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Abstract. Non-invasive characterization of water molecule’s mobility
variations by quantitative analysis of diffusion-weighted MRI (DW-MRI)
signal decay in the abdomen has the potential to serve as a biomarker in
gastrointestinal and oncological applications. Accurate and reproducible
estimation of the signal decay model parameters is challenging due to
the presence of respiratory, cardiac, and peristalsis motion. Independent
registration of each b-value image to the b-value=0 s/mm2 image prior to
parameter estimation might be sub-optimal because of the low SNR and
contrast difference between images of varying b-value. In this work, we
introduce a motion-compensated parameter estimation framework that
simultaneously solves image registration and model estimation (SIR-ME)
problems by utilizing the interdependence of acquired volumes along the
diffusion weighting dimension. We evaluated the improvement in model
parameters estimation accuracy using 16 in-vivo DW-MRI data sets of
Crohn’s disease patients by comparing parameter estimates obtained us-
ing the SIR-ME model to the parameter estimates obtained by fitting
the signal decay model to the acquired DW-MRI images. The proposed
SIR-ME model reduced the average root-mean-square error between the
observed signal and the fitted model by more than 50%. Moreover, the
SIR-ME model estimates discriminate between normal and abnormal
bowel loops better than the standard parameter estimates.

Keywords: Diffusion-weighted imaging, abdomen, motion compensa-
tion, Crohn’s disease, block matching registration.

1 Introduction

DW-MRI enables characterization of the tissue microenvironment by measuring
variations in the mobility of water molecules due to cellularity, cell membrane
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integrity, and the compartment in which water molecules are located (intravascu-
lar, extracellular, or intracellular spaces) [1]. The water molecule mobility leads
to attenuation in the diffusion signal, which is measured at multiple b-values.
The signal decay at high b-values associated with the slow-diffusion component
reflects water molecules’ mobility in the tissue and the decay at low b-values as-
sociated with the fast-diffusion component reflects micro-capillaries’ blood flow.
Combined with an appropriate model, the variations in both fast and slow dif-
fusion between normal tissue and regions with pathology can be quantified.

Quantitative DW-MRI has been increasingly used for various diseases of ab-
dominal organs including spleen, liver and bowel [1,2,3]. Recently, a more accu-
rate probabilistic model with a spatial homogeneity prior have been proposed [4]
to increase the robustness and reproducibility of parameter estimation in low
signal-to-noise ratio (SNR) DW-MRI images. However, respiratory, cardiac and
peristalsis motion still pose a challenge to robust and reproducible parameter
estimation and reduces enthusiasm for using abdominal DW-MRI for diagnostic
purposes. A possible solution is to acquire images using breath-holding, gating,
respiratory or cardiac triggering. These techniques have disadvantages, and they
do not entirely correct for motion. For example, breath holding only allows for a
short scan time window at each breath hold, which is not enough to acquire all
b-value images at once. It also requires the cooperation of the imaged subject,
which is not practical for pediatric patients. Triggering and gating increase scan
duration and do not always perform well due to varying breathing pattern.

Another possible solution is to use post-processing techniques based on image-
registration algorithms to bring the volumes acquired at different b-values into
the same physical coordinate space before fitting a signal decay model [5]. How-
ever, each b-value image has different contrast and therefore independent reg-
istration of different b-value images to a b=0 image may not be very accurate,
especially for high b-value images where the signal is significantly attenuated.
Incorporating additional information may improve the registration performance.

A unique feature in DW-MRI in particular, and in parametric imaging tech-
niques in general, is the interdependence of acquired volumes along the fourth
parametric dimension, which is the diffusion weighting dimension in the case of
DW-MRI. The images at each b-value are related to each other through a signal
decay function which models the signal as a function of the b-value used to ac-
quire the image. This interdependence can be exploited as an additional source
of information that can be utilized for improved image alignment.

In this work, we introduce a motion-compensated parameter estimation
framework that simultaneously solves image registration and model estimation
(SIR-ME) problems by utilizing the interdependence of acquired data along the
diffusion weighting dimension. The proposed SIR-ME solver jointly estimates
transformations between images for alignment, reconstructs high SNR regis-
tered diffusion images and estimates the signal decay model parameters from
these images.

We evaluated the improvement in parameter estimation accuracy obtained
with the SIR-ME model on DW-MR datasets of 16 patients with Crohn’s disease.
We compared the root-mean-square error (RMSE) of the SIR-ME parameter
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estimates to the RMSE of the parameter estimates obtained with fitting to:
1) the original non-registered DW-MRI data, and; 2) the independently regis-
tered DW-MRI data. The proposed method reduced parameter estimation error
by more than 50% compared to parameters estimated without using registration.
We also demonstrated potential clinical impact by assessing group differences be-
tween normal and inflamed bowel loops of the same patient cohort. The SIR-ME
parameter estimates were more precise with smaller in-group standard deviation
and a better discrimination power between inflamed and normal bowel loops.

