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Abstract. Image-guided radiation therapy during free-breathing
requires estimation of the target position and compensation for its motion.
Estimation of the observed motion during therapy needs to be reliable
and accurate. In this paper we propose a novel, image sequence-specific
confidence measure to predict the reliability of the tracking results. The
sequence-specific statistical relationship between the image similarities
and the feature displacements is learned from the first breathing cycles. A
confidencemeasure is then assigned to the tracking results during the real-
time application phase based on the relative closeness to the expected val-
ues. The proposed confidence was tested on the results of a learning-based
tracking algorithm. The method was assessed on 9 2D B-mode ultrasound
sequences of healthy volunteers under free-breathing. Results were evalu-
ated on a total of 15 selected vessel centers in the liver, achieving a mean
tracking accuracy of 0.9 mm. When considering only highly-confident re-
sults, the mean (95th percentile) tracking error on the test data was re-
duced by 12% (16%) while duty cycle remained sufficient (60%), achiev-
ing a 95% accuracy below 3 mm, which is clinically acceptable. A similar
performance was obtained on 10 2D liver MR sequences, showing the ap-
plicability of the method to a different image modality.

Keywords: confidence, tracking, learning, respiratory motion, image
guidance, ultrasound.

1 Introduction

Image-guided radiation therapy of abdominal organs during free-breathing re-
quires estimation of the target position and compensation for its motion over
the duration of the entire treatment session [9]. Examples of imaging techniques
available for observing the internal motion are ultrasound (US) and magnetic
resonance imaging (MRI). US is increasingly used, as it can image soft tissues
in real time, and with higher temporal and spatial resolution than other modal-
ities, is non-ionizing and inexpensive [4]. MRI is a popular choice for guidance
of focused ultrasound surgery as it provides thermometry images, also used
for tracking [15], yet the temporal resolution is about 5 times lower than US.
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The intrafraction motion estimation needs to be reliable and accurate, to reduce
the size of the safetymargins due to expected residual tumormotion in the planned
dose delivery [19]. Gating is commonly used to reduce motion uncertainties. Yet
it generally leads to relatively low duty cycles (20-50%) for maintaining accept-
able accuracy [9,16]. Following the tumor motion by tracking keeps duty cycle at
100%, but can have high errors. Here we propose gated-tracking, where gating (i.e.
accepting motion predictions) is based on the estimated accuracy (confidence) of
the current tracking result and tracking is used to follow the tumor.

Confidence measures for motion estimation from images can generally be
based on image appearance, motion field properties, or both. Estimates are likely
more accurate for strong image features, high image similarity and realistic mo-
tion patterns. Usually maximization of these criteria has been incorporated in
the tracking approach to increase accuracy. For example, methods based on opti-
cal flow [10,2,11] and probabilistic approaches [18,13] include already confidence
values in their tracking formulation. Yet they are tailored for the specific tracking
strategy. Learning-based methods have been employed for detecting the areas of
the images which can be most reliably tracked [1,6,8]. A probabilistic confidence
measure, based on the local image similarity, was provided for a block matching
method [13]. Consistency of motion estimates across groups of image has been
used in image registration to detect errors and improve accuracy [5]. However
such a strategy is too time-consuming for real-time applications.

We propose a different approach for assigning confidence measures, which is
independent from the motion estimation strategy and image modality, and is
based on the relationship between image similarity and estimated displacement
vectors. This method exploits the recurring similarities of both motion and image
appearance in pseudo-repetitive scenarios, like breathing. The aim is to keep the
tracking errors below 5 mm, to fulfill the clinical requirements for target margins
in radiation therapies [9]. Further reductions will facilitate to keep the overall
system error within this limit, when also having to incorporate spatio-temporal
motion prediction [12]. A strategy was devised to automatically determine the
required thresholds of the confidence values to stay within these limits.

