal is to fully characterize a single
process in order to make forecasts. Instead, the longitudinal scenario we consider
here assumes that each subject has a separate temporal process, which has been
sampled a small number of times, possibly at non-uniform intervals.

We adopt the framework of the recently proposed Relevance Voxel Machine
(RVoxM) [5], which offers state-of-the-art image-based prediction for a range of
clinical applications and has a publicly available implementation. RVoxM builds
on the Relevance Vector Machine (RVM) [13], a sparse Bayesian learning tech-
nique, and adapts it to model the spatial smoothness in images. Like virtually all
machine learning algorithms, both RVM and RVoxM treat each datapoint as an
independent sample, likely making their use sub-optimal for longitudinal data
analysis. Inspired by LME models [10], we propose to introduce subject-specific
random effects into the RVoxM model in order to capture the within-subject
correlation structure in longitudinal data. Section 2 introduces the theoretical
concepts of the proposed method. Section 3 presents empirical results and Sec-
tion 4 provides a conclusion and discussion.

2 Theory

We aim to predict a target variable, t ∈ R, from an image scan, x, which denotes
vectorized voxel values. We append 1 to x to account for the bias. Thus x is
V +1 dimensional, where V is the number of voxels. As in RVoxM [5], we assume:

t = y(x,w) + ε, (1)
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Fig. 1. Graphical model depicting the dependency
structure between model variables. Circles repre-
sent random variables and model parameters are
in squares. Plates indicate replication. Shaded vari-
ables are observed (during training), whereas re-
maining variables are unknown (latent). For variable
names and further details, refer to text.

where the error is zero-mean Gaussian, ε ∼ N (0, β−1), with variance β−1 > 0.
Similar to RVoxM we adopt a linear model for y. Unlike RVoxM, however,

we utilize subject-specific random variables to account for the within-subject
correlation structure in longitudinal data. Thus, we assume:

ynj = xT
njw + bn, (2)

where the subscripts n and j denote the subject and subject-specific time-point
indices, respectively; w is the vector of latent model coefficients shared across
subjects (one for each voxel and a bias term); and bn is the latent, subject-
specific bias term. As in RVoxM [5], the coefficients are assumed to be drawn
from a sparsity-inducing, spatial-smoothness-encouraging prior:

w ∼ N(0,P−1), (3)

where P = diag(α) + λL, α = [α1, · · · , αV +1] > 0, and λ ≥ 0 are hyper-
parameters; and L is a Laplacian matrix defined as:

L(u, v) =

⎧
⎨

⎩

−1 , if u and v are indices of neighboring voxels
Number of neighbors , if u = v
0 , otherwise.

(4)
The critical component of Eq. 2 is the subject-specific bias term bn, which we
assume to be drawn from a zero-mean Gaussian, bn ∼ N(0, γ−1), with variance
γ−1 > 0. Fig. 1 shows the graphical model illustrating the relationship between
model variables. Similar to LME models, bn captures the positive correlation
between serial datapoints on the same individual. That is, we expect the error
of the core prediction algorithm (e.g., RVoxM with bn = 0) to be positively
correlated for longitudinal data. So, for example, if the prediction is smaller
than the ground truth (i.e., negative error) for the first time-point of a subject,
we expect the error to be negative for a second time-point of the same individual
too. The subject-specific bias term is intended to correct for this error. Empirical
evidence presented in Fig. 2 supports our theoretical expectation of positive
correlation between the prediction errors made on serial scans. The details of
these data, which come from our empirical analysis, can be found in Section 3.

2.1 Training Phase

Let us assume we are given N training subjects, each with Mn ≥ 1 time-points,
where n denotes the subject index. Thus, we have M =

∑
n Mn samples and
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Fig. 2. Scatter plot of prediction error (predicted
minus true value) of mini-mental state exam score
(MMSE, a cognitive test that is associated with de-
mentia). Prediction computed with RVoxM on brain
MRI-derived cortical thickness data from ADNI.
“First scan” was acquired at baseline and “Second
scant” at the month 12 visit. Each point represents
an individual. See experiment section for further de-
tails.

each sample consists of an image scan x and corresponding target variable value
t. Let X ∈ R

M×(V+1) and t ∈ R
M denote the stacked up training data. The

goal of training is to learn the hyper-parameters α, λ, β and γ from the training
data, e.g., via maximizing the type II likelihood:

(α∗, λ∗, β∗, γ∗) = argmax
α,λ,β,γ

p(t|X;α, λ, β, γ)

= argmax
α,λ,β,γ

∫

p(w;α, λ)
∏

n

p(tn|Xn,w;β, γ)dw, (5)

where tn ∈ R
Mn and Xn ∈ R

Mn×(V+1) are the stacked up data (target variables
and images) for the n’th training subject. The likelihood term for the n’th subject
can be derived by marginalizing over the unknown subject-specific bias:

p(tn|Xn,w;β, γ) =

∫

p(tn|Xn,w;β, bn)p(bn; γ)dbn = N (XT
nw,Λn), (6)

where

Λn =

(

β(IMn − β

βMn + γ
1Mn1

T
Mn

)

