
Non-local Atlas-guided Multi-channel Forest

Learning for Human Brain Labeling

Guangkai Ma1,2, Yaozong Gao2,3, Guorong Wu2, Ligang Wu1,
and Dinggang Shen2

1 Space Control and Inertial Technology Research Center,
Harbin Institute of Technology, Harbin, China

2 Department of Radiology and BRIC, UNC at Chapel Hill, NC, USA
3 Department of Computer Science, UNC at Chapel Hill, NC, USA

Abstract. Labeling MR brain images into anatomically meaningful
regions is important in many quantitative brain researches. In many
existing label fusion methods, appearance information is widely used.
Meanwhile, recent progress in computer vision suggests that the con-
text feature is very useful in identifying an object from a complex scene.
In light of this, we propose a novel learning-based label fusion method
by using both low-level appearance features (computed from the target
image) and high-level context features (computed from warped atlases
or tentative labeling maps of the target image). In particular, we em-
ploy a multi-channel random forest to learn the nonlinear relationship
between these hybrid features and the target labels (i.e., corresponding
to certain anatomical structures). Moreover, to accommodate the high
inter-subject variations, we further extend our learning-based label fu-
sion to a multi-atlas scenario, i.e., we train a random forest for each atlas
and then obtain the final labeling result according to the consensus of all
atlases. We have comprehensively evaluated our method on both LONI-
LBPA40 and IXI datasets, and achieved the highest labeling accuracy,
compared to the state-of-the-art methods in the literature.

1 Introduction

Automatic labeling of MR brain images has become a hot topic in the field of
medical image analysis, since quantitative brain image analysis often relies on
the reliable labeling of brain images. However, due to the high complexity of
brain structures, it is still a challenging task for automatic brain labeling.

Recently multi-atlas based labeling methods have achieved a great success.
In these methods, a set of already-labeled MR images, namely atlases, are used
to guide the labeling of new target images [3, 9]. For example, Coupé et al. [6]
proposed a non-local patch-based label fusion technique by using patch-based
similarity as weight to propagate the neighboring labels from the aligned atlases
to the target image, for potentially overcoming errors from registration. Instead
of pair-wisely estimating the patch-based similarity, Wu et al. [7] adopted sparse
representation to jointly estimate all patch-based similarities between a to-be-
labeled target voxel and its neighboring voxels in all the atlases. However, the
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traditional multi-atlas based labeling techniques are still limited: the definition
of patch-based similarity is often handcrafted based on the predefined features,
which might not be effective for labeling all types of brain structures.

On the other hand, learning-based methods have also attracted much atten-
tion recently. In these methods, a strong classifier is typically trained for each
label/ROI, based on the local appearance features. For example, Zikic et al. [2]
proposed atlas forest, which encodes an atlas by learning a classification forest
on it. The final labeling of a target image is achieved by averaging the labeling
results from all the selected atlas forests. Tu et al. [5] adopted the probabilistic
boosting tree (PBT) for labeling. To further boost the performance, an auto-
context model (ACM) was also proposed to iteratively refine the labeling results.
The learning-based methods often determine a target voxel’s label solely based
on the local image appearance, without getting clear assistance from the spatial
information of labels encoded in the atlases. Accordingly, their labeling accu-
racy could be limited, since patches with similar local appearance could appear
in different parts of the brain.

In this paper, we propose a novel atlas-guided multi-channel forest learning
method for labeling multiple ROIs (Regions of Interest). Here, multi-channel
means multiple representations of a target image, which include features ex-
tracted from not only the target (intensity) image but also the label maps of all
aligned atlases. Instead of labeling each target voxel with only its local image
appearance from the target image, we also utilize label information from the
aligned atlas. To further refine the labeling result, Haar-based multi-class con-
texture model (HMCCM) is also proposed to iteratively construct a sequence of
classification forests by updating the context features. The final labeling result
is the average over all labeling results from all atlas-specific forests. Validated on
both LONI-LBPA40 and IXI datasets, our proposed method consistently outper-
forms both traditional multi-atlas based methods and learning-based methods.

The rest of the paper is organized as follows. Section 2 describes the pro-
posed labeling method and its application to single-ROI and multi-ROI labeling.
Experiments are performed and analyzed in Section 3. Finally, discussion and
conclusion are given in the last section.

