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Abstract. Adaptation knowledge generation is a difficult problem for CBR. In
previous work we developedensembles of adaptation for regression(EAR), a
family of methods for generating and applying ensembles of adaptation rules
for case-based regression. EAR has been shown to provide good performance,
but at the cost of high computational complexity. When efficiency problems re-
sult from case base growth, a common CBR approach is to focus on case base
maintenance, to compress the case base. This paper presentsa case study of an
alternative approach, harnessing big data methods, specifically MapReduce and
locality sensitive hashing (LSH), to make the EAR approach feasible for large
case bases without compression. Experimental results showthat the new method,
BEAR, substantially increases accuracy compared to a baseline big data k-NN
method using LSH. BEAR’s accuracy is comparable to that of traditional k-NN
without using LSH, while its processing time remains reasonable for a case base
of millions of cases. We suggest that increased use of big data methods in CBR
has the potential for a departure from compression-based case-base maintenance
methods, with their concomitant solution quality penalty,to enable the benefits
of full case bases at much larger scales.

Key words: Case-Based Reasoning, Ensemble of Adaptations for Regression,
Locality Sensitive Hashing

1 Introduction

The growth of digital data is widely heralded. A 2014 articleestimates that “[A]lmost
90% of the world’s data was generated during the past two years, with 2.5 quintillion
bytes of data added each day” [1]. Individual organizationscollect data sets on an un-
precedented scale. For example, in 2013, a single health care network in the U.S. state
of California was estimated to have over 26 petabytes of patient data from electronic
health records alone [2]. Big data methods and resources have changed the practical-
ity of using such large-scale data, with inexpensive cloud computing services enabling
processing data sets of unprecedented scale. However, these are not a panacea: making
good use of large-scale data remains a challenge (e.g., [3]).

Case-based reasoning’s ability to reason from individual examples and its inertia-
free learning make it appear a natural approach to apply to big-data problems such as
predicting from very large example sets. Likewise, if CBR systems had the capability to
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handle very large data sets, that capability could facilitate CBR research on very large
data sources already identified as interesting to CBR, such as cases harvested from
the “experience Web” [4], cases resulting from large-scalereal-time capture of case
data from instrumented systems [5], or cases arising from case capture in trace-based
reasoning [6].

However, realizing the potential of CBR to have impact on bigdata problems will
depend on CBR systems being able to exploit the information in case bases with size
far beyond the scale now commonly considered in the CBR literature. The case-based
reasoning community has long been aware of the challenges ofscaling up CBR to large
case bases. The primary response has been case-base maintenance methods aimed at re-
ducing the size of the case base while preserving competence(e.g., [7, 8]). Such meth-
ods have proven effective at making good use of case knowledge within storage limits.
However, because compression methods delete some of the CBRsystem’s knowledge,
they commonly sacrifice some solution quality.

A key factor in success of CBR when applied to big data is efficient retrieval of
cases. As CBR does not generalize beyond cases, it is extremely important to the suc-
cess of a CBR system to be able to find required cases rapidly. In this paper we illustrate
the practicality of applying big-data tools to increase thespeed and scalability of CBR,
using MapReduce and Locality Sensitive Hashing for finding nearest neighbors of the
input query.

In previous work, we introduced and evaluated a method for addressing the classic
CBR problem of acquiring case adaptation knowledge withensembles of adaptations
for regression(EAR) [9]. This work demonstrated the accuracy benefits of EAR [9–
12], but also identified important efficiency concerns for large case bases. This paper
presents a case study applying big data methods to addressing EAR’s scale-up, lever-
aging techniques and frameworks well known to the big data community to enable
large-scale CBR. It presents a new algorithm, BEAR,1 applying the EAR approach in a
MapReduce framework. The paper demonstrates that the use ofbig data methods sub-
stantially extends the size of case base for which the EAR approach is practical, to case
bases of millions of cases even on a small Amazon Elastic MapReduce (EMR) cluster.2

