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Abstract. As a pivotal task in cancer therapy, outcome prediction is
the foundation for tailoring and adapting a treatment planning. In this
paper, we propose to use image features extracted from PET and clinical
characteristics. Considering that both information sources are imprecise
or noisy, a novel prediction model based on Dempster-Shafer theory is
developed. Firstly, a specific loss function with sparse regularization is
designed for learning an adaptive dissimilarity metric between feature
vectors of labeled patients. Through minimizing this loss function, a lin-
ear low-dimensional transformation of the input features is then achieved;
meanwhile, thanks to the sparse penalty, the influence of imprecise input
features can also be reduced via feature selection. Finally, the learnt dis-
similarity metric is used with the Evidential K-Nearest-Neighbor (EK-
NN) classifier to predict the outcome. We evaluated the proposed method
on two clinical data sets concerning to lung and esophageal tumors, show-
ing good performance.

Keywords: Outcome Prediction, PET, Feature Selection, Sparse Con-
straint, Dempster-Shafer Theory.

1 Introduction

Accurately predicting the treatment outcome prior to or even during cancer ther-
apy is of great clinical value. It facilitates the adaptation of a treatment planning
for individual patient. Medical imaging plays a fundamental role in assessing the
response of a treatment, as it can monitor and follow-up the evolution of tumor
lesions non-invasively [8]. Up to now, the metabolic uptake information pro-
vided by fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET)
has been proven to be predictable for pathologic response of a treatment in sev-
eral cancers, e.g., lung tumor [6,11] and esophageal tumor [15]. Abounding image
features can be extracted from FDG-PET, such as standardized uptake values
(SUVs), like SUVmax, SUVpeak and SUVmean, that describe metabolic uptake
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in a region of interest, total lesion glycolysis (TLG) and metabolic tumor volume
(MTV) [15]. In addition, some complementary analysis of PET images, e.g., im-
age texture analysis [16], can also provide supplementary evidence for outcome
evaluation. The quantification of these features before and during cancer ther-
apy has been claimed to be predictable for treatment response [8]. Nevertheless,
their further application is still hampered by some practical difficulties. First,
compared to a relatively large amount of interesting features from the point of
view of clinicians, we often have just a small sample of observations in clinical
study. As a consequence, the predictive power of traditional statistical machine
learning algorithms, e.g., K-nearest neighbor (K-NN) classifier, break down as
the dimensionality of feature space increases. Secondly, due to system noise and
limited resolution of PET imaging, the effect of small tumor volumes [1], as
well as partly subjective quantification of clinical characteristics, some of these
(texture, intensity and clinical) features are imprecise.

Dimensionality reduction is a feasible solution to the issues discussed above.
However, traditional methods, including feature transformation methods, e.g.,
kernel principal component analysis (K-PCA) [13] and neighbourhood compo-
nents analysis (NCA) [7], and feature selection, e.g., univariate and multivariate
selection [12,17], are not designed to work for imperfect data tainted with uncer-
tainty. As a powerful framework for representing and reasoning with uncertainty
and imprecise information, Dempster-Shafer theory (DST) [14] has been increas-
ingly applied in statistical pattern recognition [5,10] and information fusion for
cancer therapy [2,9]. These facts motivated us to design a new DST-based pre-
diction method for imprecise input features and small observation samples.

In this paper, we firstly develop a specific loss function with sparse penalty
to learn an adaptive low-rank distance metric for representing dissimilarity be-
tween different patients’ feature vectors. A linear low-dimensional transformation
of input features is then achieved through minimizing this loss function. Simul-
taneously, using the �2,1-norm regularization of learnt dissimilarity metric in the
loss function, feature selection is also realized to reduce the influence of impre-
cise features. At last, we apply the learnt dissimilarity metric in the evidential
K-nearest-neighbor (EK-NN) classifier [4] to predict the treatment outcome.

The rest of this paper is organized as follows. The fundamental background
on DST is reviewed in Section 2. The proposed method is then introduced in
Section 3, after which some experimental results are presented in Section 4.
Finally, Section 5 concludes this paper.