2 Materials

We collected nine 2D US sequences of the liver of healthy volunteers under free-
breathing, from the same spatial location. In details, second harmonic B-mode
US sequences were acquired over 3-10 min, using a Siemens Antares scanner
(CH4-1 transducer, center frequency 1.82 - 2.22 MHz) [14]. These images (longi-
tudinal or intercostal planes) are characterized by spatial and temporal resolu-
tion ranging in [0.28, 0.71] mm and [14, 25] Hz, and size in [82632, 279300] pixels.
To explore the validity of the method independently of the image modality, we
gathered 2D MR sequences from 10 healthy volunteers under free-breathing.
These consisted of sagittal navigator slices, acquired at 2.6-3.4 Hz for 4D-MRI
[17]. The MRIs were captured using a balanced Steady State Free Precession
sequence (flip angle 70o, TR=3.1 ms) on a 1.5T Philips Achieva MR system.
Image resolution and size ranged in [1.29, 1.37] mm and [50176, 65536] pixels.
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Given a sequence of T 2D images I(t), with t ∈ [0, T − 1], the tracking objec-
tive is to compute the position of anatomical landmarks inside the liver (vessel
centers) Pj(t) ∈ R

2 in each image. ROIj,t̃(t) and dj(t) = Pj(t)−Pj(0) denote a

rectangular region of interest from I(t̃) centered in Pj(t) and the displacement
of the landmark with respect to the initial frame, respectively.

3 Method

We propose a novel, sequence-specific confidence measure to predict the reliabil-
ity of tracking results. The sequence-specific statistical relationship between the
image similarities and the feature displacements is learned from the first breath-
ing cycles. A confidence measure is then assigned to the tracking results during
the real-time application phase based on the relative closeness to the expected
values. The proposed measure was tested on the results of two tracking methods
and two image modalities: an automatic learning-based tracking algorithm for
US images; and a deformable registration for MRIs.

3.1 Tracking Algorithm

For US, we used the learning-based block matching algorithm (LB-BMA) pro-
posed in [3], which exploits the pseudo-repetitive nature of respiration. Dur-
ing an initial training phase of 10 breathing cycles the images are registered
and the relationship between the image appearance and the displacements is
learned. Image registration is performed non-iteratively by optimizing a local
affine transformation with respect to normalized cross-correlation (NCC). The
transformation is defined for ROIj,0(0), which is automatically extracted by
finding the blob-like feature centered at Pj(0) [3] and expanding it by 3 times
its size. The ROIj image appearance for the training set is efficiently stored
by dimensionality reduction via principal component analysis (PCA). For each
landmark in the real-time application phase, the most similar ROI from the
training set is selected based on the distance in the PCA space and used for
temporal alignment of the BMA. For previously unseen image variations (out-
liers), affine registration is performed to stay adaptive to non-periodic motions.
For tracking the MR slices we used the deeds registration method [7], which can
cope with sliding boundaries, is relatively fast (≈0.5 s per slice) for a deformable
registration and publicly available.

3.2 Confidence Measure

Independently from the tracking algorithm, the confidence measure is learned
from an initial set of Tin images I(t′) in a sequence, with t′ ∈ [0, Tin − 1], where
we extract the tracked position of J landmarks Pj(t

′). For each landmark, we
compute the magnitude of the Euclidean distances to the initial frame dj(t

′) =
||dj(t

′)|| and normalize it to the range of the distances from the Tin frames, d̄j(t
′).
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We also compute NCC between the initialROIj,0(0) and the same sized and posi-
tioned, non-transformedROI at t′, i.e.NCCj(t

′) = NCC(ROIj,0(0), ROIj,0(t
′)).

We collect all 2D data points Nj(t
′) = [d̄j(t

′), NCCj(t
′)] for the training data

and fit a polynomial curve F (c) =
∑n

i=0 αic
i of degree n ∈ {1, 2, 3} to the 5%-

95% of this distribution, with αi the estimated parameters and c the vector of
c(t′) = d̄j(t

′). Degree n is selected to minimize the sum of squared errors and
maximize the coefficient of determination of the fit, while avoiding zero-crossing
of the αi confidence bounds and hence overfitting. We also extract the 99%
confidence bounds (F 99(c)) of the fit via the Matlab fit function. An example
of F (c) is shown in Fig. 1.