The paper begins with a discussion of the relationship of bigdata and CBR, con-
trasting the “retain and scale up” approach of big data to thecompression-based focus
of case-base maintenance. It next introduces the EAR familyof methods and the two big
data methods applied in its new version, locality sensitivehashing [13] and MapReduce.
With this foundation it introduces BEAR, a realization of EAR for big data platforms,
and presents an experimental evaluation assessing BEAR’s accuracy for a case base of
two million cases. To assess the benefit of BEAR’s ensemble approach it compares it to
a baseline of a big data version of k-NN, using Locality Sensitive Hashing for imple-
menting nearest neighbor search. It also shows that BEAR’s approach helps alleviate
the accuracy penalty that can result from using LSH instead of a traditional (exhaustive)
approach for finding nearest neighbors, thus compensating for a potential drawback of
using LSH. To assess the need for big data methods for BEAR’s task and BEAR’s

1 Big data ensembles of adaptations for regression
2 http://aws.amazon.com/elasticmapreduce/
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scaleup potential, it also compares BEAR’s scaleup performance to that of k-NN using
a traditional (exhaustive) approach for finding nearest neighbors.

The evaluation supports the accuracy benefits of BEAR and that the speedup bene-
fits of big data methods are sufficient to counterbalance the computational complexity
of BEAR’s rule generation and ensemble solution methods. Thus the use of big data
methods may have benefits for CBR beyond simple speedups, by making practical the
use of richer methods which can increase accuracy. Two million cases is large by the
standards of current CBR practice, but true “big data” CBR will involve much larger
data sets. The paper closes with a discussion of BEAR’s potential for scaleup to such
data sets.

2 Scaling CBR to Big Data

Big data has had a transformative effect on data management,enabling many enterprises
to exploit data resources at previously unheard-of data scales. Large data sets such as
electronic medical records collections may naturally be seen as containing cases; rou-
tine data capture in many domains could provide rich case bases. If cases can be re-
trieved sufficiently efficiently, CBR is an appealing methodfor large-scale reasoning
because its lazy learning avoids the overheads associated with traditional rule mining
approaches enables inertia-free adjustments to additional data, without the need for re-
training.

However, CBR systems have seldom ventured into the scale of big data. For exam-
ple, calculating metrics such as number of visitors or page views for a social media or
e-commerce web site with hundreds of million users is a common practice at industry,
but in current CBR research, experiments with tens of thousands of cases, or even much
fewer, are common. Few CBR projects have considered scales up to millions of cases
[14, 15], and to our knowledge, none have explored larger scales except a few excep-
tions such as a recent effort to apply big data methods focused on exact match only,
rather than similarity-based retrieval [15].

When CBR research has addressed increased data sizes, the primary focus has been
compression of existing data rather than scale-up. Considerable CBR research has fo-
cused on the efficiency issues arising from case-base growth. As the case base grows,
the swamping utility problem can adversely affect case retrieval times, degrading sys-
tem performance [16, 17]. Within the CBR community and the machine learning com-
munity studying instance-based learning, extensive effort has been devoted to address-
ing the swamping utility problem for case retrieval with case-base maintenance meth-
ods for controlling case-base growth, with the goal of generating case bases that are
compact but retain coverage of as many problems as possible.Methods for developing
compact competent case bases include selective deletion (e.g., [7, 18]), selective case
retention (e.g., [19–21]), and competence-aware construction of case bases [8, 22–25].
Such methods generally trade off size against accuracy; they aim to retain as much
competence as possible for a given amount of compression. This tradeoff has been seen
as the price of making CBR feasible for domains in which the set of possible cases is
large, but storage and processing resources are limited.
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This paper argues that applying big data methods can change this calculus; that even
for case bases on the order of millions of cases, big data methods can make the best
case-base compression strategyno compression at all. If big data methods can enable
CBR scale-up, dramatically increasing the feasibility of handling very large case bases,
compression methods will be required only for extreme scalecase bases—and, even for
very large cases, might not be required at all in practice. Already, it has been observed
that for common practical CBR tasks, even with conventionalmethods, case base size
may not be an issue [26]; big data methods could bring CBR to bear on a new class of
problems, at much larger scale.

3 Foundations of the Proposed Method

The case study in this paper focuses on applying CBR to numerical prediction tasks
under big data settings, demonstrating the feasibility of big data approaches to provide
good performance at scales on the order of millions of cases,with minimal quality loss.
The method proposed in this paper builds on three currents ofresearch. The first, from
CBR, is the EAR family of methods [9] for case-based regression using ensembles of
adaptations. The second, from big data is Locality Sensitive Hashing (LSH), a method
for nearest neighbor search in big data platforms. The thirdis MapReduce, a popular
framework for parallel processing of data.