2 Backgrounds on Dempster-Shafer Theory

DST is also known as evidence theory or theory of belief functions. As a gener-
alization of both probability theory and set-membership approach, it acts as
a framework for reasoning under uncertainty based on the modeling of evi-
dence [14].

Specifically speaking, we assume ω be a variable taking values in a finite
domain Ω = {ω1, · · · , ωc}, called the frame of discernment. An item of evidence
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regarding the actual value of ω can be represented by a mass function m from
2Ω to [0,1], such that

∑
A⊆Ω m(A) = 1. Each number m(A) denotes a degree

of belief attached to the hypothesis that “ω ∈ A”. Function m is said to be
normalized if m(∅) = 0, which is assumed in this paper.

Corresponding to a normalized mass function m, the belief and plausibility
function for all A ⊆ Ω are further defined as:

Bel(A) =
∑

B⊆A

m(B); Pl(A) =
∑

B∩A �=∅
m(B). (1)

Quantity Bel(A) represents the degree to which the evidence supports A, while
Pl(A) represents the degree to which the evidence is not contradictory to A.

Different items of evidence can be aggregated to elaborate beliefs in DST. Let
m1 and m2 be two mass functions derived from independent items of evidence.
They can be combined via Dempster’s rule to generate a refined mass function:

(m1 ⊕m2)(A) =
1

1−Q

∑

B∩C=A

m1(B)m2(C) (2)

for all A ∈ 2Ω \ ∅, where Q =
∑

B∩C=∅m1(B)m2(C) measures the degree of
conflict between these two pieces of evidence.

3 Method

Assume we have a collection of n labeled patients {(Xi, Yi)|i = 1, · · · , n}, in
which Xi = [x1, · · · , xv]

T is the ith observation with v input features, and
Yi is the corresponding label taking values in a frame of discernment Ω =
{ω1, · · · , ωc}.

Firstly, we need to learn a dissimilarity metric d(Xi, Xj) on this training
data set, so as to maximize the prediction performance of the EK-NN classifier
on future testing patient. Alternatively, we regard this problem as learning a
transformation matrix A ∈ Rh×v , from which the distance d(Xi, Xj) is defined
as

d(Xi, Xj) = (AXi −AXj)
T (AXi −AXj) = (Xi −Xj)

TATA(Xi −Xj). (3)

Matrix A is further restricted to be of low-rank h (i.e., h � v), such that a
low-dimensional linear transformation of the input feature space can be learnt,
making the EK-NN classifier more efficient.

In the DST framework, if Xi is a query instance, then other labeled points
in the training data set can be viewed as partial knowledge regarding Xi’s pre-
diction label. More precisely, each point Xj (�= i) with Yj = ωq is a piece of
evidence that increases the belief that Xi also belongs to ωq. However, this piece
of evidence is not 100% certainty. It is inversely proportional to the dissimilarity
between Xi and Xj , and can be quantified as a mass function

{
mij(ωq) = exp (−d(Xi, Xj))

mij(Ω) = 1− exp (−d(Xi, Xj))
, (4)
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Fig. 1. Examples of tumor uptakes on FDG-PET imaging from different views; (a)
recurrence and no-recurrence instances before treatment of lung tumor; (b) disease-
free and disease-positive instances before treatment of esophageal tumor.

where dissimilarity d(Xi, Xj) is measured via Eq. (3). This mass function can
be expressed by saying that, based on (Xj , Yj), the belief can only partly be
committed to ωq, while the complementary of it is uncertainty, and can only be
assigned to the whole frame Ω.

After modeling the evidence from all training samples (except Xi) using
Eq. (4), they are further allocated into different groups Γq (q = 1, . . . , c) ac-
cording to corresponding class labels. Then, after combination using Dempster’s
rule (Eq. (2)), the mass function for each group Γq is represented as

{
m

Γq

i ({ωq}) = 1−∏
j∈Γq

[
1− exp

{−(Xi −Xj)
TATA(Xi −Xj)

}]

m
Γq

i (Ω) =
∏

j∈Γq

[
1− exp

{−(Xi −Xj)
TATA(Xi −Xj)

}] . (5)

