CBR MeetsBig Data: A Case Study
of L arge-Scale Adaptation Rule Generation

Vahid Jalali and David Leake

School of Informatics and Computing, Indiana University
Bloomington IN 47408, USA
vj al al i b@ ndi ana. edu, | eake@ ndi ana. edu

Abstract. Adaptation knowledge generation is a difficult problem f@&RC In
previous work we developednsembles of adaptation for regressi®AR), a
family of methods for generating and applying ensemblesdafptation rules
for case-based regression. EAR has been shown to provide ggréormance,
but at the cost of high computational complexity. When edficly problems re-
sult from case base growth, a common CBR approach is to fatusase base
maintenance, to compress the case base. This paper prassags study of an
alternative approach, harnessing big data methods, splsifMapReduce and
locality sensitive hashing (LSH), to make the EAR approasdsible for large
case bases without compression. Experimental results $tatthe new method,
BEAR, substantially increases accuracy compared to aibadeilg data k-NN
method using LSH. BEAR'’s accuracy is comparable to thatadfitional k-NN
without using LSH, while its processing time remains readda for a case base
of millions of cases. We suggest that increased use of bagmathods in CBR
has the potential for a departure from compression-bassatzase maintenance
methods, with their concomitant solution quality penaltyenable the benefits
of full case bases at much larger scales.
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1 Introduction

The growth of digital data is widely heralded. A 2014 artielimates that “[A]lmost
90% of the world’s data was generated during the past twosyeath 2.5 quintillion
bytes of data added each day” [1]. Individual organizaticoifect data sets on an un-
precedented scale. For example, in 2013, a single heakimeswork in the U.S. state
of California was estimated to have over 26 petabytes oépatiata from electronic
health records alone [2]. Big data methods and resourcesdtenged the practical-
ity of using such large-scale data, with inexpensive clonmmiguting services enabling
processing data sets of unprecedented scale. However,aheesot a panacea: making
good use of large-scale data remains a challenge (e.g., [3])

Case-based reasoning’s ability to reason from individiah®les and its inertia-
free learning make it appear a natural approach to applygalata problems such as
predicting from very large example sets. Likewise, if CBRtsyns had the capability to
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handle very large data sets, that capability could fatdiaBR research on very large
data sources already identified as interesting to CBR, saatases harvested from
the “experience Web” [4], cases resulting from large-scald-time capture of case
data from instrumented systems [5], or cases arising frase capture in trace-based
reasoning [6].

However, realizing the potential of CBR to have impact ondsada problems will
depend on CBR systems being able to exploit the informaticzase bases with size
far beyond the scale now commonly considered in the CBRalitee. The case-based
reasoning community has long been aware of the challengesabifig up CBR to large
case bases. The primary response has been case-base araiaterethods aimed at re-
ducing the size of the case base while preserving competergee[7, 8]). Such meth-
ods have proven effective at making good use of case knowletthin storage limits.
However, because compression methods delete some of thes@B&in’s knowledge,
they commonly sacrifice some solution quality.

A key factor in success of CBR when applied to big data is efficretrieval of
cases. As CBR does not generalize beyond cases, it is eXyranportant to the suc-
cess of a CBR system to be able to find required cases rapidhisipaper we illustrate
the practicality of applying big-data tools to increasespeed and scalability of CBR,
using MapReduce and Locality Sensitive Hashing for findiegrast neighbors of the
input query.

In previous work, we introduced and evaluated a method fdress$ing the classic
CBR problem of acquiring case adaptation knowledge witkembles of adaptations
for regression(EAR) [9]. This work demonstrated the accuracy benefits oRE8—
12], but also identified important efficiency concerns fog&acase bases. This paper
presents a case study applying big data methods to addyds8R’s scale-up, lever-
aging techniques and frameworks well known to the big datarsanity to enable
large-scale CBR. It presents a new algorithm, BEA&plying the EAR approach in a
MapReduce framework. The paper demonstrates that the Usg data methods sub-
stantially extends the size of case base for which the EARo&h is practical, to case
bases of millions of cases even on a small Amazon Elastic Mdp&e (EMR) clustet.