3.1 The EAR Family of Methods

The acquisition of case adaptation knowledge is a classic problem for CBR. A popular
approach to this problem, for numerical prediction (regression) tasks, is to generate
adaptation rules automatically from the case base. The EAR family of methods solves
numerical prediction problems using automatically-generated ensembles of adaptations
to adapt prior solutions.

The EAR approach applies to any adaptation generation method, but it has been
tested for a popular case-based rule generation method, theCase Difference Heuristic,
which generates rules based on comparing pairs of cases. Given two cases A and B,
with problem parts Prob(A) and Prob(B), and solution parts Sol(A) and Sol(B), the
case difference heuristic approach assumes that problems with similar difference in
their problem descriptions will have similar differences in their solutions. For example,
for predicting apartment rental prices from a case base of rental properties and prices, if
one apartment’s monthly rent is $300 more than the rent of an otherwise highly similar
apartment, and their difference is that the more expensive apartment has an additional
bedroom, the comparison might suggest a general rule:When the previous apartment
case has one bedroom fewer, predict that the new apartment’srent will be$300 more
than the rent of the previous apartment(We note that many possible rules could be
generated; the choice of rules is outside the scope of this paper.)

More precisely, for cases A and B, the case difference heuristic approach gener-
ates an adaptation rule applicable to a retrieved case C and problem P, for which the
difference in problems of A and B is similar to the differencebetween the problem of
C and P, i.e., for which diff(Prob(C),P) is similar to diff(Prob(A),Prob(B)). The new
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Algorithm 1 EAR’s basic algorithm
Input:
Q: input query
n: number of base cases to adapt to solve query
r: number of rules to be applied per base case
CB: case base
Output: Estimated solution value for Q

CasesToAdapt← NeighborhoodSelection(Q,n,CB)
NewRules:← RuleGenerationStrategy(Q,CasesToAdapt,CB)
for c in CasesToAdapt do

RankedRules← RankRules(NewRules,c,Q)
V alEstimate(c)← CombineAdaptations(RankedRules, c, r)

end for
return CombineVals(∪c∈CasesToAdaptV alEstimate(c))

rule adjusts Sol(C) to generate a new solution N, such that diffSol(C),P is similar to
diff(Sol(A),Sol(B)). For a more detailed description, seeHanney and Keane [27].

The results of the case difference heuristic depend on the cases from which rules
are generated; the final results depend on the cases to which they are applied. The
EAR methods estimate the solution of a case by retrieving a set of similar cases, ad-
justing their values by applying an ensemble of adaptation rules and combining the
adjusted values to form the final prediction. Algorithm 1 explains the overall approach
of EAR. In Algorithm 1,NeighborhoodSelection, RuleGenerationStrategy, and
RankedRules respectively denote methods for finding nearest neighbors,generating
adaptation rules and adaptation retrieval in EAR4. More details are provided in [9].

EAR has different variations based on the subsets of cases ituses as source cases
for solving input problems and the cases it selects as the basis for building adaptation
rules. Different variants use different combinations of local and global cases. For ex-
ample, EAR4, selects cases for both building solution and adaptation rules from the
local neighborhood of the input problem. In this paper we focus on big data versions of
EAR4 a family of EAR methods that generates both solutions and adaptations from the
local neighborhood of the input query.

EAR has been shown to provide significant gains in accuracy over baseline methods
[9]. However, because it depends on multiple case retrievals to generate adaptation rules
for multiple case neighborhoods, its application for largecase bases, using conventional
CBR techniques, can be expensive. We have developed compression-based methods to
help alleviate this [11], but like all compression-based methods, these trade off accuracy
for compression. This motivated us to explore the application of big data techniques to
the EAR approach.

3.2 Locality Sensitive Hashing

Locality Sensitive Hashing (LSH) [13] was developed to decrease the time complexity
of finding nearest neighbors for an input query in d-dimensional Euclidean space. LSH
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achieves this goal by approximating the nearest neighbor search process; it uses families
of hashing functions for which the probability of collisionis higher for cases which are
similar (in terms of their input features). Since the introduction of LSH, various schemes
have been proposed to improve various aspects of the core method [28–30].