The mass of belief m
Γq

i (Ω) for group Γq reflects the imprecision about the hy-
pothesis that Yi = ωq. If any hypothesis is true, the corresponding mass func-
tion should be more precise. For instance, if the actual value of Yi is ωq, this

imprecision should then close to zero, i.e., m
Γq

i (Ω) ≈ 0; in contrast, imprecision

pertaining to other hypotheses should close to one, i.e., mΓr

i (Ω) ≈ 1, for ∀r �= q.
Based on this idea, we propose to represent the prediction loss for training sam-
ple (Xi, Yi) as

lossi =

c∑

q=1

ti,q ·
⎛

⎝1−m
Γq

i (ωq) ·
c∏

r �=q

mΓr

i (Ω)

⎞

⎠

2

, (6)

where ti,q is the qth element of a binary vector ti = {ti,1, . . . , ti,c}, with ti,q = 1
if and only if Yi = ωq.

As a result, for all training samples, the average loss function with respect of
the transformation matrix A can be expressed as

l(A) =
1

n

n∑

i=1

lossi + λ||A||2,1, (7)
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where lossi is calculated using Eq. (6). The �2,1-norm sparse regularization, i.e.,

||A||2,1 =
∑v

i=1(
∑h

j=1 A
2
i,j)

1/2, is added to select features in order to limit the
influence of imprecise input features during the linear transformation. Scalar λ
is a hyper-parameter that controls the influence of the regularization term.

As a differentiable function regarding matrix A, Eq. (7) is then minimized
using a quasi-Newton method [3]. After that, we apply the learnt matrix A in
Eq. (3), and use the EK-NN classifier to predict the treatment outcome of future
testing patients.

Table 1. Comparing prediction accuracy (ave±std, in %) of different methods. ELT-
FS∗ and ELT∗ denote, respectively, the proposed method with/without the �2,1-norm
sparse regularization.

Method
Lung Tumor Data Esophageal Tumor Data
training testing training testing

EK-NN 69.50±4.46 60.00±50.00 63.73±2.14 61.11±49.44
SVM 100.00±0.00 76.00±43.60 100.00±0.00 63.89±48.71

T-test 99.67±1.15 72.00±45.83 75.56±2.10 66.67±47.81
IG 86.50±3.86 68.00±47.61 88.57±2.37 75.00±43.92
SFS 95.67±2.24 84.00±37.42 85.63±1.60 52.78±50.56
SFFS 64.33±3.62 72.00±45.83 59.68±6.79 80.56±40.14

PCA 88.33±1.70 80.00±40.82 59.60±5.81 55.56±50.40
LDA 100.00±0.00 52.00±50.99 100.00±0.00 55.56±50.40
NCA 99.50±1.83 80.00±40.82 94.21±3.24 69.44±46.72
K-PCA 81.33±4.36 80.00±40.82 71.19±5.89 72.22±45.43
ELT∗ 95.83±3.80 88.00±33.17 88.02±4.03 63.89±48.71
ELT-FS∗ 100.00±0.00 88.00±33.17 97.46±1.64 83.33±37.80

4 Experimental Results

We compared the proposed method (called evidential low-dimensional transfor-
mation with feature selection, i.e., ELT-FS) with several feature transformation
methods, namely PCA, linear discriminant analysis (LDA), NCA and K-PCA;
and several feature selection methods, namely T-test, Information Gain (IG),
Sequential Forward Selection (SFS) and Sequential Floating Forward Selection
(SFFS) [12]. We used two real patient data sets:

1) Lung Tumor Data: Twenty-five patients with stage II-III non-small cell
lung cancer treated with curative intent chemo-radiotherapy were considered.
Totally 52 SUV-based (SUVmax, SUVmean, SUVpeak, MTV and TLG) and
texture-based (gray level size zone matrices (GLSZM) [16]) features were ex-
tracted from longitudinal PET images before and during the treatment. The
extraction of GLSZM-based features consists of two main steps: firstly, homoge-
nous areas were identified within the tumor, and then a matrix linking the size
of each of these homogeneous areas to its intensity was constructed; after that,
features characterizing regional heterogeneity were then calculated from this ma-
trix, such as parameters that quantify the presence of a high-intensity large-area
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(a) Lung tumor data: recurrence ; no-recurrence 

disease-positive; disease-free (b) Esophageal tumor data: 