2 Method

In this section, we will first present notations used in our paper. Then, we will ex-
plain the learning procedure of our atlas-guided multi-channel forest, followed by
application of the learned forests to single-ROI and multi-ROI labeling. Finally,
we present HMCCM to iteratively refine the labeling results.
Notations. An atlas library A consists of multiple atlases {Ai = (Ii, Li)|i =
1, . . . , N}, where Ii and Li are the intensity image and the label image/map
of the i-th atlas, and N is the total number of atlases in the library A. Set
T = {Tj = (Hj , Bj)|j = 1, . . . ,M} represents the training set, where Hj and Bj

are the intensity image and the label image/map of the j-th training sample,
and M is the total number of training samples. Aj

i = {Iji , Lj
i}, i = 1, . . . , N, j =
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1, . . . ,M denotes the intensity (Iji ) and label (Lj
i ) images of the i-th atlas after

mapping to the j-th training image. Each brain ROI is assigned with a ROI/label
s, s = 1, . . . , S, where S is the total number of ROIs.

2.1 Atlas-guided Multi-channel Forest Learning

To increase the flexibility of our learning procedure, we will train one multi-
channel random forest Fi,s for each atlas i and each ROI s. In this way, when a
new atlas is added into A, only the new multi-channel forest needs to be trained
with the new atlas, while all previously trained forests can be reused.

To label the s-th ROI, we will learn a multi-channel forest Fi,s with each
atlas, i.e., the i-th atlas. To obtain more accurate label information from atlas,
registration and patch selection are performed. First, during the Fi,s learning,
we non-rigidly register the i-th atlas image Ii onto each training target image
Hj , to obtain the warped atlas image Iji and label map Lj

i . For each sample
voxel x in Hj , we first extract its appearance features from a local patch of Hj ,
centered at x. To reduce the registration error and further get more accurate
label from the atlas, according to the similarity between local intensity patches
of training image and warped atlas image, we search a nearest voxel c1(x) (with
largest similarity) of x from the warped atlas image Iji . For efficiency, the overall
intensity difference within the patch is used as the similarity measurement [6].
Then, we extract label features from the local patch of c1(x) in the aligned atlas
label image Lj

i . Finally, both appearance features and label features are combined
to jointly characterize the appearance and spatial label context information of
each sample voxel, and use it for inferring label. Afterwards, the positive and
negative samples are taken inside and outside of the s-th ROI from every training
image for multi-channel forest learning, as detailed below. The flowchart shown
in Fig. 1 gives an illustration for learning one multi-channel forest.

Sampling Strategy: The positive and negative samples used to train multi-
channel forest for the s-th ROI are randomly sampled inside and outside the
s-th ROI, respectively. Intuitively, voxels around the ROI boundary are more
difficult to be correctly classified than other voxels. Therefore, more samples are
drawn around the ROI boundary, as shown in the right bottom of Fig. 1, and
also the numbers of positive and negative samples are kept the same.

Feature Extraction: To train multi-channel forests for the i-th atlas, as men-
tioned above, every training image Hj , j = 1, . . . ,M , will be associated with its

respective aligned i-th atlas Aj
i = {Iji , Lj

i}. More specifically, there are S + 1
different channels of features extracted for: 1 channel of local appearance fea-
tures extracted from the training image (e.g., Hj), and S channels of local label

context features extracted from the aligned i-th atlas label map (e.g., Lj
i ) with

respect to each of S ROIs.

Local Appearance Features. The local image appearance features extracted from
a given (training) target image include: 1) patch intensities 2) outputs from
the first-order difference filters (FODs), second-order difference filters (SODs),



722 G. Ma et al.

Fig. 1. The flowchart of our method for learning one multi-channel forest with the
i-th atlas. An example for sample selection during the training stage is also given in
the right-bottom corner, where blue points denote samples belonging to the ROI while
green points denote samples belonging to the background. Note here that more samples
are drawn around the ROI boundaries.

3D Hyperplan filters, 3D Sobel filters, Laplacian filters and range difference
filters, and 3) the random 3D Haar-like features computed from a neighborhood.
In addition, by randomly selecting different parameter values of features, the
appearance features can capture rich texture information of the target image.

Local Label Context Features. To extract the label context features for each ROI,
we first convert the multi-ROI atlas label map into S binary label maps, Lj

i,s,

where Lj
i,s corresponds to ROI s, with only voxels in ROI s having label 1

(positive) while all other voxels having label 0 (negative). Then, from each binary
label map Lj

i,s, we uniformly and sparsely select 343 voxels within a 11×11×11
neighborhood. Finally, a total of 125 × S voxels are sampled, and their label
values are served as local label context features.