)−1

= β−1IMn + γ−11Mn1
T
Mn

. (7)

IMn denotes the Mn × Mn identity matrix and 1Mn denotes a length Mn col-
umn vector of 1’s. Note Λn is in general not a diagonal matrix, thus modeling
correlation structure between serial data. Inserting Eq. 6 into Eq. 5 and working
out the integral yields p(t|X;α, λ, β, γ) = N (0,C), where C = Λ +XTP−1X,
Λ = IN ⊗ Λn and ⊗ is the Kronecker product. Note C depends on all hyper-
parameters (α, λ, β, γ) and the optimization (learning) problem of Eq. 5 can be
re-written as:

argmin
α,λ,β,γ

tTC−1t+ log |C|, (8)

where | · | denotes matrix determinant. Let’s define:

Σ = (P+XTΛ−1X)−1, and μ = ΣXTΛ−1t. (9)

Following the algebraic manipulations of [5,13], we arrive at the following update
equation for the elements of the hyper-parameter vector α:

αi ←
1− αiΣii − λ

(
P−1L

)

ii

μ2
i

, (10)
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which satisfies the non-negativity constraints and optimizes Eq. 8. As origi-
nally observed by Tipping [13], this optimization procedure tends to yield many
αi’s that diverge to ∞ in practice, effectively turning off the contribution of
the corresponding voxel (see next subsection) and producing a sparse model.
We estimate the three scalar hyper-parameters, (β, λ, γ), by solving Eq. 8 via
gradient-descent.

2.2 Testing Phase

The training phase provides a set of learned hyper-parameters (α∗, λ∗, β∗, γ∗).
The testing phase involves computing the posterior distribution of the tar-
get variable given longitudinal image data from a novel test subject, XN+1 ∈
R

MN+1×(V +1), with MN+1 ≥ 1 time-points. It can be shown that this posterior
is a Gaussian:

p(tN+1|XN+1;α
∗, λ∗, β∗, γ∗) = N (XN+1μ

∗, Σ̃N+1), (11)

where
Σ̃N+1 = Λ∗

N+1 +XN+1Σ
∗XT

N+1, (12)

Λ∗
N+1 = (β∗)−1IMN+1+(γ∗)−11MN+11

T
MN+1

, and μ∗ andΣ∗ are computed based
on Eq. 9 with learned hyper-parameters. From Eq. 11, the maximum a posteriori
probability (MAP) estimate of the target variable is:

t̂N+1 = XN+1μ
∗. (13)

Using Eq 9 it can be shown that if αi → ∞, then μi = 0. Thus, the corresponding
voxel has no influence on the MAP prediction.

In certain scenarios with MN+1 > 1, target variable values might be avail-
able for some time-points of the test subject. Without loss of generality, let us
decompose tN+1 = [tknown

N+1 ; tunknown
N+1 ], where the superscript indicates whether

the target variable is known or not. Using well-known formulae for conditional
multivariate Gaussians, the MAP estimate for tunknown

N+1 can be written as:

t̂
unknown

N+1 = Xunknown
N+1 μ∗+[Σ̃unknown, known

N+1 ][Σ̃known, known
N+1 ]−1(tknown

N+1 −Xknown
N+1 μ∗),

(14)

where we have used: Σ̃N+1 =

[
Σ̃known, known

N+1 Σ̃known, unknown
N+1

Σ̃unknown, known
N+1 Σ̃unknown, unknown

N+1

]

.

2.3 Implementation

The learning algorithm is initialized with: μinit = XT(XXT)−1t, αinit
i = 1

(μinit
i )2

,

λinit = 1, βinit = 5
var(t) , γ

init = 50
var(t) . The objective function of Eq. 8 is moni-

tored at each iteration and the optimization terminates once the change in the
value is below a preset tolerance threshold. As RVoxM and RVM, the computa-
tional demands of the proposed algorithm are significant. A naive implementa-
tion, for example, can requireO(V 3) time, and V , the number of voxels, can reach
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hundreds of thousands. Instead, we use a greedy algorithm, originally proposed
for RVM [13], that permanently “turns off” voxels when their corresponding αi

exceeds a threshold (e.g., 1012). Finally, all update equations can be expressed
only using effective voxels (that haven’t been turned off) and we can exploit the
sparsity of P to speed up some matrix operations, as described in [5].

Our implementation is based on publicly available RVoxM code in Matlab. We
call the proposed algorithm LRVoxM, for longitudinal RVoxM. We implemented
a surface-based version designed to handle FreeSurfer-derived cortical surface
data. FreeSurfer [14] is a freely available toolkit for automatically processing
brain MRI scans. For example, given a structural brain MRI scan, FreeSurfer
can compute a cortical thickness map sampled onto a common template surface
mesh that represents a population average.