PCA NCA ELT ELT-FS 

Fig. 2. Two-dimensional transformation results of PCA, NCA, our ELT (without fea-
ture selection, i.e., λ = 0) and ELT-FS.

emphasis or a low-intensity small-area emphasis. The definition of recurrence for
patients at one year after the treatment was primarily clinical with biopsy and
FDG-PET/CT. Local or distant recurrence was diagnosed on nineteen patients,
while no recurrence was reported on the remaining six patients (example images
can be seen in Fig. 1(a)).

2) Esophageal Tumor Data: Thirty-six patients with esophageal squamous cell
carcinomas treated with chemo-radiotherapywere studied. Totally 29 SUV-based
(SUVmax, SUVmean, SUVpeak, MTV and TLG), GLSZM-based and patients’
clinical features (gender, tumour stage and location, WHO performance status,
dysphagia grade and weight loss from baseline) were extracted based on the
baseline PET images. The disease-free evaluations include a clinical examination
with PET/CT and biopsies. Finally, thirteen patients were labeled disease-free
when neither loco regional nor distant tumor recurrence is detected, while the
remaining twenty-three patients were diagnosed as disease-positive (as shown in
Fig. 1(b)).

The leave-one-out cross-validation (LOOCV) procedure was used for evalu-
ation. For been compared methods (except NCA, since it was designed specif-
ically for the K-NN classifers), after learning a low-dimensional subspace, the
SVM (Gaussian kernel with σ = 1 was empirically chosen) classifier was used
to predict class labels of both training instances and the left testing instance;
while the EK-NN classifier (K was empirically set as 3) was used with NCA
and the proposed method. Hyper-parameter λ for ELT-FS was determined by
a rough grid search strategy. The dimension of output subspace was chosen be-
tween two to five according to the minimum average testing error. Finally, the
average training and testing accuracy for all methods are summarized in Table 1,
in which results obtained by the SVM and EK-NN in the input space, and by
our method without feature selection (namely with λ = 0) are also presented for
comparison. It can be observed that the proposed method, especially ELT-FS,
leads to higher testing performance than other methods. Although LDA results
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in larger training accuracy than our method, the worst testing performance is
obtained too. It maybe because the studied data sets were too small, therefore
the covariance matrix obtained by LDA has been badly scaled. It is also worth
noting that ELT and ELT-FS have the same testing performance on the lung
tumor data, while ELT-FS performs much better on the esophageal tumor data
than ELT. This result maybe can be explained from two different aspects: firstly,
the lung tumor data is easier to be separated than the esophageal tumor data,
hence the difference became small; on the other hand, it perhaps also demon-
strates that the sparse term can play a real role to improve the prediction under
complex situation, such as on the esophageal tumor data.

Furthermore, we visualized the dimension reduction in 2D achieved using
PCA, NCA, ELT and ELT-FS methods, as shown in Fig. 2. It can be seen that
different classes in both data sets are better separated by our methods than
using other methods. The best separation is achieved using our method with
feature selection (ELT-FS).

5 Conclusion

In this study, a novel approach based on DST has been proposed to predict
the outcome of a cancer treatment using PET image features and clinical char-
acteristics. A specific loss function has been designed to tackle uncertainty and
imprecision, so as to learn an adaptive dissimilarity metric for the EK-NN classi-
fier. Through minimizing this loss function to obtain a low-rank transformation
matrix A, we have realized a low-dimensional linear transformation of input
features. Simultaneously, thanks to the �2,1-norm regularization of A, a feature
selection procedure has been implemented to reduce the influence of imprecise
input features during prediction. Experimental results obtained on two clinical
data sets show that the proposed method performs well as compared to some
other methods. In the future, we will further evaluate it on more and larger data
sets with different types of tumors, and study the influence of the regularization
hyper-parameter λ. Moreover, to further improve the prediction accuracy, we
will attempt to include more features that extracted from other complementary
sources of information, such as CT, FLT-PET, FMISO-PET images, etc.
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