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Abstract. Cerebral cortical gyration becomes dramatically more complex in the
fetal brain during the 3rd trimester of gestation; the process proceeds in a
similar fashion ex utero in children who are born prematurely. To quantify this
morphological development , it is necessary to extract the interface between
gray matter and white matter. We employed the well-established CIVET
pipeline to extract this cortical surface, with point correspondence across
subjects, using a surface-based spherical registration. We developed a variant of
the pipeline, called NEOCIVET, that addresses the well-known problems of
poor and temporally-varying gray/white contrast in neonatal MRI. NEOCIVET
includes a tissue classification strategy that combines i) local and global
contrast features, ii) neonatal template construction based on age-specific sub-
groups, and iii) masking of non-interesting structures using label-fusion
approaches. These techniques replaced modules that might be suboptimal for
regional analysis of poor-contrast neonatal cortex. In the analysis of 43 preterm-
born neonates, many with multiple scans (n=65; 28-40 wks PMA at scan),
NEOCIVET identified increases in cortical folding over time in numerous
cortical regions (mean curvature: +0.004/wk) while folding did not change in
major sulci that are known to develop early (corrected p<0.05). Cortical folding
increase was disrupted in the presence of severe types of perinatal WM injury.
The proposed pipeline successfully mapped cortical structural development,
supporting current models of cerebral morphogenesis.
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1 Introduction

Cerebral cortical gyration is one of the most striking morphological changes that
occur in the fetal brain during the 3rd trimester of gestation; the process proceeds in a
similar manner ex utero in children who are born prematurely. To quantify such early
morphological development, it is necessary to extract cortical surface, especially the
interface of the gray matter (GM) and white matter (WM). Only a few packages [1, 2]
have been proposed to perform this task. To enable regional analysis, they co-register
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an individual lobar atlas to each subject’s cortical surface. However, this approach
lacks point-wise correspondence across subjects and, consequently, spatial sensitivity.

Pure surface-based packages such as the MNI's CIVET pipeline or FreeSurfer
extract triangulated cortical surface [3, 4] and define point correspondence using
surface-based spherical registration [5]. However, these packages have not been
optimized for fetal/neonatal analyses. Different degrees of myelination, neuronal
proliferation, and cell migration among various cortical and subcortical regions,
which are distinctive features of developing brain, are manifested as regionally- and
temporally-varying GM/WM contrast in structural MRI. This spatiotemporally
dynamic tissue contrast challenges tissue classification techniques used in most
pipelines since they are usually based on a tissue contrast histogram constructed from
the whole brain across time.

Techniques that combine a feature of local intensity variations into the original
classification scheme have recently been proposed. Among them, a level-set-based
approach developed by Li et al. [6] displayed excellent segmentation performance in
images with locally distorted intensity distribution. To enable the analysis of cortical
morphology in neonates, we developed a variant of the CIVET pipeline, called
NEOCIVET. This pipeline includes a number of new modifications and parameter
tunings. In particular, we optimized Li’s method for the cortical GM segmentation by
including additional features. Also, we constructed age-specific surface templates to
improve the surface registration performance across subjects.

2 Methods

NEOCIVET includes a series of image processing steps to achieve the goal of
extracting the interface between GM and WM. Briefly we describe the flow of the
pipeline as in Fig 1: A) MRI images underwent intensity non-uniformity correction
using N3 [7]; B) These images were linearly registered to the NIH neonatal template
that was averaged across 0-2 month-old babies (http://www.bic.mni.mcgill.ca/
ServicesAtlases/NIHPD-o0bj2); C) We segmented the cerebrum and cerebellum using a
patch-based brain extraction algorithm (BEaST) [8]; D) These masked brains were re-
registered to the template to improve the intracranial fitting; E) MRI intensities were
re-corrected using N3 and normalized within the brain mask; F) the GM and WM were
classified within the mask using a level-set-based deformable model that uses global
and local contrasts as well as a cortical thickness constraint. The intensity of CSF
voxels neighboring the cortex or residing within the sulci resembled that of normal
neonatal WM due to the partial volume effect. Thus, we corrected their classification in
a post-processing step using their geometric characteristics: i.e., the CSF partial
volumes located exterior to the GM were masked. We eroded WM voxels 5 times and
applied iterative region-growing to the remaining WM voxels until they met a GM
voxel; G) A nonlinear registration and label-fusion approach [9] was used to mask out
uninteresting structures: deep GM, ventricles and the periventricular germinal zone
(which looks like GM as neural cells extend into this area in neonates) and the
cerebellum. While the cerebellum was removed, other masked structures were merged
into the WM class; H) Segmentation of the corpus callosum in the mid-plane divided
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the WM into hemispheres. This separation allowed for analysis of hemispheric
asymmetry in morphometry by co-registering the flipped right hemisphere to the left;
I) we parameterized the WM boundary by evolving an ellipsoid, triangulated using an
icosahedral model and a multi-resolution deformation scheme, as in the CIVET [3]; J)
To improve point correspondence across subjects, a surface-based registration [5] was
performed with respect to age-specific templates; K) The cortical morphology was
characterized by measuring mean curvature; L) Finally, these measurements were
further re-sampled to the surface template using the transformation obtained in the
surface registration, in order to allow inter-subject comparison.