2 Methods

2.1 Simultaneous Image Registration and Model Estimation
(SIR-ME) for Motion Compensated DW-MRI Parameter
Estimation

In abdominal DW-MRI, we acquire images at multiple (i = 1..N) b-values.
We then select a signal decay model to estimate the decay rate parameters by
fitting that model to the measured signal. The signal decay model proposed
by Le Bihan et al. [6] called the intra-voxel incoherent motion (IVIM) model
assumes a bi-exponential signal decay function (g(Θ, i)) of the form:

g (Θ, i) = S0 (f exp (−bi(D +D∗)) + (1− f)(exp(−biD))) , (1)

where g(Θ, i) is the expected signal at b-value bi, Θ = {s0, f,D∗, D} are the
IVIM model parameters describing the baseline signal (S0); the fast diffusion
fraction coefficient (f); the fast diffusion coefficient (D∗), characterizing the
fast diffusion component related to blood flow in micro-capillaries; and the slow
diffusion coefficient (D) associated with extravascular water.

We estimate the parameters by solving a maximum-likelihood estimation
problem. The measured signal DW-MRI (Si) is a sum of the signal component
and the noise component. When the non-central χ-distributed parallel imag-
ing acquisition noise is approximated by a Gaussian in the maximum likelihood
estimator, the following least-squares minimization problem is obtained:

Θ̂ = argmin
Θ

N∑

i=1

(Si − g(Θ, i))
2
, (2)

where g (Θ, i) is given by Eqn. 1.
However, the inherent low SNR of each b-value image may introduce error

to the parameter estimates. To improve the SNR before model fitting, multiple
DW-MRI signals (S

′
i,j) are acquired at different gradient directions (j = 1..M) at

the same b-value (bi). An improved SNR image (Si) is then estimated from these
multiple acquisitions at each b-value. Formally, we obtain a maximum-likelihood
estimate of the underlying DW-MRI signal (Si) by assuming a normal distribu-
tion of S

′
i,j ’s around Si, and minimizing the following least-squares problem:

Ŝi = argmin
Si

M∑

j=1

(Si − S
′
i,j)

2 (3)
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We find the underlying signal (Ŝi) by simply averaging the multiple gradient

directions (Ŝi =
1
M

∑M
j=1 S

′
i,j) at each b-value i assuming isotropic diffusion.

However, in the presence of motion, measured images (S
′
i,j) are not spatially

aligned and therefore cannot be directly averaged. One solution is independently
registering each low SNR image (S

′
i,j) to a reference image, which is usually

chosen to be the high SNR b=0 s/mm2 image (S0) before averaging the low
SNR images and then estimating the model parameters by fitting the model to
the average of the registered images at each b-value. However, registration of high
b-value images to a b=0 s/mm2 image is challenging due to contrast differences
between these images and the even lower SNR of high b-value images.

Instead, we introduce a motion compensated parameter estimation framework
that simultaneously solves image registration and model estimation (SIR-ME)
problems by utilizing the interdependence of volumes in the acquired data along
the fourth parametric dimension, i.e. diffusion weighting dimension as an addi-
tional term in the cost function. Our joint formulation is then given by:

[Ŝ, Θ̂, T̂ ′, T̂ ] = argmin
S,Θ,T,T ′

N∑

i=1

M∑

j=1

(Si − T
′
i,j ◦ S

′
i,j)

2 +

N∑

i=1

(Ti ◦ Si − g(Θ, i))2 (4)

where (S
′
i,j) is the low SNR measured image, Si is the noisy high SNR image

template and g(Θ, i) is the expected signal at b-value bi given the signal decay
model parameters Θ, T

′
i,j is the transformation between the observed image S

′
i,j

and the high SNR image at bi, and Ti is the transformation between Si and S0.
The first term in this cost function is used to reconstruct the high SNR images

from registered low SNR images and the second term is the signal decay model
fitting prior. When solving this equation, the expected signal, g(Θ, i)), is depen-
dent on the parameters of the signal decay model (i.e. Θ) and transformations

T̂ ′ , T̂ which are unknown. Therefore, we cannot optimize this equation directly.
Instead, we solve it as a simultaneous optimization problem, where registration,
reconstruction of the high SNR DW-MRI images and estimation of the signal
decay model parameters are iteratively performed.