The paper begins with a discussion of the relationship ofdaith and CBR, con-
trasting the “retain and scale up” approach of big data tactmapression-based focus
of case-base maintenance. It next introduces the EAR farhihethods and the two big
data methods applied in its new version, locality senshiaghing [13] and MapReduce.
With this foundation it introduces BEAR, a realization of RAor big data platforms,
and presents an experimental evaluation assessing BEA&sacy for a case base of
two million cases. To assess the benefit of BEAR’s ensemipeoagh it compares it to
a baseline of a big data version of k-NN, using Locality SérsiHashing for imple-
menting nearest neighbor search. It also shows that BEASpscach helps alleviate
the accuracy penalty that can result from using LSH instéadraditional (exhaustive)
approach for finding nearest neighbors, thus compensatirg ffotential drawback of
using LSH. To assess the need for big data methods for BEARIs and BEAR’s

! Big data ensembles of adaptations for regression
2 http:/laws.amazon.com/elasticmapreduce/
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scaleup potential, it also compares BEAR’s scaleup peidioaa to that of k-NN using
a traditional (exhaustive) approach for finding nearesyimsgors.

The evaluation supports the accuracy benefits of BEAR artdhieaspeedup bene-
fits of big data methods are sufficient to counterbalance dhgpeitational complexity
of BEAR's rule generation and ensemble solution methodsisTthe use of big data
methods may have benefits for CBR beyond simple speedupsakingnpractical the
use of richer methods which can increase accuracy. Twoamiltases is large by the
standards of current CBR practice, but true “big data” CBR wvolve much larger
data sets. The paper closes with a discussion of BEAR'’s patdor scaleup to such
data sets.

2 Scaling CBR to Big Data

Big data has had a transformative effect on data manageematiling many enterprises
to exploit data resources at previously unheard-of dateescharge data sets such as
electronic medical records collections may naturally bens&s containing cases; rou-
tine data capture in many domains could provide rich caseshdkcases can be re-
trieved sufficiently efficiently, CBR is an appealing method large-scale reasoning
because its lazy learning avoids the overheads associdtedraditional rule mining
approaches enables inertia-free adjustments to additiana, without the need for re-
training.

However, CBR systems have seldom ventured into the scalig ofaba. For exam-
ple, calculating metrics such as number of visitors or pagesfor a social media or
e-commerce web site with hundreds of million users is a compractice at industry,
but in current CBR research, experiments with tens of thodsaf cases, or even much
fewer, are common. Few CBR projects have considered scplesmillions of cases
[14,15], and to our knowledge, none have explored largdesaxcept a few excep-
tions such as a recent effort to apply big data methods facaseexact match only,
rather than similarity-based retrieval [15].

When CBR research has addressed increased data sizesnthgygocus has been
compression of existing data rather than scale-up. CoradikeCBR research has fo-
cused on the efficiency issues arising from case-base gréwtthe case base grows,
the swamping utility problem can adversely affect caseewt times, degrading sys-
tem performance [16, 17]. Within the CBR community and thehirge learning com-
munity studying instance-based learning, extensive €fffas been devoted to address-
ing the swamping utility problem for case retrieval with edsase maintenance meth-
ods for controlling case-base growth, with the goal of gatieg case bases that are
compact but retain coverage of as many problems as poskibthods for developing
compact competent case bases include selective deletmn[(& 18]), selective case
retention (e.g., [19-21]), and competence-aware corigtruof case bases [8, 22—-25].
Such methods generally trade off size against accuracy;dhma to retain as much
competence as possible for a given amount of compressigmtraeoff has been seen
as the price of making CBR feasible for domains in which thteo$@ossible cases is
large, but storage and processing resources are limited.
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This paper argues that applying big data methods can chhisgeatculus; that even
for case bases on the order of millions of cases, big dataadstban make the best
case-base compression strategycompression at allf big data methods can enable
CBR scale-up, dramatically increasing the feasibility ahlling very large case bases,
compression methods will be required only for extreme scade bases—and, even for
very large cases, might not be required at all in practiceedly, it has been observed
that for common practical CBR tasks, even with conventiomethods, case base size
may not be an issue [26]; big data methods could bring CBR &b be a new class of
problems, at much larger scale.

