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Abstract. We propose an algorithm to distinguish 3D+t images of
healthy from diseased subjects by solving logistic regression based on
cardinality constrained, group sparsity. This method reduces the risk
of overfitting by providing an elegant solution to identifying anatomical
regions most impacted by disease. It also ensures that consistent identifi-
cation across the time series by grouping each image feature across time
and counting the number of non-zero groupings. While popular in medi-
cal imaging, group cardinality constrained problems are generally solved
by relaxing counting with summing over the groupings. We instead solve
the original problem by generalizing a penalty decomposition algorithm,
which alternates between minimizing a logistic regression function with
a regularizer based on the Frobenius norm and enforcing sparsity. Ap-
plied to 86 cine MRIs of healthy cases and subjects with Tetralogy of
Fallot (TOF), our method correctly identifies regions impacted by TOF
and obtains a statistically significant higher classification accuracy than
logistic regression without and relaxed grouped sparsity constraint.

1 Introduction

Identifying image phenotypes by automatically classifying 3D+t MRIs is popular
in medical image analysis, such as for cardiac motion [1,2] and brain develop-
ment [3,4]. Automatic classification is difficult due to the complex information
captured by MRIs coupled with small sample sizes of most MRI studies. Besides
avoiding overfitting, the image phenotypes extracted by the classifiers need to be
meaningful to clinicians. To address both issues, group sparsity constrained lo-
gistic regression models [5,6] first reduce the dense image information to a small
number of features by grouping image features via the l2-norm and counting the
number of non-zero groupings (l0 “norm”). The identified groupings then often
can be directly linked to specific anatomy or function. Motivated by [5,7], these
methods generally find a solution by relaxing the l0 “norm” to the sum over
the l2-norm values. However, this solution relates to the original sparse problem
only in specific conditions, e.g. compressed sensing [8], which generally do not
hold for medical image applications. We now propose an algorithm for solving
the logistic regression problem with the group cardinality constraint and show
on a data set of cine MRIs that it produces statistically significant better results
than the corresponding approach based on the relaxed norm .
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Specifically, we model consistency constraints of disease patterns across the
series of images via group sparsity, i.e. we group the weights associated with each
image feature across time and then apply the l0 “norm” to those groupings. We
find a solution within this model by generalizing Penalty Decomposition (PD) [9]
from solving sparse logistic regression problem with group size one to more than
one. In detail, we decouple the logistic regression function from enforcing the
group sparsity constraint by introducing a penalty term based on the Forbenius
norm. We minimize the smooth and convex logistic regression with the penalty
term via gradient descent and derive a closed form solution for the modified
group sparsity problem. We then find a local minimum of the original problem
by iteratively solving the two subproblems via block coordinate descent.

We apply our method to cine MRI of 40 patients with reconstructive surgery
of Tetralogy of Fallot (TOF) and 46 healthy volunteers, whose diagnosis we view
as ground truth. As the residual effects of TOF mostly impact the shape of the
RV [10], the regions impacted by TOF should not change across time, i.e. an
ideal test bed for our logistic regression approach. We encode each cine MRI by
first non-rigidly registering the image series to a 3D+t template, which divides
the left and right ventricle into subregions. For each of those regions, we then
record the average of the Jacobian determinant of the deformation map.

We measure the accuracy of our model via five-fold cross-validation. During
training, we automatically set all important parameters of our approach by first
creating a separate classifier for each setting of the parameter space. We then
reduce the risk of overfitting by combining those classifiers into a single ensemble
of classifiers [11], i.e. we compute a weighted average across the outputs of the
individual classifiers. As we will show later, the ensemble of classifiers correctly
favors subregions of the ventricles most likely impacted by TOF. Furthermore,
the accuracy of the ensemble of classifiers is statistically significant higher than
the outcomes obtained by relaxing and omitting group cardinality constraint, i.e.
the classical logistic regression model that keeps all regions for disease detection.