2.2 Optimization Scheme

We solve Eq. 4 by iteratively estimating the signal decay model parameters Θ
and transformation T

′
given the current estimate of the signal S and T , and

estimating the signal S and transformation T , given the current estimate of the
model parameters Θ and T

′
. We describe these steps in detail next.

Signal Decay Model (Θ) Estimation:We use the spatially constrained prob-
ability distribution model of slow and fast diffusion (SPIM) [4] to robustly esti-
mate the fast and slow diffusion parameters of the signal decay model Θ. Given
the current estimate of the DW-MRI signal St and transformation T t at iteration
t, the model parameter Θt+1 is obtained by minimizing:
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Θ̂t+1 = argmin
Θ

N∑

i=1

(T t
i ◦ St

i − g(Θ, i))2 +
∑

vp∼vq

ψ(Θvp , Θvq ) (5)

where ψ(·, ·) is the spatial constraint given by:
ψ(Θvp , Θvq ) = αW |Θvp −Θvq | (6)

and α ≥ 0 is the spatial coupling factor, W is a diagonal weighting matrix
which accounts for the different scales of the parameters in Θ and vp, vq are the
neighboring voxels according to the employed neighborhood system.

We estimated the model parameters Θ by minimizing Eq. 5 using the “fusion
bootstrap moves” combinatorial solver introduced by Freiman et al. [7] and
applied in Kurugol et al. [4] to solve the SPIM model.

Estimation of Transformation T
′
i,j: Given the current estimate of expected

signal from the signal decay model g(Θ, i), we solve the registration problem

and compute the transformation T
′t+1
i,j that aligns each low SNR acquired image

S
′
i,j to g(Θ, i) at each b-value i. We apply the block matching based non-rigid

registration algorithm proposed by Commowick et al. [8], using cross-correlation
as a measure of intra b-value image similarity.

Reconstruction of High SNR DW-MRI Signal Si: In this step we update

Si given the current estimate of T
′t+1
i,j from the registration step. We minimize

Eq. 4 to get the next estimate of the signal St+1.

Estimation of Transformation Ti: We finally estimate transformation T t+1
i

to align each reconstructed high SNR template image (Si) to b=0 s/mm2 image
(S1) to correct for the remaining misalignments between multiple b-value images.
Inter b-value alignment is more accurate at this stage since Si images have higher
SNR than S

′
i,j images even for high b-values. We use the same block-matching

registration algorithm for inter b-value registration but replace the similarity
measure with squared cross correlation.

We initialize the algorithm with the acquired DW-MRI data as the current
estimate of the signal after application of an initial registration algorithm. We
then iteratively alternate between estimating the model parameters, estimation
of transformations for registration and estimating the high SNR DW-MRI signal
until the change in the model parameter estimations is negligible. The steps of
the optimization algorithm are summarized in Table 1.

3 Results

We have tested the performance of the proposed model in DW-MRI data of 16
Crohn’s Disease patients. The images were acquired using a 1.5-T scanner (Mag-
netom Avanto, Siemens Medical Solutions) with free-breathing single-shot echo-
planar imaging using the following parameters: repetition/echo time (TR/TE)=
7500/77ms; matrix size=192x156; field of view=300x260 mm; slice thickness/gap
= 5mm/0mm; 40 axial slices; 7 b-values = 0,50,100,200,400,600,800 s/mm2 with
1 excitation, 6 gradient directions; acquisition time = 5.5 min.
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Table 1. SIR-ME optimization algorithm

Input: S′
i,j : measured signal at b-value i and gradient j.

Output: Θ ← Θt+1 : final parameter values after tth iteration

Initialize: An initial registration to estimate T
′1
i,j and T 1

i is applied.

Step 1. Estimate signal decay model parameters Θ:

Given the current estimate of the high SNR signal St and transformation T t,

estimate model parameters Θt+1 by minimizing Eq. 5.

Step 2. Estimate transformation T
′
i,j :

Given the current estimate of expected signal g(Θ, i), solve the registration problem

and compute the transformation T
′t+1
i,j that aligns each S

′
i,j to g(Θ, i) at each

b-value i using the block matching non-rigid registration algorithm [8].
Step 3. Estimate high SNR template image at b-value i, Si, i = 1..N

Given the current estimate of parameters T
′t+1
i,j ,

compute the high SNR template signal St+1
i by minimizing Eq. 4.

Step 4. Estimate transformation Ti

Estimate transformation T t+1
i to align each b-value high SNR image (St+1

i )
to b=0 s/mm2 image using the same block-matching registration algorithm.
Go back to Step 1 until convergence.

A region of normal bowel wall and a region of inflamed bowel wall with active
Crohn’s disease identified in Gd-DTPA contrast enhanced images were delin-
eated on DW-MRI images of each subject by an expert radiologist.