In the following sections, we describe the new modules included in NEOCIVET
and how they address technical challenges in neonatal brain MRI. We also discuss the
choice of parameters for optimal performance. Finally, using a large dataset of
preterm-born neonates we investigate the ability of NEOCIVET to assess
developmental trajectory and its clinical utility.
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Fig. 1. Flowchart of NEOCIVET, a variant of CIVET used for neonatal brain analysis. New
modules and parameters are in red. PVGZ: periventricular germinal zone.

2.1  Subjects and MRI Acquisition

Our initial dataset comprised 52 preterm newborns (mean postmenstrual age
[PMA]= 28.7+1.8 wks; range 24.7-32.2 wks), admitted to UCSF Benioff Children’s
Hospital San Francisco between July 2011 and June 2014. All patients were scanned
post-natally as soon as clinically stable, and 30 patients were re-scanned before
discharge at late preterm age (34-38 wks corrected gestational age). Due to severe
motion artifact, 9 baseline and 8 follow-up scans were excluded. The final database
included 43 baseline (PMA=32.3+2.0 wks) and 22 follow-up scans (35.9+1.5 wks).
3T MRI scans were acquired using a specialized high-sensitivity neonatal head coil
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built within an MRI-compatible incubator. T1-weighted images were acquired using
sagittal 3-dimensional inversion recovery spoiled gradient echo (TR = minimum; TE
= minimum; FOV = 180° NEX = 1.00; FA = 15°), yielding images with
0.7x0.7x1mm’ spatial resolution.

2.2 Classification of Brain Tissues

We expanded Li’s deformable model [6] to constrain it for cortical GM segmentation.
Let a given image be I: Q; = R. Q; (i=1, 2) is a region that defines foreground (i=1) or
background (i=2). For a given 3D point X € (1 and intensity I(x), Li’s level-set
formula is defined as:

d¢ _ ve 7o
5t = 0B haes ~ hoex) + v ) (o) +u (Ve -V )

where §, is the smoothed Dirac delta function and e; and e, are terms combining
global and local intensity fitting energy and are expanded as:

e (x) = f K,(y —=x)lI(y) - ®)|*dy, i=1,2 2)
Q
K is 3D Gaussian kernel function that is centered at x and is scalable using o (¢ >0).
fi(x) and f>(x) are two values that approximate image intensities within €1, and €,. The
term &.(¢p)(A1e; — A,e;,) in Eq (1) evolves the level-set to the regional boundary
whereas the other terms maintain the regularity of the level-set. More details are
found in the original publication [6].

To optimize GM/WM segmentation, we feed the algorithm an initial segmentation
based on the EM algorithm performed on the whole brain (Fig. 2B). We also enhance
the image I(x) using non-local mean de-noising: I'(x) = NL(I(X)). Some cortical
areas consistently appeared to be dark or thin in the MRI due to chemical shift
misregistration. To address this, we introduced a cortical thickness constraint. The
cortical thickness 7(x) is computed by the Laplacian transform within the GM mantle
as in [10]. We invert this as:

T i(x) = % ifT(x)>0; T7'(x) =0ifT(x) =0 3)
A large T describes voxel clusters of the “artificially” thin or missing cortex. Finally
I(x) in Eq. (2) is replaced with I'(X) + Apicr T 2 (x),where T™1(x) = K, (T"1(x))
is a smooth version of T (Fig. 2C) and A, is a weight constant. The thickness was
re-computed every 40 iterations. An improved segmentation is illustrated in Fig. 2E.
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Fig. 2. Tissue classification. Initial segmentation using a global histogram shows missing GM
voxels (arrows). Combining the inverted thickness constraint with local contrast term in the
level-set formulation makes a marked recovery in GM segmentation and topology (red).
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2.3  Surface Fitting

The WM/GM interface was extracted by deforming an ellipsoid triangulated using
icosahedral sampling [4]. The initial surface was sampled with 320 triangles and
deformed towards the boundary of the hemispheric WM. The surface was up-sampled
to 81,920 triangles at the end of each deformation cycle.

