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Abstract. Longitudinal studies are very important to understand cere-
bral structural changes especially during the course of pathologies. For
instance, in the context of mental health research, it is interesting to eval-
uate how a certain disease degenerates over time in order to discriminate
between pathological and normal time dependent brain deformations.
However longitudinal data are not easily available, and very often they
are characterized by a large variability in both the age of subjects and
time between acquisitions (follow up time). This leads to heterogeneous
data that may affect the overall study. In this paper we propose a learn-
ing method to deal with this kind of heterogeneous data by exploiting
covariate measures in a Multiple Kernel Learning (MKL) framework.
Cortical thickness and white matter volume of the left middle temporal
region are collected from each subject. Then, a subject-dependent kernel
weighting procedure is introduced in order to obtain the correction of
covariate effect simultaneously with classification. Experiments are re-
ported for First Episode Psychosis detection by showing very promising
results.

Keywords: Support Vector Machines, Multiple Kernel Learning,
Longitudinal study, First Episode Psychosis.

1 Introduction

The analysis of anatomical variability over time is a relevant topic in neuroimag-
ing research to characterize the progression of a certain disease [8]. The overall
aim is to detect structural changes in spatial and time domains that are able
to differentiate between patients and healthy controls. To this end, longitudi-
nal studies are considered where the same subject is observed repeatedly at
several time points [4]. In the simplest scenarios only two time points are de-
fined, namely baseline and follow up. In this fashion a classification method, like
Support Vector Machine (SVM) [18], can be designed for each time point and,
more interestingly, for the differential degeneracy measurements to evaluate how
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the dynamics of the observed features may change across the populations (i.e.,
patients and controls). Unfortunately, a relevant issue in longitudinal studies
is the lack of reliable datasets. In many cases collected data are heterogeneous
due to the large variability of the considered population. In particular, there are
different factors that may contribute to brain deformations such as gender, age,
follow up time, and so on. In general, these factors are considered as nuisance
variables that cause a dispersion of the observed values (i.e., the main variable)
by possible affecting the final analysis result [15]. For instance, in brain classi-
fication if the volume reduction is dependent on both the analysed disease and
the age of subject, it may be difficult to discriminate between a young patient
and an elderly control. A common approach to deal with this problem con-
sists of introducing some correction procedure based on statistical regression.
As an example the Generalized Linear Model (GLM) [13] can be employed to
predict and remove the effect of the confounding covariates. In general this pro-
cedure is carried out as a pre-processing before classification. In this paper our
intent is to integrate the data correction into the learning phase by defining a
classification model that explicitly takes into account of the nuisance covariates.
We exploit Multiple Kernel Learning (MKL) as a powerful and natural approach
to combine different sources of information [7] that has already been successfully
applied in the neuro-imaging field [2,8]. The main idea behind MKL methods
[1,7] is to learn an optimal weighted combination of several kernels while simul-
taneously training the classifier ([7]). In general, each kernel is associated to a
specific feature and their combination is carried out aiming at exploiting interde-
pendent information from the given features. In this work, we propose to adapt
the standard MKL formulation to enable the correction of the covariate effect
in the kernel space by overcoming the hypotesis of linear progression. We show
that this approach leads to a subject-specific kernel weighting scheme where each
weight is locally dependent on the subject covariate. A similar strategy is known
in literature as localized kernel learning [6,7] where the idea consists of assigning
different weights to a kernel in different regions of the input space. We evaluate
our method to improve the classification performance of longitudinal study [4]
to automatically detect First Episode Psychosis (FEP) [10,17]. Research on the
first stages of psychosis is very important to understand the causes of the disease,
excluding the consequence of chronicity and treatment on the study outcomes. In
our study we evaluate the brain variation by analysing several cortical features,
namely the volume and the surface thickness [3,5]. In our paper we focus on
the middle temporal region since it is already known its relation with psychosis
[10,17]. We considered as confounding covariate the age of subjects since in our
population the span of age is quite large and heterogeneous. For each subject two
MRI scans are available, i.e., baseline and follow up. Classification is carried out
for the two time points, and for the differential values of volume and thickness.
In the latter experiment the follow up time is considered as covariate together
with the age. Experiments show promising results by reporting a clear improve-
ment when covariates are integrated in the learning phase. Moreover our study
evidences that also brain deformation over the time can be used to discriminate
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between patients and controls by confirming the idea that speed of structural
changes is faster in mental disorders.