3 Foundations of the Proposed M ethod

The case study in this paper focuses on applying CBR to ngalgsiediction tasks
under big data settings, demonstrating the feasibilityigfdata approaches to provide
good performance at scales on the order of millions of cagésminimal quality loss.
The method proposed in this paper builds on three curreresefirch. The first, from
CBR, is the EAR family of methods [9] for case-based regmsaising ensembles of
adaptations. The second, from big data is Locality Semskiashing (LSH), a method
for nearest neighbor search in big data platforms. The ikildapReduce, a popular
framework for parallel processing of data.

3.1 TheEAR Family of Methods

The acquisition of case adaptation knowledge is a classigl@m for CBR. A popular
approach to this problem, for numerical prediction (regi@s) tasks, is to generate
adaptation rules automatically from the case base. The BARY of methods solves
numerical prediction problems using automatically-gateat ensembles of adaptations
to adapt prior solutions.

The EAR approach applies to any adaptation generation methd it has been
tested for a popular case-based rule generation metho@ase Difference Heuristjc
which generates rules based on comparing pairs of casesn &ixo cases A and B,
with problem parts Prob(A) and Prob(B), and solution padfA and Sol(B), the
case difference heuristic approach assumes that probletinssimilar difference in
their problem descriptions will have similar differenceghieir solutions. For example,
for predicting apartment rental prices from a case basentérproperties and prices, if
one apartment’s monthly rent is $300 more than the rent otlaeraise highly similar
apartment, and their difference is that the more expengigetment has an additional
bedroom, the comparison might suggest a general Witeen the previous apartment
case has one bedroom fewer, predict that the new apartmemtswill be $300 more
than the rent of the previous apartmgiWe note that many possible rules could be
generated; the choice of rules is outside the scope of tipisrpa

More precisely, for cases A and B, the case difference heudpproach gener-
ates an adaptation rule applicable to a retrieved case C rautiepn P, for which the
difference in problems of A and B is similar to the differerdmmtween the problem of
C and P, i.e., for which diff(Prob(C),P) is similar to diff@b(A),Prob(B)). The new
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Algorithm 1 EAR’s basic algorithm

Input:

Q: input query

n: number of base cases to adapt to solve query
r: number of rules to be applied per base case
CB: case base

Output: Estimated solution value for Q

CasesToAdapt +— NeighborhoodSelectiot,n,C B)
NewRules: — RuleGenerationStrateg(CasesToAdapt,C B)
for cin CasesToAdapt do
RankedRules— RankRulesVew Rules,c,Q)
Val Estimate(c) < CombineAdaptationg{anked Rules, c, )
end for
return CombineVals{cc casesToadapt V al Estimate(c))

rule adjusts Sol(C) to generate a new solution N, such tHtgal(C),P is similar to
diff(Sol(A),Sol(B)). For a more detailed description, $¢é@nney and Keane [27].

The results of the case difference heuristic depend on tbesdaom which rules
are generated; the final results depend on the cases to wieghate applied. The
EAR methods estimate the solution of a case by retrieving afs@milar cases, ad-
justing their values by applying an ensemble of adaptatidesrand combining the
adjusted values to form the final prediction. Algorithm 1 kekps the overall approach
of EAR. In Algorithm 1, NeighborhoodSelection, RuleGenerationStrategy, and
RankedRules respectively denote methods for finding nearest neighlgenrserating
adaptation rules and adaptation retrieval in EAR4. Moraitkeare provided in [9].

EAR has different variations based on the subsets of cassged#t as source cases
for solving input problems and the cases it selects as this fiasbuilding adaptation
rules. Different variants use different combinations afdband global cases. For ex-
ample, EAR4, selects cases for both building solution araptadion rules from the
local neighborhood of the input problem. In this paper waufoon big data versions of
EAR4 a family of EAR methods that generates both solutiomsaataptations from the
local neighborhood of the input query.

EAR has been shown to provide significant gains in accuraeyloaseline methods
[9]. However, because it depends on multiple case retsdvajenerate adaptation rules
for multiple case neighborhoods, its application for lazgse bases, using conventional
CBR techniques, can be expensive. We have developed caigprdsmsed methods to
help alleviate this [11], but like all compression-basedhods, these trade off accuracy
for compression. This motivated us to explore the applicetif big data techniques to
the EAR approach.