LSH groups similar items into different buckets by maximizing the probablity of
collsion for similar items. In contrast to nearest neighborsearch, LSH does not require
comparing a case with other cases to find its nearest neighbors. Instead, if an appropriate
hashing function is used it is expected that a case and its nearest neighbors end up in
the same bucket. LSH is an approximation method and it does not guarantee grouping
a case and its nearest neighbors into the same bucket. However, though LSH sacrifices
accuracy for efficiency, it has been demonstrated that LSH can be sufficiently accurate
in practice [30].

Previous experiments have studied the performance of k-NN using locality-sensitive
hashing to retrieve nearest neighbors (e.g. [29]), showingthat LSH achieves higher
efficiency compared to linear k-NN with the expected loss in accuracy. In this paper, we
explore both the efficiency benefits of LSH for EAR’s ensemblemethod, and the ability
of EAR’s ensemble method to provide good performance despite the approximations
made by LSH.

3.3 MapReduce

MapReduce is a framework that enables parallel processing of data. The “map” step
reads and filters data. Next, data is distributed among different nodes/reducers based on
a particular field (key) where data is summarized and desiredmetrics are calculated for
the subset of data in each reducer. Different implementations of the MapReduce frame-
work are available. A popular open source implementations of MapReduce framework
which is commonly used in industry isApache Hadoop. Recent work by Beaver and
Dumoulin [15] has applied MapReduce for CBR, but only for retrieval of exact match
cases, rather than for similarity-based retrieval.

4 BEAR: A General Approach to Applying EAR Family Methods
to Big Data

4.1 Overview

BEAR (Big-data Ensembles of Adaptations for Regression) isa realization of the EAR
family of case-based regression methods in a big data platform, aimed at decreasing the
cost of finding nearest neighbors, a process for which the computational expense may
become serious issue for very large case bases. The EAR family of methods must iden-
tify nearest neighbors at three steps in their processing: to select source cases to adapt, to
select candidate cases to build adaptation rules, and to retrieve adaptation rules. Among
these three steps, retrieving adaptations is potentially the most challenging, because,
for a case base of sizen, the upper bound on the number of possible adaptation rules
to generate isO(n2). However, EAR4 mitigates this by limiting the cases to participate
in rule generation process to the cases in the local neighborhood of the input query.
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Therefore, in EAR4 it is likely that source case retrieval will be a more serious resource
issue than the adaptation retrieval.

To overcome the challenges raised by the size of the case/rule base, we have inves-
tigated minimizing the size of the case base [31] and adaptation rule set [12] to improve
performance (in terms of the required computing resources). Although these methods
can be useful for reducing the case/rule base size, the process of case/rule base size
reduction can still be time consuming and costly; they have not been applied to case
bases with more than a few thousands cases. In contrast to these methods, BEAR aims
to mitigate challenges brought by the size of the case base byleveraging existing frame-
works and algorithms for processing big data to yield accurate estimates rapidly, using
locality sensitive hashing on top of a MapReduce framework.

4.2 BEAR’s Architecture

BEAR consists of two main modules: LSH for retrieving similar cases and EAR for rule
generation and value estimation. The architecture of the system is designed to work in
a MapReduce framework. In the map step cases and queries are read and hashed to
different buckets using LSH. Cases and queries with identical hashed keys are sent
to the same reducer node. In the reduce step two main activities are done: First, the
nearest neighbors of each query (from the cases in the same reducer) are determined;
Next, depending on the selected EAR method (i.e. EAR4), the adaptation rules are also
generated.

For EAR4, which only uses local cases, adaptation rules are only generated and
retrieved within the same bucket (for some other variationsof EAR, e.g. EAR5, which
uses global case information, adaptations would be generated within all buckets and
the generated adaptations from different buckets unioned together to form the rule base
from which adaptations are retrieved). The final estimates are generated by applying an
ensemble of adaptation rules for adjusting the base cases’ values and combining those
adjusted values. Figure 1 summarizes BEAR’s process for estimating case solutions.

In Figure 1, circles represent cases in the case base and the square represents the
input query. Cases are hashed and transferred to different reducers based on their hashed
keys. Next, adaptation rules are generated based on the cases hashed to the same reducer
as the input query. Finally EAR4 is used to estimate the solution of the input query.
Depending on the implementation of BEAR, there could be another step in its process
flow (not depicted), using a similarity measure such as Euclidean distance to filter out
cases in the same bucket as the input query based on a distancethreshold or a predefined
number of nearest neighbors.