For each Pj(τ) during the application phase (τ ∈ [Tin, T − 1]), we calculated
Nj(τ) = [d̄j(τ), NCCj(τ)] and find its projection to F (c) with minimum distance
pj(τ) = ||Nj(τ)−F (c∗)||, where c∗ = argminc||pj(τ, c)||. If the distance pj(τ) of
the data pointNj(τ) to F (c) is within the 99% confidence bounds and d̄j(τ) does
not exceed the observed d̄j(t

′) (to avoid extrapolation), the confidence measure
Cj(τ) ∈ [0, 1] is assigned according to the local 99% confidence as follows:

If pj(τ) < F 99(c∗) and d̄j(τ) ≤ maxt′ d̄j(t
′) do Cj(τ) = 1− 2pj(τ)/F

99(c∗)
else do Cj(τ) = 0

3.3 Evaluation

Quantitative evaluation of the tracking and the gated-tracking method was per-
formed on a total of 15 selected vessel centers inside the liver from the US data
and 20 from the MRIs. We randomly selected 10% of the application images
in each sequence and annotated the landmark position P̂j(t̂) corresponding to

Pj(0), and computed the tracking error TEj(t̂) = ||Pj(t̂)− P̂j(t̂)||. Results were
summarized by the mean (MTE), standard deviation (SD) and the 95th per-
centile (TE95) of the single distribution including all TEj(t̂) belonging to the

data subset. We also determined the motion magnitude Mj(t̂) = ||Pj(0)−P̂j(t̂)||.
The confidence values Cj(t) ∈ [0, 1] were divided into S = 20 intervals CIs =

[s, 1], with s ∈ {0, 0.05, 0.10, . . . , 0.95}. We computed S tracking errors based on
accepting results with confidence Cj(t) ∈ CIs. For each CIs we define its duty
cycle (DC) as the the ratio between the number of accepted tracking results (Tj,s)
and the total number of frames in the application phase: DCj = Tj,s/(T − Tin).

In order to select one confidence interval to apply during the application
phase to all sequences, we split the US data into two similar sized subsets for
training and testing. Subset SetUS

1 included 7 landmarks from 5 sequences and
subset SetUS

2 consisted of the remaining 8 points from 4 sequences. Similarly,
we annotated 2 vessel landmarks per MR sequence and selected alternately the
sequences in order of acquisition for the training and test set, e.g. training on
volunteers {1, 3, . . . , 9} (SetMR

1 ), testing on volunteers {2, 4, . . . , 10} (SetMR
2 ).

For the training data we selected s∗, which minimized the 95th percentile er-
ror (TE95

j,s∗) while keeping DCj,s∗ > 60%. During gated-tracking we considered
only the frames whose confidence values are within the selected interval CIs∗ .
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Fig. 1. (Top) example of confidence curve F (c) and 99% bounds F 99(c) obtained from
training data points (in black) for a representative sequence. (Bottom) example of
tracking results in ROIj,0 for 3 points with different confidence values, showing P (t1)
with similar NCC as P (t2), and P (t1) with similar distance d̄ as P (t3). The initial
image ROIj,0(0), with point-landmark P (0) in yellow, is shown as a reference.

Two experiments were conducted, where the role of the subsets as training and
test set was swapped to assess the sensitivity of the results to the data selection.

Finally, we compared the gated-tracking results to the ones of gating, where
we accepted tracking results with small displacement, i.e. dj(τ) < 3 mm.

4 Results

For US, we used 5 breathing cycles (260-453 frames) for Tin. The number of
application frames ranged in [2233, 14211]. The MTE±SD (TE95) for all land-
marks was 0.90±0.77 (2.04) mm. MTE ranged in [0.38, 2.34] mm, while the
TE95

j was in [0.90, 6.57] mm. For these landmarks the motion magnitude M
was 5.17±3.21 mm, and the 95th percentile was 10.59 mm. Fig. 1 shows the
relationship between motion and image similarity for (left) the initial phase and
(right) the application phase. It can be observed that some of the application
phase data falls outside the confidence region and will be discarded first. The
example images illustrate outliers with respect to motion and image similarity.

The overall 95th percentile errors in comparison to duty cycle values can be
seen for the training set on the left graphs in Fig. 2. The lowest TE95 in the
objective region was 1.91 mm (-24%) and 1.50 mm (-11%) for SetUS

1 and SetUS
2

respectively, see Table 1. Using the resulting s∗ for gated-tracking on the test
set provided the same TE95 reduction, while keeping overall duty cycle at 59%
and 68%. Gating results showed similar or worse TE95, but DC<47%.
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Fig. 2. 95th percentile of TE vs. duty cycle for (left) training set with determined
optimum confidence interval CIs∗ = [s∗, 1] and (right) test set with sequence-specific
curves (in colors) and indicated result for CIs∗ (circles).