2 CO-MKL: Multiple Kernel Learning with Covariate

2.1 Background

The overall idea of kernel methods is to project non-linearly separable data into a
higher dimensional space where the linear class separation becomes feasible [18].
Support Vector Machine (SVM) is an example of discriminative classifier belong-
ing to this class of methods for binary classification problems. Given a training
set of N samples {(xi, yi)}Ni=1 where xi ∈ Rd is a vector of the input space and
yi ∈ {−1,+1} is the sample class label, SVM finds the best discriminative hy-
perplane in the feature space according to the maximum margin principle [18].
Therefore, after training, the discriminative function is defined as:

f(x) =

N∑

i=1

αiyi〈Φ(xi), Φ(x)〉+ b, (1)

where Φ is the mapping function, and αi are the dual variables. Considering
the so called “kernel trick” the dot product in Equation 1 is replaced by a
kernel function k(xi,x) = 〈Φ(xi), Φ(x)〉. Several kernel functions can be defined
such as the linear kernel, the polynomial kernel, and the Gaussian Radial Basis
Function (RBF) kernel. An interesting extension of SVMs is represented by
Multiple Kernel Learning (MKL) methods[7], recently proposed in [1,11]. MKL
aims at selecting or combining a set of different kernels that usually describes
different data sources. The simplest combination strategy is given by the linear
MKL model:

kw(xi,xj) =

P∑

m=1

wmkm(xm
i ,xm

j ), (2)

where wm ∈ R, xi = {xm
i }Pm=1, x

m
i ∈ Rdm , and dm is the size of the mth feature.

In particular, MKL methods enable the estimation of the kernel weights and the
coefficients of the associated predictor in a single learning framework.

2.2 Proposed Approach

In our method we address the problem of integrating the confounding covariate
in a supervised fashion by including the data correction in the learning phase.
We assume the knowledge of covariate for each subject. Therefore, each sample is
now represented by {(xi, ci, yi)} where ci ∈ Rh encodes the covariates associated
to sample i. Rather than working on the original space, our main idea consists
of correcting the effect of the covariate in the kernel space. More specifically, the
decision function reported in Equation 1 is redefined as:

f(x) =

N∑

i=1

αiyi〈w(ci)Φ(xi), w(c)Φ(x)〉+ b, (3)
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where a weighting function w(c) : Rh → R is introduced to take into account
of the covariates. Note that in this fashion all the covariate are simultaneously
considered in the correction procedure. In order to deal with multiple features
the proposed correction method is extended to a MKL framework by combining
Equations 3 and 2:

kcw(xi,xj) =
P∑

m=1

〈wm(ci)Φ(x
m
i ), wm(cj)Φ(x

m
j )〉 =

P∑

m=1

wm(ci)km(xm
i ,xm

j )wm(cj). (4)

As an important assessment we observe that kernel definition of Equation 4
has the same form of the so called localized kernel [6]. The difference regards the
meaning of the weighting function wm(.) that in [6] is defined on the original
space rather than on the covariates. This leads to a different interpretation of the
weighting effect. In [6] the weighting aims at estimating different classification
criteria at different region of the input space [16]. In our approach the main con-
tribution of the weighting function is to attenuate the conditioning of nuisance
variables. Moreover, we can consider the covariate as a sort of side information
that are included in the classification model. The weighting function wm(.) is
defined as a softmax model[7]. The model parameters of the proposed MKL with
covariate (CO-MKL) are computed using standard alternating optimization[7]:
first, the kernel weights are fixed and standard solvers (i.e., libSVM) are used
to estimate the SVM parameters, second, the SVM parameters are fixed and a
gradient descent strategy is employed to compute kernels weights. The two steps
are iterated until convergence.