The use of MapReduce offers the advantage of being able to process multiple
queries simultaneously, enabling, for example, millions of queries to be processed in
parallel. Also, even when single queries are processed sequentially, the use of MapRe-
duce enables processing the cases in the case base in parallel on multiple nodes, rather
than having to sequentially process all cases to select those whose LSH hashing keys
match that of the query, which would not be scalable.
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Fig. 1. Illustration of Global BEAR process flow.

5 Evaluation

Our evaluation tests the execution time benefits associatedwith big data methods for
scaled up case-based regression with ensembles of adaptations for regression, and stud-
ies whether BEAR’s use of an ensemble of adaptations improves accuracy compared to
applying a non-ensemble approach, when both methods use LSHfor retrieval.

Because LSH is not guaranteed always to retrieve the optimalneighbors, we expect
that using LSH rather than exhaustive search for nearest neighbors will somewhat de-
grade overall performance. Consequently, another question is whether the ensemble of
adaptations approach, applied in the context of LSH, helps to mitigate this drawback.

This involves two types of tests. The first is a test of the accuracy of “traditional”
k-NN, for which neighbors are selected exhastively, compared to that when LSH is
used to select (an approximate set of) neighbors, and when LSH is used in conjunction
with BEAR. The second, is ablation study to determine how much of the performance
of BEAR can be ascribed to its ensemble method, as opposed to the fact that it uses
adaptations, while k-NN does not. For the purposes of this case study, we test for a
particular LSH implementation, described below, which we refer to as LSH1.

Specifically, our experiments address the following questions:
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Table 1. Characteristics of the test domains

Domain name # features # cases Avg. cases/solution sol. sd
Auto 13 195 1.1 8.1
MPG 7 392 3.1 7.8

Housing 13 506 2.21 9.2
Power 7 2,049,280 1.09 1.06

1. Q1: How does the accuracy of BEAR compare to that of a baseline of k-NN using
LSH1 for finding nearest neighbors?

2. Q2: How does the ensemble approach of BEAR increase accuracy compared to
applying single adaptations for adjusting base case values?

3. Q3: How does the accuracy of BEAR using LSH1 compare to thatof exhaustive
k-NN?

4. Q4: How does execution efficiency of BEAR compare to that oftraditional (non-
LSH) k-NN?

5.1 Experimental Design

We evaluated BEAR on four sample domains from the UCI repository [32]: Automobile
(Auto), Auto MPG (MPG), Housing, and electric power consumption (Power). The
goal for these domains is respectively to predict the auto price, fuel efficiency (miles
per gallon), property value, and household global minute-averaged active power (in
kilowatts). For all data sets records with unknown values are removed and feature values
are normalized by subtracting feature’s mean from the valueand dividing the result by
standard deviation of the feature’s values. (Cases with missing features could be handled
by standard feature imputation methods, but this is beyond the scope of our experiment.)
In addition, for domains with non-numeric features, only numeric features are used.
The accuracy is measured in term of Mean Absolute Error (MAE)in all experiments
and ten-fold cross validation is used for conducting the experiments. For all domains
parameters are tuned using hill climbing. In all experiments BEAR’s performance is
compared with that of an implementation of k-NN based on LSH which we refer to
simply as k-NN from this point forward. Sample domains are chosen so that they cover
both smaller and huge case bases. Table 1 summarizes the characteristics of the sample
domains.

All records and features were used for the Housing (506) domain. Auto, MPG, and
Power contained some records with unknown feature values, which were removed (46
out of 205 for Auto, 6 out of 398 for MPG and 25979 out of 2075259for Power). For all
domains only numeric attributes are used in the experimentsto enable the application
of p-stable locality sensitive hashing. All features of MPGand Housing were numeric,
but 10 non-numeric features were removed from Auto and 1 fromPower. We note that
the numeric features are not required by the general BEAR method.

We note that LSH is a family of methods. Our implementation ofBEAR uses
Apache DataFu, originally introduced in [33], to support locality sensitive hashing. The
corresponding class from Apache DataFu used in BEAR isL2PStableHash, with a
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Domain name MAE for k-NN MAE for BEAR % improvement over k-NN
Auto 2.04 1.18 42.14%
MPG 2.62 2.06 21.40%

Housing 3.73 2.84 23.98%
Power 0.15 0.10 36.01%

Table 2. Accuracy comparison for k-NN and BEAR

2-stable distribution and default parameter settings. It is important to note that because
the focus of our experiments is primarily the comparison of BEAR to LHS-based k-NN,
and both methods are based on the same version of LSH, the specific variant chosen is
not significant to our results.