2.2 Single-ROI and Multi-ROI Labeling

Single-ROI Labeling: To label a single ROI in a new target image, all atlases
are first non-rigidly registered onto the target image. To effectively correct for
inaccurate registration, we adopt the non-local strategy in the testing stage.
Specifically, for a target voxel x to be labeled, we first perform a local patch
search in the aligned atlas image (e.g. Iji ) to select the top K atlas patches
with similar appearance to the target patch centered at x. Here, the centers
of the selected atlas patches are indexed as ck(x), k = 1, . . . ,K. 1) For each
voxel ck(x), its label context features can be extracted from the binary label
maps {Lj

i,s, s = 1, . . . , S}. Then, these S channels of label context features and
also one channel of appearance features computed from the target image can be
combined as a feature representation of x. 2) Afterwards, we apply the learned
Fi,s to estimate the label probability of x. 3) We obtain K label probabilities
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Fig. 2. A diagram for single-ROI labeling with our proposed atlas-guided multi-channel
forest learning.

for K selected atlas patches, and then simply average them to obtain a final
label for x. Note that, using the above step, each aligned atlas can use its own
learned multi-channel forest for labeling the target image independently. Then,
the labeling results from all N atlases can be further averaged to obtain the
final labeling result for the target image. To increase the efficiency of voxel-
wise labeling for the target image, we apply our method only to the voxels that
receive votes from the warped atlas label maps. Fig. 2 gives an illustration of
our single-ROI labeling method.

Multi-ROI Labeling: The extension from single-ROI labeling to multi-ROI
labeling is straightforward. For each target voxel to be labeled, we first use
labels of the corresponding voxels in the aligned atlases to find a set of candidate
labels for this voxel. Then, we apply only the ROI classifiers responsible to those
candidate labels for estimating the label probabilities of the target voxel, while
all other ROI classifiers are excluded, and their corresponding label probabilities
are simply set to zero. For all the ROIs, we can obtain S single-ROI labeling
maps. To fuse these single-ROI labeling maps into one multi-ROI labeling map,
the label of each target voxel is simply assigned by the one with the maximum
probability across all different single-ROI label maps.

2.3 Haar-Based Multi-Class Contexture Model (HMCCM)

After applying our trained atlas-specific multi-channel forest to the target image,
we can obtain a label probability map, which contains more relevant label context
information (than the aligned atlas label map) for the target image. We, thus,
further update the label context information from the newly obtained (tentative)
label probability map, to learn a next multi-channel forest for refinement of
labeling. By iterating this procedure, a sequence of classifiers (random forests)
can be learned to iteratively improve the labeling result of the target image. In
the following paragraphs, we detail the training and testing stages of HMCCM
for the case of multi-ROI labeling.
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Training: In the initial layer, for each atlas (e.g., the i-th atlas), we first train a
set of atlas-specific multi-channel forests {F 1

i,s, s = 1, . . . , S}. Then, by applying
the trained {Fi,s} to each training image, a set of initial label probability maps
P 1 = {P 1

s } can be obtained. In the second layer, we can extract the context
information from the set of P 1, instead of binary label maps of the aligned atlas.
Specifically, for each target voxel x in the target image, Haar-like features are
extracted in the local patch centered at x from each P 1

s , for characterizing the
multi-scale label context features. (Note that, in this study, for obtaining large-
scale label context information, we adopt a large local patch). Then, we combine
these updated label context features with the appearance features to re-train a
next set of atlas-specific multi-channel forests {F 2

i,s}, which can be again used to

estimate a next set of new label probability maps P 2 = {P 2
s } for each training

image. In the each of the following layers, the label context features are updated
from the set of label probability maps computed in the previous layer, and then
these updated features are combined with the appearance features of the target
image to train a next set of atlas-specific multi-channel forests (corresponding to
each ROI). Finally, after training totally O layers, we can obtain O subsequent
sets of atlas-specific multi-channel forests, {F o

i,s}, o = 1, . . . , O.

Testing: For a new test Ht, each voxel is layer-wisely tested by the trained
classifiers {F o

i,s}, o = 1, . . . , O. Specifically, for each atlas (e.g., the i-th atlas),

we use the first layer of {F 1
i,s} to obtain the initial label probability maps P t,1 =

{P t,1
s } for Ht. In the following layer, we update the Haar-like features from the

label probability maps of the previous layer as the context features. Then, these
updated context features are combined with the appearance features of the test
image and further input to the set of trained atlas-specific multi-channel forests
of the current layer for obtaining a refined set of label probability maps of the test
image. This procedure is iterated until reaching the last layer, thus, obtaining
the final label probability maps for the test image (with the i-th atlas). The
labeling results from all N atlases will be averaged to produce the final labeling.