3 Materials and Methods

The pipeline we adopted can be schematically visualized in Figure 1. After
data collection, extracted features and covariates are fed to the classifier. This

Fig. 1. Features, i.e. thickness and volume of temporal white and gray matter, were
extracted from brain data, and features were used for classification together with co-
variates (age or months between different acquisitions).

study was conducted in the frame of Psychosis Incident Cohort Outcome Study
(PICOS), a multi-site naturalistic research study, which aimed at analyzing clin-
ical, social, cognitive, genetic and imaging features of FEP patients [12]. 22 First
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Episode of Psychosis patients (FEP, 12 males, mean age 37.5 ± 7.9 y.o. at base-
line, 39.4 ± 7.6 y.o. at follow up) and 22 healthy controls (HC, 12 males, 39.0 ±
11.7 y.o. at baseline, 42.0 ± 12.2 y.o. at follow up) underwent two Magnetic Res-
onance Imaging sessions (months between acquisitions (Δm) 21.1 ± 8.4 for FEP,
36.7 ± 7.8 for HC) with a 1.5 Siemens Symphony scanner. The two populations
were matched for age and sex both at baseline and at follow up (t-test, p>0.05).
The difference in months between the two scans (follow up time) was signifi-
cantly higher for controls (t-test, p<0.05). To avoid bias in the classification we
normalized the values independently in the two populations in order to obtain
two vectors ranging from 0 to 1, with no statistical difference (t-test, p>0.05).
T1-weighted images(256x256x18 voxels, 1x1x5 mm3, TR 2160 ms, TE 47 ms, flip
angle 90o) were acquired for all subjects. Data were analyzed using FreeSurfer
[3] and volume and cortical thickness were computed for the left medial tem-
poral gray and white matter. With this methodology meshes of the boundaries
between white and gray matter and between gray matter and cerebrospinal fluid
are built. Thickness is defined as the distance between the meshes. Volume is
computed assigning a label corresponding to a brain structure to each voxel of
the image based on probabilistic information [5]. Thickness and volume are com-
puted for several regions of interest (ROIs). We chose to restrict our analyses
to the medial temporal white and gray matter, because of the involvement of
this area of the brain with early psychosis. Mean region volume at baseline (μV

A)
and at follow up (μV

B) and mean region thickness at baseline (μT
A) and follow up

(μT
B) were computed for each subject, and used as features for the classifier. We

also computed the difference in mean thickness and volume for each subject and

used it as features ΔμX = μX
A−μX

B

μX
A

, where X is T or V in the case of thickness

or volume, respectively.
All experiments were conducted with radial basis functions (RBF) kernels.

The optimal values for free parameters were chosen with a search in a grid
as shown in [9]. Cross validation was done with a leave-one-out procedure for
all classification methods. For each subject, the complete set of features is x =
[μT

A, μ
T
B, μ

V
A , μ

V
B, ΔμT , ΔμV ] and that of covariates is c = [ageA, ageB,Δm] where

ageA and ageB are age at baseline and at follow up.

4 Results

We evaluated classification methods using baseline, follow-up, and difference
values, considering as covariate baseline age, follow-up age and baseline age in
conjunction with the normalized follow up time in months (Δm), respectively.
For comparison, we employed standard SVM on single features and simple MKL
[14] on both thickness and volume, to evaluate if the introduction of covariates
in the CO-MKL method overtakes the effect of considering more than one fea-
ture simultaneously. We also used the covariates as features in SVM and MKL
classification of baseline and follow-up data, to ensure that these values do not
discriminate between the classes when used as features. More in details, analyses
were carried out as follows:
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– SVM classification using either middle temporal thickness or volume as fea-
tures, adjusted for age using GLM. When considering the difference in thick-
ness of volume (ΔμT and ΔμV respectively) the adjustment with GLM was
done also for differences in follow up months.

– MKL where features are both thickness and volume adjusted for differences
using GLM.

– CO-MKL with a single feature that can be the mean volume (at baseline,
or at follow up) or thickness (at baseline, or at follow up), or the difference
ΔμX (thus x = μT

AorB or x =μV
AorB or x =ΔμX). The covariate is age of

subjects (at baseline or at follow up) or both age at baseline and follow up
time in the case of the difference (c = ageA or ageB, or c = [ageA,Δm]).