2.4  Surface-Based Morphological Measurements

In most applications, CIVET is primarily used to measure cortical thickness between
the inner and outer cortical surfaces. In contrast, NEOCIVET aims to characterize the
cortical folding at the WM/GM interface (=inner surface) by computing mean
curvature that captures concavity/convexity (Fig. 3).

Fig. 3. Mean curvature as cortical folding measurement.

2.5  Construction of Age-Specific Surface Templates and Registration

As seen in Fig. 3, cortical folding changes dramatically during perinatal development.
This emphasizes the importance of constructing templates that capture the precise
cortical morphology at specific age ranges, so as to ensure the accuracy of registration.
We therefore subdivided our dataset into four age ranges: 28-30 (n=12), 31-33 (n=15),
34-36 (n=19) and 37-40 (n=13) weeks PMA. For each group, we constructed a surface
template using SURFTRACC, a surface registration algorithm included in CIVET [5]
and an unbiased template construction framework [11]. In brief, SURFTRACC first
transposes individual sulcal depth maps into icosahedral spheres. It then iteratively
searches for local optimal vertex correspondence between an individual and a template
sphere based on a matching of a given feature (in this case, depth potential function
[12]). Mapping the deformed meshes back to the original cortical surface coordinates
allows a registration of the individual to the template surface. Inclusion of a
regularization step further preserves local surface topology. This procedure was
integrated into a hierarchical framework that allows for registration from coarse to fine
scale. An initial template was created by a simple averaging of vertices among the
surfaces in each age group. Thereafter, an iterative alignment proceeds from low
dimensional warping of all individuals to the initial template, and towards higher
dimensional warping to a new template that is constructed from the previous warping
cycle (similar to the process shown in Table). Left and “flipped-right” hemispheres
from all subjects were pooled to avoid subject- and hemisphere-specific bias in the



576 H. Kim et al.

evolution and averaging. After construction, the youngest-age template was registered
to the 2™ youngest and so on such that each template was registered to its closest older
template, yielding a temporally continuous transformation. For inter-subject analyses,
any given subject was first registered to the corresponding age template and then was
ultimately transformed to the oldest template space (shown in Fig. 4-5) by
concatenating the sequence of transformations between age-specific templates.

2.6  Other Technical Considerations and Parameter Selection

For optimal performance in our neonatal dataset, parameters in the NEOCIVET were
empirically chosen. Also, some CIVET modules were updated with more recent
publicly available techniques. Below, we describe these modifications in some detail
so as to guide NEOCIVET users in their parameter selection with respect to MRI field
strength, pulse sequence and spatial resolution:

a) For intensity inhomogeneity correction using N3, we found that a smoothing
distance for RF wavelength as 40mm yielded best performance in brain masking and
tissue classification, which also agreed with the result from a previous extensive
analysis using 3T MRI data [13].

b) The FSL-BET-based brain masking and single atlas-based masking of deep GM
and ventricles performed poorly for neonatal brains due to rapid changes in volume
and intensity. We addressed this issue by introducing publicly available techniques
that use patches of multiple templates or fuse multiple templates based on a similarity
measure [8, 9]. The use of a minimum of 15-20 manually labeled atlases for various
age ranges achieved excellent segmentation accuracy (Dice>0.87%).

¢) Our data were scanned with an in-plane resolution of 0.7x0.7mm’ with 1mm
thickness whereas the NIH neonatal template was sampled at 1mm®. Registration to
this template caused image data loss. We thus up-sampled this template to
0.5x0.5x0.5mm’. However, this step did not necessarily improve registration, which
was optimized ultimately using the age-specific surface templates described in 2.5.

d) Parameters in the level-set tissue segmentation were chosen empirically as:
A=l =1, Ania=1, 0=3, o7=1, e=1, u=1, v=12.5, time step=0.005, #iteration=400. On
a single core of Intel™ i7-3770K, 3.5GHz, the segmentation step and the whole
pipeline process for a neonatal MRI took 10 minutes and 2.1 hours, respectively.