3 Experimental Results

In this section, we apply our proposed method to the LONI-LPBA40 dataset [1]
and IXI dataset (https://www.brain-development.org) for evaluating its perfor-
mance in ROI labeling. We compared the proposed multiple atlas-guided multi-
channel forest (MAMCF) and MAMCF+HCCM with two popular learning-
based methods, i.e., standard random forests (SRF) [4] and auto-context model
(ACM) [5]. Also, for comparison with multi-atlas based labeling methods, we
apply majority voting (MV) and the conventional patch-based methods by non-
local patch based labeling propagation (Nonlocal PBL) [6] and the recently pro-
posed sparse patch-based labeling propagation (Sparse PBL) [6, 7]. To align each
atlas image with the target image, affine registration is first performed by FLIRT.
Then, diffeomorphic Demons is further performed for deformable registration.
To quantitatively evaluate the labeling accuracy, we use the Dice Similarity Co-
efficient (DSC) to measure the overlap degree between automatic labeling and
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Table 1. The mean and standard deviation of DSC (%) by MV, Non-local PBL, Sparse
PBL, SRF, SRF+HMCCM and our method on LONI LPBA40 and IXI datasets, re-
spectively

Method LONI-LPBA40 IXI

MV 78.55± 4.33 76.64± 4.56

Non-local PBL 78.58± 4.32 75.85± 4.70

Sparse PBL 80.21± 4.32 77.40± 4.52

SRF 72.48± 4.36 72.09± 4.98

SRF+ACM 73.83± 4.47 74.53± 4.49

MAMCF 81.89± 4.25 79.08± 4.41

MAMCF+HMCCM 82.56± 4.22 79.78± 4.34

manual labeling of each ROI. In the experiments, we use leave-one-out cross-
validation to evaluate the performance of our method. For each test image, all
other images are split into two equal parts: one used for training, and another
used as an atlas images.

Parameters: For texture features (FODs, SODs etc.), parameter setting of
each filter can be referred to [8]. For appearance patch size (11x11x11) and label
patch size (11x11x11), we determine them by five-fold across validation on the
training data. In first stage of our method, we extract total 2367 appearance
features and 1331 label features for each ROI. In second stage of our method,
we extract additional 500 haar-like features for each ROI from label probability
maps. In the training stage, we train 20 trees for each multi-channel forest. The
maximum tree depth is set to 20, and the minimum number of samples in the
tree leaf node is set to 4.

LONI-LPBA40 Dataset: The dataset consists of 40 T1-weighted MRI brain
images from 40 healthy volunteers, each with 54 manually labeled ROIs (ex-
cluding cerebrum and brainstem). Most of these ROIs are within the cortex.
The second column of Table 1 shows the mean and standard deviation of DSC
on 54 ROIs by the compared methods. Over the all 54 ROIs, the average
DSCs achieved by MV, Nonlocal PBL, and Sparse PBL, SRF and SRF+ACM
are 78.55% ± 4.33%, 78.58% ± 4.32%, 80.21% ± 4.32%, 72.48% ± 4.36% and
73.83%± 4.47% respectively, which are lower than MAMCF (81.89%± 4.25%)
and MAMCF+HMCCM (82.56%±4.22%). In terms of average performance over
all the ROIs, compared with other methods, MAMCF and MAMCF+HMCCM
obtain statistically significant improvements (p < 0.0001) by the paired Stu-
dent’s t-test.

IXI Dataset: We use 30 images in the IXI dataset, which contains manual
annotations of 80 structures (excluding cerebrum and brainstem). The third
column of Table 1 shows the mean and standard deviation of DSC on all 80
ROIs. It can be observed that MAMCF+HMCCM (79.78%±4.34%)methods are
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ranked top, followed by MAMCF (79.08%±4.41%), Sparse PBL (77.4%±4.52%),
MV (76.64%± 4.56%), Non-local PBL (75.85%± 4.7%), SRF+ACM (74.53%±
4.49%) and SRF (72.09%± 4.98%). In terms of average performance over all the
ROIs, compared with other methods, MAMCF and MAMCF+HMCCM obtain
statistically significant improvements (p < 0.0001).

4 Conclusion

In this paper, we propose a novel atlas-guided multi-channel forest learning to ef-
fectively combine the advantages of both multi-atlas based labeling methods and
learning-based labeling methods. Instead of labeling a target voxel based only on
its own local image appearance, we also utilize label context information from the
aligned atlas. A non-linear multi-channel forest is learned for automatically fusing
all information. Furthermore, the Haar-based multi-class contexture model (HM-
CCM) is also proposed to enhance the structural and label context information
of the target image. Specifically, we use Haar-like features to iteratively extract
multi-scale label context information from the tentatively-estimatedmulti-ROI la-
bel probability maps of the target image. Our method shows more accurate label-
ing results than both the existingmulti-atlas based labelingmethods and learning-
based labeling methods, on both LONI-LBPA40 and IXI datasets.
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