– CO-MKL with multiple features at baseline, or at follow up, or for differences
(x = [μT

A, μ
V
A ] or x =[μT

B, μ
V
B ] or x = [ΔμT , ΔμV ]). The covariate c is age

of subjects for baseline and follow up, or both age at baseline and follow up
time in the case of differences (c = ageA or c = ageB, or c = [ageA, Δm]).

– MKL where both main variables and covariates are used as features. There-
fore at baseline x = [μT

A, μ
V
A , ageA], at follow up x = [μT

B, μ
V
B,ageB], and for

the difference x = [ΔμT , ΔμV ,ageA, Δm].
– SVM with the concatenation of both main variables and covariates.

Table 1. Results from classification from data of thickness and volume of middle
temporal gray and white matter.

Baseline Follow up Δ
Acc Sens Spec Acc Sens Spec Acc Sens Spec

CO-MKL

Thickness 70.4 54.6 86.4 81.8 77.3 86.4 70.5 59.1 81.8
Volume 72.7 54.6 89.0 68.2 59.0 77.3 72.7 63.6 81.8
SVM

Thickness 65.9 50.0 81.8 61.3 63.6 59.0 56.8 59.0 54.6
Volume 72.7 50.0 95.5 65.9 54.5 77.3 56.9 72.7 42.0

All results are reported in Table 1 and 2. We observe that CO-MKL reached
higher values of accuracy than SVM where data are adjusted for age or between
scans (82% vs 66%), demonstrating that correcting for nuisance variables in a
MKL framework is more efficient than adjusting the values with a linear model.
Moreover, CO-MKL with both thickness and volume values as features did not
improve the accuracy in respect with employing CO-MKL using only the thick-
ness as feature, but reaches better results than standard simple MKL used with
both features μV and μT , demonstrating that out methods improves the classifi-
cation performances in merging different information. As expected, MKL using
covariates as features did not reach good values of accuracy, with a maximum of
66% in the case of follow up data. Also using SVM concatenating all variables
of interest did not improve classification results, demonstrating once again that
age and follow up time are useful when used to correct the classification but not
if considered as features.
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Table 2. Results from classification from data of thickness and volume of middle
temporal gray and white matter considered together.

Baseline Follow up Δ
Acc Sens Spec Acc Sens Spec Acc Sens Spec

CO-MKL 70.5 68.2 72.7 81.8 86.4 77.3 70.45 81.8 59.1

MKL 43.2 61.4 27.3 61.3 50.0 72.7 59.1 77.3 31.8

MKL + cov. 59.1 45.5 72.7 47.7 54.5 40.9 54.5 31.8 77.2

CON - SVM 72.7 50.0 95.4 65.9 54.6 77.3 65.9 59.1 72.7

It is to be noted that the use of both thickness and volume simultaneously did
not improve performances in this specific case, but could allow a more compre-
hensive evaluation of degeneracy processes in respect to the analysis of a single
brain feature. Moreover, even if classification using ΔμX did not reach very high
values, an accuracy of around 70% can be considered promising, since changes
in brain structure are not easily detectable in psychosis patients, and points to-
wards possible modifications in the rate of brain changes in patients in respect
to healthy.

5 Conclusions

In this work, we propose CO-MKL to exploit supervised correction of the effects of
confounding variables, with the aim of compensating possible unbalanced dataset.
In fact, the presence of heterogeneity in longitudinal datasets is very common in
neuropsychiatry research.We showed how automatic classification improves when
the spurious differences between populations are taken into account into a process
of supervised correction instead of ignored or integrated in simplemodels, asGLM.
We focused our analysis to the middle temporal region of the brain, because it is
knownthat it is involved inpsychosis.Weobtainedhighaccuracies, up tomore than
80%, demonstrating that brain structure and in particular thickness and volume
of definite ROIs are markers of psychosis also at early stages. Moreover, we showed
that the progression of the disease by itself, which we measured computing the dif-
ference in thickness or volume over time, could be employed to distinguish healthy
from patients, suggesting that there could be a change in the speed of brain defor-
mation in psychiatric diseases. The number of subjects we considered is limited:
we plan on recruiting more patients and controls, as well as extending the analysis
to other confounds to use as covariates, as for example medications or clinic scales
both at baseline and at follow-up.
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