Table 1. Summary of the results for the two US subsets (SetUS
1 and SetUS

2 ) used
interchanged as test and training set. Results of the TE are in mm, while DC is in %.

Gated-tracking Gated-tracking
Tracking trained on SetUS

1 trained on SetUS
2 Gating

CI = [0.20, 1] CI = [0.15, 1]

S
e
tU

S
1

MTE±SD 1.10±0.93 0.97±0.56 0.97±0.57 1.23±1.20
TE95 2.51 1.91 1.91 3.64
range MTEj [0.65, 2.34] [0.70, 1.55] [0.69, 1.58] [0.58, 3.14]
range TE95

j [1.18, 6.57] [1.19, 3.24] [1.18, 3.18] [1.07, 6.89]
DC 100 65.90 67.96 46.15
range DCj [100, 100] [31.82, 77.61] [33.66, 79.75] [15.30, 68.38]

S
e
tU

S
2

MTE±SD 0.73±0.54 0.62±0.44 0.63±0.45 0.62±0.47
TE95 1.68 1.49 1.50 1.52
range MTEj [0.38, 1.06] [0.33, 1.02] [0.33, 1.02] [0.35, 1.03]
range TE95

j [0.90, 3.04] [0.67, 2.00] [0.67, 2.18] [0.88, 2.28]
DC 100 58.57 61.06 38.02
range DCj [100, 100] [37.53, 76.66] [39.98, 79.21] [16.12, 53.72]

Due to the lower temporal resolution of the MRIs, we considered 25 breathing
cycles (Tin ∈ [141, 519] frames). The following 1160 frames (7 min) were used
for testing. For a mean motion amplitude of 5.63±5.12 mm, tracking results
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Table 2. Summary of MR results as in Table 1.

Gated-tracking Gated-tracking
Tracking trained on SetMR

1 trained on SetMR
2 Gating

CI = [0.35, 1] CI = [0.55, 1]

S
e
tM

R
1

MTE±SD 1.14±1.75 1.03±1.40 1.05±1.42 1.66±0.95
TE95 2.99 2.31 2.38 3.24
DC 100 81.12 64.56 41.24

S
e
tM

R
2

MTE±SD 0.96±0.91 0.90±0.74 0.88±0.70 1.63±0.87
TE95 2.21 2.07 1.95 3.17
DC 100 83.21 67.79 39.28

achieved an overall accuracy of 1.05±1.38 mm (TE95=15.69 mm). Similarly to
US, gated-tracking trained on the same subset resulted in an improvement of
the TE95 by 23% and 12% for SetMR

1 and SetMR
2 respectively, see Table 2. On

the test set, the 95th percentile error reduction was 20% and 6%, with overall
DC of 65% and 83%. Gating resulted in higher errors and lower DCs (≈ 40%).

The mean run-time of the confidence estimation is 0.2 ms/frame, with Matlab
implementation on a single PC with Intel R©CoreTMi7 CPU (2.66 GHz, 8 GB).

5 Conclusion

We proposed a method for estimating the confidence of tracking results for
pseudo-repetitive motion scenarios. It is based on learning the sequence-specific
relationship between image similarity and motion vectors, based on the assump-
tion that during the initial learning phase the tracking errors are low. The confi-
dence prediction is independent from the tracking method and image modality.
The actually applied confidence interval is decided based on training data. Tested
on US sequences, the method reduced 95th percentile errors by between 11% and
24% (to below 1.7 mm on average) while keeping duty cycle at 59% and 68%.
Similar results were obtained for the MR sequences, with a reduction of the 95th
percentile errors between 6% and 20% while keeping duty cycle at 65% and 83%.
For both scenarios, performance was improved by gated-tracking over gating.