2 Solving Sparse Group Logistic Regression

Our aim is to train a classifier to correctly assign subjects to cohorts based on
their corresponding image data. To do so, we first describe the logistic regres-
sion model with group cardinality constraint. We then find a solution within
that model by generalizing the PD approach.
Model: We assume that our training set consists of N subjects that are repre-
sented by their corresponding diagnosis {b1, . . . , bN} and the encoding of 3D+t
medical images {Z1, . . . , ZN} with T time points. The value of bs ∈ {−1,+1}
depends on the subject ‘s’ being healthy (+1) or diseased (−1). The correspond-
ing feature matrix Zs := [zs1 zs2 . . . z

s
T ] ∈ R

M×T of that subject is composed of
vectors zst ∈ R

M encoding the tth frame with M features.
Next, we train the classifier on that data by solving the logistic regression

problem confined by group sparsity. To define the problem, we introduce the
variable As := bs · Zs for s = 1, . . . , N , the weight matrix W ∈ R

M×T defining
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the importance of each feature in correctly classifying 3D+t images, the trace of
a matrix Tr(·), the logistic function θ(y) := log(1 + exp(−y)), and the average
logistic loss function with respect to the label weight v ∈ R

lavg(v,W ) :=
1

N

N∑

s=1

θ
(
Tr(W�As) + v · bs

)
. (1)

Ignoring the time point associated with each feature, we now assume that the
disease is characterized by r ∈ N features, i.e. ‘r’ rows of the feature matrix Zs

subject to (s.t.) r ≤ M . Then the logistic regression problem with group sparsity
constraint is defined as

(v̂, Ŵ ) := argmin
v∈R,W∈RM×T

lavg(v,W ) s.t. ‖W̃‖0 ≤ r, (2)

where W̃ := (‖W 1‖2, . . . , ‖WM‖2)� groups the weight vectors over time as

W i := (W i
1 , . . . ,W

i
T ) is the i

th row of matrix W . Note, ‖W̃‖0 equals the number

of nonzero components of W̃ , i.e. the model accounts for the relationship of
the same features across all the time points. Intuitively, if the model chooses a
feature in one frame, the corresponding features in other frames should also be
chosen since the importance of a feature should be similar across time. Replacing
‖W̃‖0 with ‖W‖0 (or in the case of T = 1) results in the more common sparse
logistic regression problem, which, in contrast, chooses individual features of W
ignoring any temporal dependency, which is not desired for our application.

Algorithm:We find a local minimum to Eq. (2) by decoupling the minimization
of lavg(·, ·) from the sparsity constraint

X := {W ∈ R
M×T : W̃ := (‖W 1‖2, . . . , ‖WM‖2)� and ‖W̃‖0 ≤ r}.

Specifically, we approximate the sparse weights W ∈ X via the unconstrained
variable Y ∈ R

M×T so that Eq. (2) changes to

(v̂, Ŷ , Ŵ ) := argmin
v∈R,Y ∈RM×T ,W∈X

lavg(v, Y ) s.t. W − Y = 0. (3)

Denoting with � > 0 a penalty parameter and the matrix Frobenius norm with
‖ · ‖F , we solve Eq. (3) by generalizing PD proposed in [9] from enforcing the
cardinality constraint for group size T = 1 to T ≥ 1, i.e. we obtain a local
solution (v̂, Ŷ , Ŵ ) of the following nonconvex problem

min
v∈R,Y ∈RM×T ,W∈X

f(v, Y,W ) = lavg(v, Y ) +
�

2
‖W − Y ‖2F . (4)

Ascending � at each iteration, we use Block Coordinate Descent (BCD) to de-
termine the solution by alternating between minimizing Eq. (4) with fixed W
and by fixing v and Y . When W is set to W ′, finding the minimum with respect
to v and Y turns into a smooth and convex problem

(v′, Y ′) ← argmin
v∈R,Y ∈RM×T

{
lavg(v, Y ) +

�

2
‖W ′ − Y ‖2F

}
, (5)
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which can be solved via a gradient descent. In turn, minimizing the objective
function just with respect to W , i.e.

W ′ ← argmin
W∈X

‖W − Y ′‖2F , (6)

can now be solved in closed form. We derive the closed form solution by assum-
ing (without loss of generality) that the rows of Y ′ are nonzero and listed in
descending order according to their l2-norm, i.e. let (Y ′)i be the ith row of Y ′

for i = 1, . . . ,M then ‖(Y ′)1‖2 ≥ ‖(Y ′)2‖2 ≥ . . . ≥ ‖(Y ′)M‖2 > 0. It can then
be easily shown (see 1) that W ′ is defined by the first ‘r’ rows of Y ′, i.e.

(W ′)i =
{
(Y ′)i, if i ≤ r;
0, otherwise,

for i = 1, . . . ,M. (7)

In theory, the global solution derived above is not unique for Eq. (6), which we
have not experienced in practice. One can also prove (similar to [9]) that the
method converges with respect to � → +∞ to a local minimum of Eq. (2).