We computed the average RMSE between the measured signal (Si) and the
signal of fitted model (g(Θ, i)) in both normal and inflamed bowel regions to
evaluate the effect of motion-compensation on parameter estimation accuracy.
Fig. 1 a) and b) compares the RMSE using no registration, independent registra-
tion and SIR-ME. The mean error computed over inflamed bowel regions of all
subjects reduced from 12.39± 8.01 to 6.66± 2.91 with registration, and further
reduced to 5.63 ± 2.57 with SIR-ME. The error in normal-looking bowel walls
reduced from 12.23 ± 5.54 to 7.77 ± 3.17 with registration and further reduced
to 6.27 ± 2.42 with SIR-ME. While the independent registration decreased the
RMSE in average, it increased the RMSE for some cases. SIR-ME model was
consistent and performed either equally well or better in all of the cases. A repre-
sentative signal decay curve plotted in Fig. 1 c) shows the reduction in error using
the SIR-ME model. Fig. 2 b) shows an image region plotted for b-values from
0 to 800s/mm2. The image intensity decays smoothly with increasing b-values
when SIR-ME model is used, compared to original signal w/o registration.

We also compared the performance of estimated parameters in differentiating
normal and inflamed bowel regions. In Table 3, the mean values of the param-
eters for normal and inflamed bowel regions, computed using no registration,
independent registration, and SIR-ME model, are listed. These results demon-
strated that the proposed SIR-ME model estimated f and D parameters with
greater precision and lower intra-group standard deviation compared to the other
two models. Moreover, we observed an increased statistically significant differ-
ence between the two groups using the SIR-ME model compared to other two
models, which indicates a better discrimination power. We also trained Naive
Bayes classifiers for D and f parameters independently, and obtained the clas-
sification errors of 0.41 w/o registration, 0.28 with registration and 0.15 with
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Fig. 1. Average RMSE between DW-MRI signal and signal of fitted model compared
for 1) without registration, 2) with registration, and 3) with simultaneous image reg-
istration and motion estimation (SIR-ME) are plotted for a) normal and b) inflamed
bowel regions in 16 patients. c) Signal decay plot for one voxel from an inflamed region.

Fig. 2. a) shows a sample b=0mm2/s image region. The white rectangle shows a
selected image column that is plotted for increasing b-values in b) for w/o-registration,
with registration and with SIR-ME images. SIR-ME method successfully compensates
for motion and results in smoothly decaying intensities in b-value direction.

SIR-ME using D parameter; 0.28 w/o registration, 0.28 with registration and
0.15 with SIRME using f parameter. These results showed that SIR-ME model
achieved the best classification accuracy for both f and D parameters.

4 Conclusions

Abdominal DW-MRI enables characterization of tissue microstructure of patho-
logical regions such as inflamed bowel in Crohn’s disease. The presence of motion
and low SNR reduces the accuracy and reproducibility of parameter estimates
and prevents more extensive clinical utility. In this work, we introduced a motion-
compensated parameter estimation framework that simultaneously solves image
registration and model estimation (SIR-ME) problems by utilizing the inter-
dependence of acquired volumes along the diffusion weighting dimension. Our
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Table 2. Comparison of parameters estimated without registration, with independent
registration and with SIR-ME models for normal and Crohn’s disease bowel regions

Normal bowel regions Inflamed bowel regions
parameter mean ± sd mean ± sd p-value

D
w/o reg 1.56 ± 0.92 0.98 ± 0.62 0.04

with reg 1.99 ± 0.59 1.25 ± 0.47 5x10−4

SIR-ME 2.15 ± 0.33 1.45 ± 0.26 3x10−7

f
w/o reg 0.65 ± 0.23 0.47 ± 0.23 0.03
with reg 0.57 ± 0.18 0.35 ± 0.20 0.003

SIR-ME 0.56 ± 0.16 0.28 ± 0.11 2x10−6

D*
w/o reg 24.51 ± 16.60 32.75 ± 50.97 0.54
with reg 31.34 ± 19.31 64.88 ± 62.98 0.05
SIR-ME 38.03 ± 21.17 57.55 ± 59.99 0.23

experiments on 16 Crohn’s disease patients showed that the SIR-ME method re-
duced the model fitting error by more than 50% compared to the errors obtained
from non-registered original DW-MRI images. We demonstrated potential clin-
ical impact by evaluating group differences between normal and inflamed bowel
loops. The parameters obtained with the SIR-ME model had lower intra-group
standard deviation and a better discrimination power compared to parameter
estimates obtained without any registration and with independent registration.
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