3.2 Locality Sensitive Hashing

Locality Sensitive Hashing (LSH) [13] was developed to @ase the time complexity
of finding nearest neighbors for an input query in d-dimemai&uclidean space. LSH
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achieves this goal by approximating the nearest neighlancegrocess; it uses families
of hashing functions for which the probability of collisiemhigher for cases which are
similar (in terms of their input features). Since the intwotlon of LSH, various schemes
have been proposed to improve various aspects of the cormthg8-30].

LSH groups similar items into different buckets by maximgithe probablity of
collsion for similar items. In contrast to nearest neighdearch, LSH does not require
comparing a case with other cases to find its nearest neighbetead, if an appropriate
hashing function is used it is expected that a case and itesteaeighbors end up in
the same bucket. LSH is an approximation method and it doeguazantee grouping
a case and its nearest neighbors into the same bucket. Howewegh LSH sacrifices
accuracy for efficiency, it has been demonstrated that LSHoeasufficiently accurate
in practice [30].

Previous experiments have studied the performance of k-$iifjlocality-sensitive
hashing to retrieve nearest neighbors (e.g. [29]), showliag LSH achieves higher
efficiency compared to linear k-NN with the expected losscicuaacy. In this paper, we
explore both the efficiency benefits of LSH for EAR’s ensermbéthod, and the ability
of EAR’s ensemble method to provide good performance despé approximations
made by LSH.

3.3 MapReduce

MapReduce is a framework that enables parallel procesdidgta. The “map” step
reads and filters data. Next, data is distributed amongrdiftenodes/reducers based on
a particular field (key) where data is summarized and desirettlics are calculated for
the subset of data in each reducer. Different implementaiid the MapReduce frame-
work are available. A popular open source implementatidmdapReduce framework
which is commonly used in industry Bpache HadoopRecent work by Beaver and
Dumoulin [15] has applied MapReduce for CBR, but only foriestal of exact match
cases, rather than for similarity-based retrieval.

4 BEAR: A General Approach to Applying EAR Family Methods
to Big Data

4.1 Overview

BEAR (Big-data Ensembles of Adaptations for Regressioa)rizalization of the EAR
family of case-based regression methods in a big data ptatftimed at decreasing the
cost of finding nearest neighbors, a process for which thepatational expense may
become serious issue for very large case bases. The EAR/fahmiethods must iden-

tify nearest neighbors at three steps in their processirgglect source cases to adapt, to
select candidate cases to build adaptation rules, andrievetdaptation rules. Among
these three steps, retrieving adaptations is potentialyntost challenging, because,
for a case base of size the upper bound on the number of possible adaptation rules
to generate i§)(n?). However, EAR4 mitigates this by limiting the cases to maptite

in rule generation process to the cases in the local neigloloor of the input query.
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Therefore, in EAR4 it is likely that source case retrievdl v a more serious resource
issue than the adaptation retrieval.

To overcome the challenges raised by the size of the casd&ask, we have inves-
tigated minimizing the size of the case base [31] and adaptaile set [12] to improve
performance (in terms of the required computing resourddg)ough these methods
can be useful for reducing the case/rule base size, the ggafecase/rule base size
reduction can still be time consuming and costly; they hasvebeen applied to case
bases with more than a few thousands cases. In contrasis® tirethods, BEAR aims
to mitigate challenges brought by the size of the case baswesaging existing frame-
works and algorithms for processing big data to yield adeueatimates rapidly, using
locality sensitive hashing on top of a MapReduce framework.

4.2 BEAR’sArchitecture

BEAR consists of two main modules: LSH for retrieving simidases and EAR for rule
generation and value estimation. The architecture of teteayis designed to work in
a MapReduce framework. In the map step cases and queriesateand hashed to
different buckets using LSH. Cases and queries with idahtiashed keys are sent
to the same reducer node. In the reduce step two main agesivatie done: First, the
nearest neighbors of each query (from the cases in the satneer® are determined,;
Next, depending on the selected EAR method (i.e. EAR4), da@tation rules are also
generated.

For EAR4, which only uses local cases, adaptation rules ake generated and
retrieved within the same bucket (for some other variatmfriSAR, e.g. EAR5, which
uses global case information, adaptations would be gesteraithin all buckets and
the generated adaptations from different buckets unioogether to form the rule base
from which adaptations are retrieved). The final estimateganerated by applying an
ensemble of adaptation rules for adjusting the base caak@vand combining those
adjusted values. Figure 1 summarizes BEAR'’s process fonathg case solutions.