3 Empirical Results

In our experiment, we considered the problem of predicting the mini-mental state
exam score (MMSE ranges between 0-30 and a lower score is associated with
heightened dementia risk) from a 1.5T structural brain MRI scan. We analyzed
longitudinal data from ADNI [9]. We generated two groups that consisted of
pairs of matched subjects with three or more longitudinal scans at > 6 month
intervals. The matching was done based on baseline characteristics (age, sex,
and diagnosis), yielding two groups of N = 273 with the following composition:
77± 7.1 years, %40 female, 76 healthy controls, 135 subjects with mild cognitive
impairment (MCI, a clinical stage associated with high dementia risk), and 62
Alzheimer’s disease (AD) patients. Total number of scans across both groups
was 3069, i.e., an average of 5.62 MRI scans per subject. We assigned an MMSE
score to each scan based on the clinical assessment closest to the MRI date.

Each matched pair of subjects were randomly split into a test subject and a
training subject. We repeated this random split 10 times to obtained 10 random
matched train/test datasets. Note that, since each subject contained a variable
number of (≥ 3) longitudinal time-points, the sizes of the train/test datasets
were in general different.

The input to the prediction algorithm was FreeSurfer-derived cortical thick-
ness data sampled on a common template surface (fsaverage6 with > 70k ver-
tices) and smoothed with a Gaussian of FWHM = 5mm. As the baseline method,
we considered the public implementation of RVoxM, which corresponded to set-
ting γ = ∞ in the proposed LRVoxM algorithm. For LRVoxM, we examined
three test phase scenarios: (S0) target variable was unknown for all test subject
scans (LRVoxM-0), (S1) target variable was given for first scan (LRVoxM-1), and
(S2) first two scans (LRVoxM-2) of each test subject. For S1 and S2, LRVoxM
used Eq. 14 to compute predictions. In assessing testing accuracy, we only used
the scans for which none of the algorithms had access to the target variable (i.e.,
we excluded first two scans of each subject). Note that testing accuracy metrics
for LRVoxM-0 and RVoxM remained virtually unchanged when we included the
first two scans of each subject.
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Fig. 3. Average testing accuracy (left: RMSE, middle: Correlation) in predicting
MMSE from MRI scan. RVoxM: baseline method. LRVoxM: proposed longitudinal
RVoxM algorithm. Right: Avg. RMSE improvement over MRI-blind predictions in sce-
narios S1 and S2 (see text). The bar charts show the mean values over the 10 test
phase sessions. Errorbars indicate standard error of the mean.

.

Fig. 2 shows a scatter plot of the prediction error (predicted minus true MMSE
value) of RVoxM, the benchmark algorithm, on the baseline and year 1 scans of
a test dataset. This plot reveals the strong positive correlation of the prediction
error in longitudinal data, which was the core motivation of our approach. The
main empirical results are presented in Fig. 3, which shows the root mean squared
error (RMSE) and correlation between the predictions and ground truth values.
LRVoxM-0 clearly outperforms RVoxM on both metrics (avg. RMSE: 4.95 v.
5.75, avg. correlation: 0.39 v. 0.33, paired t-test across 10 sessions, p < 10−7),
which demonstrates the accuracy boost achieved by appropriately accounting
for longitudinal data in a prediction algorithm.

Moreover, LRVoxM-1 and LRVoxM-2 offer progressively better prediction per-
formance. For example, providing the target variable value for only a single time-
point reduces RMSE by about 32% to an average of 3.38, whereas LRVoxM-2
achieves a further improved average RMSE of 3.07. These results demonstrate
that LRVoxM exploits subject-specific information to compute improved pre-
dictions (via the use of Eq. 14). We conducted an additional comparison of
the LRVoxM results with “MRI-blind” predictions, which were computed based
on the available MMSE values for each test subject (scenarios S1 and S2, see
Fig. 3-right). LRVoxM-1’s RMSE was significantly lower than a prediction that
assigned the first time point’s MMSE value to all remaining time-points of the
same subject (paired t-test p < 0.02). For S2, the MRI-blind prediction was
computed by fitting a line to the given MMSE values of the first two time-
points. The predictions were then computed from this line at subsequent visits.
LRVoxM-2’s RMSE was also significantly lower than this MRI-blind prediction
(p < 0.04).
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4 Discussion and Conclusion

We presented a novel, sparse Bayesian learning algorithm suitable for longitu-
dinal image data. Our experiments demonstrated a significant boost in perfor-
mance achieved by the proposed method in comparison with the conventional
strategy that ignores the longitudinal structure. Although we utilized the RVoxM
framework, our approach is general and can be adopted within alternative prob-
abilistic models, e.g., Gaussian processes, or for other data types. Future work
will include extending LRVoxM to handle discrete target variables (classifica-
tion), compute predictions about future outcome (prognosis), and examine al-
ternative priors that might be more appropriate for handling discrete jumps in
spatial data. We further plan to explore the use of additional subject-specific
terms (such as those depending on time) to capture more complex correlation
patterns, e.g, that depend on the time interval between visits.
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