It also uses EAR4’s Weka plugin’s code [34], combined with some common func-
tionality from Weka [35] to generate adaptation, retrieve and apply them and build the
final prediction. The experiments are run on an EMR amazon cluster with one m3.xlarge
master node and ten c3.2xlarge core nodes.

5.2 Experimental Results

Q1: How does the accuracy of BEAR compare to that of a baselineof k-NN using LSH1
for finding nearest neighbors?To address Q1, we conducted experiments to compare
BEAR with k-NN using LSH1. In all experiments BEAR’s estimations are generated
using EAR4 to generate adaptation rules, retrieve adaptations and build final estima-
tions based on nearest neighbors retrieved by LSH1. The experiments report estimation
error in terms of Mean Absolute Error. Table 2 summarizes theresults for four sample
domains. In all domains BEAR outperforms k-NN by substantial margins. A one side
paired t-test with 95% confidence interval was used to assessthe statistical significance
of results achieved by BEAR in the smaller case bases (we excluded the Power domain
from the statistical significance analysis because of the very large size of the case base).
The null hypothesis is that the MAE of BEAR is greater than that of k-NN. The results
of the t-test showed that p<.01, so the improvement of BEAR over k-NN is significant.

Q2: How does the ensemble approach of BEAR increase accuracycompared to apply-
ing single adaptations for adjusting base case values?To study the effect of applying
an ensemble of adaptations on estimations’ accuracy we implemented an ablated ver-
sion of BEAR,BEAR1in which only one adaptation is applied to adjust case values.
Figure 2 shows the percent of improvement in MAE over k-NN forBEAR and BEAR1.
BEAR1 outperforms k-NN in all domains, but the improvement is less than that of
BEAR over k-NN, which shows the benefit of ensemble approach of BEAR.

Q3: How does accuracy of k-NN and BEAR using LSH1 compare to that of traditional k-
NN? Because LSH-based retrieval does not guarantee always selecting the true nearest
neighbors to a case, some accuracy penalty may be expected. However, we hypothesize
that BEAR’s ensemble method helps alleviate the associatedquality degradation. We
tested this hypothesis by comparing the performance of traditional k-NN on the Auto,
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Fig. 2. BEAR vs. BEAR1

MPG, and Housing domains, with the previously-described testing scenario (because
the relatively large size of the Power domain made traditional k-NN excessively expen-
sive, we did not compare performance in the Power domain). MAE of traditional k-NN
for auto and mpg domains was 1.31 and 2.14 respectively, compared to 1.18 and 2.06
for BEAR. However, in the housing domain, traditional k-NN slightly outperformed
BEAR, with an MAE of 2.68, versus 2.84 for BEAR (approximately a 5% drop). Thus
BEAR retains accuracy comparable to traditional k-NN.

Q4: How does execution efficiency of BEAR compare to that of traditional k-NN? Fig-
ure 3 shows the run time in seconds of traditional (non-LSH) k-NN and BEAR on dif-
ferent subsets of the Power domain, ranging from 20,000 to 820,000 randomly selected
cases. The recorded run times are the total time for conducting ten fold cross validation.
All experiments were run on a single machine with 16 GB memoryand 2.8 GHz Intel
Core i7 processor. Weka’s [35] IBK package is used as the implementation of k-NN.
For smaller case base sizes (e.g. 20,000 cases) k-NN is quitefast; a ten-fold cross vali-
dation test takes on the order of 1 second. For a case base approximately 31 times larger
(615,000 cases) the test takes 4.5 hours—approximately 16,000 times longer. When the
size is increased to 820,000 cases, time increases to 21 hours.

On the other hand, using LSH and parrallelizing the process over different nodes
enables EAR4 to process same sizes of the case based in significantly less time. An
interesting observation is that for a case base of 20,000 cases it actually takes less time
for k-NN to yield the results than BEAR (it takes k-NN 10 seconds while takes BEAR
265 seconds). This is because of the communication overheadof MapReduce frame-
work which makes applying big data techniques less efficientwhen applied to small
case bases. However, k-NN run time increases very rapidly compared to BEAR as case
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Fig. 3. Running time of k-NN and BEAR for different sizes of Power domain

base size increases to 205,000 cases, while the run time of BEAR increases at a much
lower rate. Even when the entire power case base is used (over2 million cases), BEAR
takes less than 20 minutes to complete the experimental run on an EMR cluster with
the configuration described in section 5.1. We note that thiscorresponds to less than .1
second per problem solved, even on a small cluster. This supports the need to move to
big data methods for practical large-scale CBR.