In future work we will verify the method’s general applicability to other track-
ing algorithms and larger datasets. For slow varying drift of the target, we envi-
sion to update the learning phase. Integration of the estimated confidence values
in an overall motion prediction system is the long term plan to facilitate robust
and reliable therapy guidance.
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3. De Luca, V., Tschannen, M., Székely, G., Tanner, C.: Learning-based approach for
fast and robust vessel tracking in long ultrasound sequences. In: Mori, K., Sakuma,
I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I. LNCS, vol. 8149,
pp. 518–525. Springer, Heidelberg (2013)

4. Fontanarosa, D., van der Meer, S., Bamber, J., Harris, E., O’Shea, T., Verhaegen,
F.: Review of ultrasound image guidance in external beam radiotherapy. Phys.
Med. Biol. 60, R77 (2015)

5. Gass, T., Szekely, G., Goksel, O.: Detection and correction of inconsistency-based
errors in non-rigid registration. In: SPIE Medical Imaging, p. 90341B (2014)

6. Grabner, H., Leistner, C., Bischof, H.: Semi-supervised on-line boosting for robust
tracking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS,
vol. 5302, pp. 234–247. Springer, Heidelberg (2008)

7. Heinrich, M., Jenkinson, M., Brady, M., Schnabel, J.: MRF-based deformable reg-
istration and ventilation estimation of lung CT. IEEE Trans. Med. Imag. 32, 1239
(2013)

8. Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. IEEE Trans.
Pattern Anal. Mach. Intell. 34(7), 1409 (2012)

9. Keall, P.J., Mageras, G.S., Balter, J.M., Emery, R.S., Forster, K.M., Jiang, S.B.,
Kapatoes, J.M., Low, D.A., Murphy, M.J., Murray, B.R., Ramsey, C.R., Van Herk,
M.B., Vedam, S.S., Wong, J.W., Yorke, E.: The management of respiratory motion
in radiation oncology report of AAPM Task Group 76. Med. Phys. 33, 3874 (2006)

10. Kondermann, C., Mester, R., Garbe, C.S.: A statistical confidence measure for
optical flows. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III.
LNCS, vol. 5304, pp. 290–301. Springer, Heidelberg (2008)

11. Kybic, J., Nieuwenhuis, C.: Bootstrap optical flow confidence and uncertainty mea-
sure. Comput. Vis. Image. Und. 115, 1449 (2011)

12. McClelland, J., Hawkes, D.J., Schaeffter, T., King, A.P.: Respiratory motion mod-
els: a review. Med. Image Anal. 17, 19 (2013)

13. Patras, I., Hendriks, E.A., Lagendijk, R.L.: Probabilistic confidence measures
for block matching motion estimation. IEEE Trans. Circuits Syst. Video Tech-
nol. 17(8), 988 (2007)

14. Petrusca, L., Cattin, P., De Luca, V., Preiswerk, F., Celicanin, Z., Auboiroux, V.,
Viallon, M., Arnold, P., Santini, F., Terraz, S., Scheffler, K., Becker, C.D., Salomir,
R.: Hybrid Ultrasound/Magnetic Resonance Simultaneous Acquisition and Image
Fusion for Motion Monitoring in the Upper Abdomen. Invest. Radiol. 48, 333
(2013)

15. Roujol, S., Moonen, C., De Senneville, B.D.: Motion correction techniques for MR-
guided HIFU ablation of abdominal organs. Frontiers of Medical Imaging, 355
(2014)

16. Shirato, H., Shimizu, S., Kitamura, K., Onimaru, R.: Organ motion in image-
guided radiotherapy: lessons from real-time tumor-tracking radiotherapy. Int. J.
Clin. Oncol. 12, 8 (2007)

17. von Siebenthal, M., Szekely, G., Gamper, U., Boesiger, P., Lomax, A., Cattin, P.:
4D MR imaging of respiratory organ motion and its variability. Phys. Med. Biol. 52,
1547 (2007)

18. Simoncelli, E.P., Adelson, E.H., Heeger, D.J.: Probability distributions of optical
flow. In: Proc. IEEE Int. Conf. Comp. Vis Pattern Recognit., p. 310 (1991)

19. Van Herk, M.: Errors and margins in radiotherapy. Seminars in Radiation Oncol-
ogy 14, 52 (2004)


	Gated-tracking: Estimation of RespiratoryMotion with Confidence
	1 Introduction
	2 Materials
	3 Method
	4 Results
	5 Conclusion