In Figure 1, circles represent cases in the case base andubeegepresents the
input query. Cases are hashed and transferred to diffexéaters based on their hashed
keys. Next, adaptation rules are generated based on treleasteed to the same reducer
as the input query. Finally EAR4 is used to estimate the smiudf the input query.
Depending on the implementation of BEAR, there could belagrattep in its process
flow (not depicted), using a similarity measure such as Haeln distance to filter out
cases in the same bucket as the input query based on a diteesi®old or a predefined
number of nearest neighbors.

The use of MapReduce offers the advantage of being able toegsomultiple
queries simultaneously, enabling, for example, milliohgjweries to be processed in
parallel. Also, even when single queries are processedeséiglly, the use of MapRe-
duce enables processing the cases in the case base inlgarafaltiple nodes, rather
than having to sequentially process all cases to selece twbsse LSH hashing keys
match that of the query, which would not be scalable.
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Fig. 1. lllustration of Global BEAR process flow.

5 Evaluation

Our evaluation tests the execution time benefits assocvaithdbig data methods for
scaled up case-based regression with ensembles of adaptfti regression, and stud-
ies whether BEAR's use of an ensemble of adaptations imgraseuracy compared to
applying a non-ensemble approach, when both methods usddr3etrieval.

Because LSH is not guaranteed always to retrieve the optigighbors, we expect
that using LSH rather than exhaustive search for neareghbeis will somewhat de-
grade overall performance. Consequently, another queistiwhether the ensemble of
adaptations approach, applied in the context of LSH, helpsitigate this drawback.

This involves two types of tests. The first is a test of the eacy of “traditional”
k-NN, for which neighbors are selected exhastively, coragdo that when LSH is
used to select (an approximate set of) neighbors, and whend 8sed in conjunction
with BEAR. The second, is ablation study to determine how Imafcthe performance
of BEAR can be ascribed to its ensemble method, as opposéx tiadt that it uses
adaptations, while k-NN does not. For the purposes of thée cudy, we test for a
particular LSH implementation, described below, which wfer to as LSH1.

Specifically, our experiments address the following questi
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Table 1. Characteristics of the test domains

Domain name|# features| # cases |Avg. cases/solution|sol. sd
Auto 13 195 1.1 8.1
MPG 7 392 3.1 7.8

Housing 13 506 2.21 9.2
Power 7 2,049,28 1.09 1.06

1. Q1: How does the accuracy of BEAR compare to that of a beseli k-NN using
LSHL1 for finding nearest neighbors?

2. Q2: How does the ensemble approach of BEAR increase agcuoenpared to
applying single adaptations for adjusting base case values

3. Q3: How does the accuracy of BEAR using LSH1 compare todghakhaustive
k-NN?

4. Q4: How does execution efficiency of BEAR compare to thataditional (non-
LSH) k-NN?

5.1 Experimental Design

We evaluated BEAR on four sample domains from the UCI reposiB2]: Automobile
(Auto), Auto MPG (MPG), Housing, and electric power constiop (Power). The
goal for these domains is respectively to predict the autepfuel efficiency (miles
per gallon), property value, and household global minwveraged active power (in
kilowatts). For all data sets records with unknown valuesemoved and feature values
are normalized by subtracting feature’s mean from the vaheedividing the result by
standard deviation of the feature’s values. (Cases witeingdeatures could be handled
by standard feature imputation methods, but this is beylomd¢ope of our experiment.)
In addition, for domains with non-numeric features, onlymaric features are used.
The accuracy is measured in term of Mean Absolute Error (MBIl experiments
and ten-fold cross validation is used for conducting theeeixpents. For all domains
parameters are tuned using hill climbing. In all experirseBEAR'’s performance is
compared with that of an implementation of k-NN based on LSkctv we refer to
simply as k-NN from this point forward. Sample domains aresgn so that they cover
both smaller and huge case bases. Table 1 summarizes tletenstics of the sample
domains.