3 Application and Clinical Utility of NEOCIVET

Here, we investigated the ability of the pipeline to assess developmental trajectory
and the impact of brain injury on cortical structural development.

3.1 Statistical Analyses

Statistical analysis was performed using SurfStat (http://www.math.mcgill.ca/keith/
surfstat/). Mixed-effect linear models were used to address both inter-subject effects
and within-subject changes between serial MRI scans by permitting multiple
measurements per subject and thus increasing statistical power. We assessed



NEOCIVET: Extraction of Cortical Surface and Analysis 577

developmental trajectory of cortical complexity by correlating the magnitudes of
sulcal depth and curvature with postmenstrual age (PMA) at the time of scanning.
Given that severe perinatal WM injury (WMI) often disrupts postnatal brain growth,
we assessed the association between cortical complexity changes and the presence of
WMI (a score of 2 or higher on the clinical grading system). To this end, we used a
linear model that included WMI and PMA as independent variables and cortical
measurements as the dependent variable set. We then analyzed an interaction term of
WMI x PMA. Multiple comparisons were adjusted using false discovery rate [14].

3.2 Results

NEOCIVET identified significant increases in cortical folding in numerous cortical
regions in relation to growth in preterm-born neonates (mean curvature: + 0.004/wk),
whilst folding did not change in major sulci (Sylvian, central, parieto-occipital, and
calcarine fissures) that are known to develop early (corrected p<0.05; Fig. 4) [15].
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Fig. 4. Developmental trajectory of cortical folding. Left: Patterns show increased sulcal
folding/week (top) and the significance map in T-value (p<0.05; bottom); Right: Plotted is
mean curvature changes versus increase in PMA in the areas displaying significance.
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In broad areas, including both early and late developing cortices, the cortical folding
increase was disrupted in the presence of severe perinatal WMI (p<0.001; Fig. 5). The
pattern of folding disruption was hemispherically symmetric. WMI is known to occur
perinatally, mostly in the late second and the third trimester. The broad effect of WMI
even on some of major sulcal areas may indicate disruption of late neuronal or
astrocyte migration.

Fig. 5. Disrupted postnatal cortical folding in relation to severe WMI. Significant disruption is
found in areas in blue (T>2.8; corrected p<0.05).
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4 Discussion and Conclusion

We have proposed NEOCIVET, a variant of the CIVET pipeline that was designed to
extract the cortical surface and measure relative morphometrics, for application to
neonatal MRI. NEOCIVET successfully characterized the developmental trajectory of
cortical folding by improving a series of processes in CIVET. NEOCIVET revealed
cortical developmental disruption in the presence of perinatal WMI, demonstrating its
potential to provide biomarkers of prematurity-related developmental outcome.
Volumetric registration can be biased by differences in anatomical maturation
between preterm babies and the normal neonatal template. However, the volume
registration in our analysis was only for coarse spatial normalization, specifically for
brain size. The size normalization combined with use of a fixed number of vertices in
surface modeling should minimize bias related to maturation that affects the
parameters in segmentation and depth potential calculation for surface registration.
Maturation-related anatomical variability was further addressed in the surface space
where we measure actual cortical folding, using age-specific preterm brain templates.
The main weakness of the contemporary fetal/neonatal pipelines is using age-
specific tissue probability maps to correct for local tissue intensity variations [16],
which can bias the tissue segmentation in abnormal brains. Another weakness is the
lack of point-wise correspondence between subjects, which challenges group-wise
analysis of regional changes [1-2]. We overcame these weaknesses using a
segmentation method with a local tissue contrast model without prior information as
well as a surface registration technique that re-arranges mesh triangulation based on
cortical folding similarity between subjects, thus optimizing point correspondence.
We note that the current set of templates is preliminary, as Lyttelton et al. [11]
pointed out that a minimum of 30 subjects is required for a stable template
construction. We are currently recruiting more preterm-born neonates and plan to re-
create those templates with a sufficient sample size. We plan to include NEOCIVET
in a future CIVET release that is open to the public through CBRAIN, a web-based
platform for distributed processing and exchange of 3D/4D brain imaging data
(http://mcin-cnim.ca/neuroimagingtechnologies/cbrain/).
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