3 Characterizing TOF Based on Cine MRIs

We apply our approach to cine MRIs of 40 TOF cases and 46 healthy controls. We
choose this dataset due to the ground-truth diagnosis, i.e. each subject received
reconstructive surgery for TOF during infancy or not. Furthermore, refining the
quantitative analysis of these scans could lead to improved timing for follow-up
surgeries in TOF patients. Finally, the assumption of our group sparsity model,
i.e. the features extracted from each time point of the image series are sample
descriptions of the same phenomena, fits well to this dataset. As we describe
next, the features of this experiment are deformation-based shape encodings of
the heart. As the residual effects of TOF reconstructive surgery mostly impact
the shape of the right ventricle [10], our encoding should capture differences
between the two groups in the same heart regions across time. We not only show
that this is the case but our approach defined by Eq. (2) achieves significantly
higher accuracy than logistic regression with relaxed sparsity constraints, i.e.
given the sparse regularizing parameter λ solving

min
v∈R,W∈RM×T

lavg(v,W ) + λ

M∑

i=1

‖W i‖2, (8)

and without sparsity constraints, i.e., λ = 0. Note we omit comparison to imple-
mentations replacing the l2-norm in Eq. (8) with the l1-norm since the resulting
regularizor ignores consistency of the features across time. In other words, the
regions identified by those approaches most likely have no relevance with respect
to TOF, whose residual effects should be consistent across time.

Extract Image Feature: All 86 cine MR scans are defined by 30 time points.
Each time point of a cine MRI is represented by a 3D image and a semi-
automatically segmented label map of the right ventricular blood pool (RV)

1 http://www.stanford.edu/~yzhang83/MICCAI2015_supplement.pdf

http://www.stanford.edu/~yzhang83/MICCAI2015_supplement.pdf
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Fig. 1. Example of partitioning the template at different time points (T1 to T25) of
the heart cycle. Each section of the RV is subtended by 9◦ and by 18◦ for the LV.

and the myocardium of the left ventricle (LV). Based on those segmentations,
we omitted non cardiac structures from the scans and corrected each scan for
image inhomogeneity and slice motion [12]. Next, we randomly choose the first
time point of a healthy subject as a template and rigidly registered each case to
the template. We encode the shape of the RV and LV by non-rigidly registering
(via Demon’s approach [13]) each time point of the remaining 85 scans to the
template. We then compute the Jacobian determinant of the deformation maps
[14]. We confine the determinant maps to the LV segmentations and for the RV
reduce the maps to a 7mm band along its boundary, which is similar to the
width of the LV myocardium. We also parcellate the RV and LV into smaller
regions by first computing its corresponding mass center and then sectoring it
into region of interests by the subtended angles as shown in Fig. (1). We finalize
our shape descriptor by mapping the refined Jacobians into the template space
and computing their average value with respect to individual sections. The size
of the sections are defined with respect to degrees.

Measure Accuracy: We measure the accuracy of our approach via five-fold
cross validation. We define the parameter space of the smoothness parameter
p = {0, 0.5, . . . , 5.0} of the Demon’s algorithm, the subtended angle d = {45◦,
36◦, 30◦, 24◦, 20◦, 18◦, 15◦, 12◦, 10◦, 8◦, 6◦, 5◦, 4◦} of each section of the LV and
RV, and the sparsity constraint r ∈ {5, 10, . . . , 50}, i.e. the number of average
regional values chosen by our approach. Note, that we choose such a broad
parameter space to allow for a fair comparison with other logistic regression
models. For each parameter setting, we specify a regressor by computing the
optimal weights Ŵ with respect to training data. We do so by initializing the
penalty parameter ρ at 0.1 and increase ρ by a factor of

√
10 at each PD iteration

until convergence, i.e., ‖Ŵ − Ŷ ‖2F ≤ 10−3 · f(v, Ŷ , Ŵ ). We also compute its
training accuracy with respect to correctly assigning cine MRIs to each patient
group. We account for the imbalance in cohort size by computing the normalized
accuracy (nAcc), i.e. we separately compute the accuracy for each cohort and
then average their values. On our dataset, parameter exploration on the training
set resulted in multiple settings with 100% training accuracy. We therefore cross-
validate a classifier based on training a single ensemble of classifiers [11]. We do
so by treating the training nAcc score of a regressor as its weight in the decision
of the ensemble of classifiers. In other words, the final label is then determined
by the weighted average across the set of regressors, all of whom have different
parameter settings. We also refer to this ensemble of classifier as l0-Grp. Fig. (2)
shows the weight of each region according to the l0-Grp across time. We notice
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Fig. 2. Regions weighted by importance according to the proposed l0-Grp approach.
The sparsity constraints correctly identified the RV (left side) and specifically the right
ventricular outflow tract (the regions where RV and LV meet) as important markers
for identifying the residual TOF effects.

that the weights are fairly consistent across time due to the group sparsity term.
In addition, the maps correctly point out (in red and yellow) the importance of
the RV (left side) and more specifically the right ventricular outflow tract (the
area where RV meets the LV) in identifying TOF.