All records and features were used for the Housing (506) derato, MPG, and
Power contained some records with unknown feature valuleishvwvere removed (46
out of 205 for Auto, 6 out of 398 for MPG and 25979 out of 2075&%F%ower). For all
domains only numeric attributes are used in the experinterggable the application
of p-stable locality sensitive hashing. All features of MBI Housing were numeric,
but 10 non-numeric features were removed from Auto and 1 fPomer. We note that
the numeric features are not required by the general BEAR@det

We note that LSH is a family of methods. Our implementatiorB&AR uses
Apache DataFu, originally introduced in [33], to suppoddbty sensitive hashing. The
corresponding class from Apache DataFu used in BEAR2® Stable Hash, with a
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Domain name|M AE for k-NN|MAE for BEAR|% improvement over k-NN
Auto 2.04 1.18 42.14%
MPG 2.62 2.06 21.40%
Housing 3.73 2.84 23.98%
Power 0.15 0.10 36.01%

Table 2. Accuracy comparison for k-NN and BEAR

2-stable distribution and default parameter settings. ithiportant to note that because
the focus of our experiments is primarily the comparisonBAR to LHS-based k-NN,
and both methods are based on the same version of LSH, thifispadant chosen is
not significant to our results.

It also uses EAR4’s Weka plugin’s code [34], combined witmsaccommon func-
tionality from Weka [35] to generate adaptation, retriend apply them and build the
final prediction. The experiments are run on an EMR amazasteiwith one m3.xlarge
master node and ten c3.2xlarge core nodes.

5.2 Experimental Results

Q1: How does the accuracy of BEAR compare to that of a basefikéNN using LSH1
for finding nearest neighbors7o address Q1, we conducted experiments to compare
BEAR with k-NN using LSHL1. In all experiments BEAR’s estintats are generated
using EAR4 to generate adaptation rules, retrieve adaptatind build final estima-
tions based on nearest neighbors retrieved by LSH1. Theiexg@ets report estimation
error in terms of Mean Absolute Error. Table 2 summarizegéselts for four sample
domains. In all domains BEAR outperforms k-NN by substamtiargins. A one side
paired t-test with 95% confidence interval was used to askestatistical significance
of results achieved by BEAR in the smaller case bases (wedadlthe Power domain
from the statistical significance analysis because of tyelaege size of the case base).
The null hypothesis is that the MAE of BEAR is greater thart tifé&k-NN. The results
of the t-test showed thakp01, so the improvement of BEAR over k-NN is significant.

Q2: How does the ensemble approach of BEAR increase accucmepared to apply-
ing single adaptations for adjusting base case valu&s?tudy the effect of applying
an ensemble of adaptations on estimations’ accuracy weeimgited an ablated ver-
sion of BEAR,BEARL1in which only one adaptation is applied to adjust case values
Figure 2 shows the percent ofimprovementin MAE over k-NNB&AR and BEARL1.
BEAR1 outperforms k-NN in all domains, but the improvementdss than that of
BEAR over k-NN, which shows the benefit of ensemble approd&EAR.

Q3: How does accuracy of k-NN and BEAR using LSH1 comparatofiraditional k-
NN? Because LSH-based retrieval does not guarantee alwaysisglthe true nearest
neighbors to a case, some accuracy penalty may be expeciedyvelr, we hypothesize
that BEAR's ensemble method helps alleviate the assocatatity degradation. We
tested this hypothesis by comparing the performance oftimadl k-NN on the Auto,
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MPG, and Housing domains, with the previously-describstirtg scenario (because
the relatively large size of the Power domain made traditi@NN excessively expen-
sive, we did not compare performance in the Power domain)EMftraditional k-NN
for auto and mpg domains was 1.31 and 2.14 respectively, amedpgo 1.18 and 2.06
for BEAR. However, in the housing domain, traditional k-Nhybktly outperformed
BEAR, with an MAE of 2.68, versus 2.84 for BEAR (approximatal5% drop). Thus
BEAR retains accuracy comparable to traditional k-NN.

Q4: How does execution efficiency of BEAR compare to thaaditional k-NN? Fig-
ure 3 shows the run time in seconds of traditional (non-LSiNiNand BEAR on dif-
ferent subsets of the Power domain, ranging from 20,000@08® randomly selected
cases. The recorded run times are the total time for contyiteti fold cross validation.
All experiments were run on a single machine with 16 GB menamy 2.8 GHz Intel
Core i7 processor. Weka's [35] IBK package is used as theamphtation of k-NN.
For smaller case base sizes (e.g. 20,000 cases) k-NN isfgsiit@ ten-fold cross vali-
dation test takes on the order of 1 second. For a case basexapptely 31 times larger
(615,000 cases) the test takes 4.5 hours—approximaté@@@imes longer. When the
size is increased to 820,000 cases, time increases to 24.hour