5.3 Overall Perspective: Scale-Up, Time, Space, and Accuracy

The experiments in this case study illustrate the ability ofthe BEAR approach, which
combines ensemble adaptations with locality-sensitive hashing, both to remain efficient
for large scale data and to provide substantial accuracy increases compared to non-
ensemble adaptation of cases retrieved by LSH, and for k-NN using LSH. More gen-
erally, it illustrates the potential of CBR’s reasoning capability (in the form of case
adaptation) to provide strong benefits not present in big data/retrival-only methods. The
largest test case base used in our experiments has two million cases, and was run on a
small cluster (with ten core nodes). However, BEAR could easily be applied to substan-
tially larger case bases with tens or even hundreds of millions of cases, and expected
running times comparable to that reported in this paper, by increasing the computational
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resources to the level common in industrial settings (e.g. acluster with hundred nodes
or more).

In many treatments of case-based maintenance in CBR, having/maintaining a large
number of cases is assumed to correspond to degraded retrieval and processing time,
potentially requiring sacrificing information by case deletion. However, leveraging big
data platforms and techniques it is possible to avoid information loss, and consequently
yield more accurate solutions, by retaining full case basesimpractical for conventional
methods and using them efficiently. The ability of big data tointegrate both with flexible
similarity-based retrieval and case adaptation is promising for the general ability of
much scaled up CBR. This, in turn, could open the door to very large-scale CBR, with
near-instant retrieval from case bases with millions of cases, plus the potential accuracy
benefits of avoiding the need for case-base compression in many domains.

The previous experiments focus on the ability of big data methods to enable using
full case bases. However, given the speed of those methods, for time-critical tasks it
could even be feasible to sacrifice additional space for the sake of time. As a concrete
example, for numerical prediction using BEAR in a domain with millions of cases (e.g.
the Power domain), it would be possible to pre-process the data to generate the LSH
keys for each case and store all cases with their corresponding hash keys in a NoSQL
database. Because, in LSH, each record can be hashed with a set of hash families, this
results in having case bases of size orders of magnitude greater than the original case
base. However, with this NoSQL design, applying a method such as EAR4 on top of big
data methods could enable processing thousands of queries in a matter of a few seconds
even without MapReduce. Even for millions of queries, usingMapReduce for query
processing only and using the NoSQL database for case retrieval, average response
time per query could still be in range of a few milliseconds.

6 Conclusion and Future Directions

In this paper we illustrated the practicality of a big-data version of ensembles of adapta-
tion for regression, implemented in BEAR, which uses MapReduce and Locality Sen-
sitive Hashing for finding nearest neighbors of the input query. We consider the results
encouraging for the application of big data methods to the fuller CBR process, to exploit
not only larger case bases but also collections of adaptation rules, without compression.
Such methods might also present opportunities for CBR approaches to big data prob-
lems more generally, as an alternative to rule mining. In addition, the BEAR approach
improves performance compared to the big data baseline k-NNwith LSH1, and pre-
serves comparable performance to that of much more costly traditional k-NN.

As future directions, we intend to compare accuracy and speed performance
achieved by case base compression to those of BEAR, to betterunderstand the trade-
offs between traditional and big data methods for CBR. GivenBEAR’s efficiency, we
also intend to extend our methods to test more computationally expensive variations
of the EAR family of methods as the case-base estimator module in BEAR. For ex-
ample, generating rules from neighborhoods other than the local neighborhood of the
input query—which requires consideration of many more cases—and adding contex-
tual considerations in adaptation retrieval, have produced good small-scale results [10],
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but with high costs that raised concerns for their large-scale applicability by conven-
tional CBR methods. The BEAR framework suggests a path for making practical such
case-intensive methods.

Previous CBR research has applied big data methods to CBR when case retrieval re-
lies on exact match (string-based) retrieval [15]; BEAR enables similarity-based match-
ing. However, an importaant problem is how to apply these techniques to structured
cases.
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