Alternative Models: For comparison, we also generated an ensemble of logistic
regression classifiers omitting the sparsity constraint (called No-Grp) and one
by relaxing the group cardinality constraint (called Rlx-Grp) as defined by Eq.
(8) [15]. These ensembles of classifiers used the same parameter space for the
smoothness parameter p and the subtended angle d of each section. For Rlx-Grp,
the sparsity parameter λ of Eq. (8) was automatically set so that the number of
chosen group features were similar to the group cardinality, i.e. {5, 10, . . . , 50}.
We applied each ensemble implementation to the dataset of just the LV, RV,
and both ventricles.

Classification Results: The accuracy scores in % of all three ensembles are
listed in Table 1 with respect to the encoding of the LV, RV, and both ventricles
(LV&RV). Scores in bold represent results, which are significantly better (p-value
< 0.05) than those of the other two methods. We compute the p-value based on
the DeLongs Test [16] of the methods’ ROC curves.

All three methods have similar accuracy scores for the LV (around 74.5%). As
expected, the accuracy scores of all methods improve (by at least 9.9%) when
the classification is based on the RV. The scores further improve for No-Grp and
l0-Grp by including both ventricles in the analysis. The increase in the score
of l0-Grp is explained by looking at the weight map of LV&RV in Fig. (3) (a),
which, compared to the map of RV only in Fig. (3) (b), also highlights part of
the LV. The impact of TOF on the LV was also recently echoed by [10].

Not only does the proposed l0-Grp achieve the overall best score with 94% but
the scores involving the RV are significantly better than those of the other two
methods (p-values ≤ 0.036). While these results further validate the proposed
group cardinality constraint model for logistic regression, the relatively poor
accuracy scores by Rlx-Grp is somewhat surprising (84.7%). Comparing the
regional weight maps of the two approaches (see Fig. (3) (a) + (d)), the map of
Rlx-Grp mostly ignores the RV failing to identify regions impacted by TOF. It
not only explains the relatively low score but further highlights the superiority of
the group cardinality over the l2-norm relaxation with respect to this experiment.
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(a) l0-Grp (b) l0-Grp (c) l0-Grp (d) Rlx-Grp
RV&LV RV only 1st TP only RV&LV

Fig. 3. Regions of the first time point weighted by importance according to different
implementations: l0-Grp based on RV&LV (a), just based on the RV (b), based only
on the first time point (c), and l0-Grp based on RV&LV (d). Note, implementations
putting more emphasis on the RV (a+b) are those with the higher accuracy scores.

Table 1. Accuracy scores (nAcc) in % of No-Grp, Rlx-Grp, and our proposed model
(l0-Grp). As expected, all methods achieve higher accuracy scores based on RV encod-
ing vs. LV encoding. Including both ventricles in the analysis, leads to higher accuracy
scores for No-Grp and the proposed l0-Grp. The bold accuracy scores of l0-Grp are
significantly higher (p-value < 0.05) than the other two implementations, which was
the case for the two experiments including the RV.

LV RV LV&RV

No-Grp 74.5 85.1 86.2
Rlx-Grp 74.8 84.7 83.8
l0-Grp 74.1 91.8 94.0

To study the importance of the group-sparsity over just sparsity, we confined
l0-Grp to the first time point, i.e. reducing the sparsity term to the cardinality
constraint without group constraint. The accuracy of l0-Grp dropped for all three
experiments by a minimum of 4.5%. The weight map in Fig. (3) (c) reveals the
reason for the drop in accuracy as it puts less emphasis on the RV. Furthermore,
its scores are now similar to those of No-Grp (less than 2.5% difference). We
therefore conclude that the l0 group sparsity takes proper advantage of the repeat
samples of the same disease patterns provided by the image time series.

4 Conclusion

We proposed an algorithm for solving logistic regression based on the group
cardinality constraint. Unlike existing approaches, our algorithm did not relax
the l0-norm regularizer but instead used penalty decomposition to solve the
original problem. Applied to 86 cine MRIs of healthy cases and subjects with
TOF, our method not only correctly identified regions impacted by TOF but
also obtains statistically significant higher classification accuracy than logistic
regression without and with relaxed group sparsity constraints.
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