On the other hand, using LSH and parrallelizing the process different nodes
enables EAR4 to process same sizes of the case based incsigthyfiless time. An
interesting observation is that for a case base of 20,008sdaactually takes less time
for k-NN to yield the results than BEAR (it takes k-NN 10 sedsmvhile takes BEAR
265 seconds). This is because of the communication overbfelsidpReduce frame-
work which makes applying big data techniques less efficidmn applied to small
case bases. However, k-NN run time increases very rapidhpeoed to BEAR as case
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Fig. 3. Running time of k-NN and BEAR for different sizes of Power dom

base size increases to 205,000 cases, while the run time dRBEcreases at a much
lower rate. Even when the entire power case base is useddon#lion cases), BEAR
takes less than 20 minutes to complete the experimentalmand&EMR cluster with
the configuration described in section 5.1. We note thatdhisesponds to less than .1
second per problem solved, even on a small cluster. Thismstgihe need to move to
big data methods for practical large-scale CBR.

5.3 Overall Perspective: Scale-Up, Time, Space, and Accuracy

The experiments in this case study illustrate the abilitthef BEAR approach, which
combines ensemble adaptations with locality-sensitighimg, both to remain efficient
for large scale data and to provide substantial accuraagases compared to non-
ensemble adaptation of cases retrieved by LSH, and for k-8IhNgu_SH. More gen-
erally, it illustrates the potential of CBR’s reasoning ahbility (in the form of case
adaptation) to provide strong benefits not present in big/dettival-only methods. The
largest test case base used in our experiments has twomdhiges, and was run on a
small cluster (with ten core nodes). However, BEAR couldigas applied to substan-
tially larger case bases with tens or even hundreds of mdliaf cases, and expected
running times comparable to that reported in this papemnbreasing the computational
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resources to the level common in industrial settings (eduster with hundred nodes
or more).

In many treatments of case-based maintenance in CBR, Henaigtaining a large
number of cases is assumed to correspond to degraded abai@V processing time,
potentially requiring sacrificing information by case d&a. However, leveraging big
data platforms and techniques it is possible to avoid infdiom loss, and consequently
yield more accurate solutions, by retaining full case basgsactical for conventional
methods and using them efficiently. The ability of big datetegrate both with flexible
similarity-based retrieval and case adaptation is pramgi$or the general ability of
much scaled up CBR. This, in turn, could open the door to \emyd-scale CBR, with
near-instant retrieval from case bases with millions oésaplus the potential accuracy
benefits of avoiding the need for case-base compressionny d@anains.

The previous experiments focus on the ability of big datahmes to enable using
full case bases. However, given the speed of those methmdsife-critical tasks it
could even be feasible to sacrifice additional space fordke sf time. As a concrete
example, for numerical prediction using BEAR in a domairtwtillions of cases (e.g.
the Power domain), it would be possible to pre-process the tdagenerate the LSH
keys for each case and store all cases with their correspgthdish keys in a NoSQL
database. Because, in LSH, each record can be hashed witbfehash families, this
results in having case bases of size orders of magnitudéegtban the original case
base. However, with this NoSQL design, applying a methot siscEAR4 on top of big
data methods could enable processing thousands of queaesatter of a few seconds
even without MapReduce. Even for millions of queries, udit@pReduce for query
processing only and using the NoSQL database for casevadireverage response
time per query could still be in range of a few milliseconds.

6 Conclusion and Future Directions

In this paper we illustrated the practicality of a big-datasion of ensembles of adapta-
tion for regression, implemented in BEAR, which uses MapRedand Locality Sen-
sitive Hashing for finding nearest neighbors of the inputrgudé/e consider the results
encouraging for the application of big data methods to therfGBR process, to exploit
not only larger case bases but also collections of adaptatles, without compression.
Such methods might also present opportunities for CBR ambres to big data prob-
lems more generally, as an alternative to rule mining. Iritamig the BEAR approach
improves performance compared to the big data baseline kvitiNLSH1, and pre-
serves comparable performance to that of much more coatljtivnal k-NN.

As future directions, we intend to compare accuracy and dspEformance
achieved by case base compression to those of BEAR, to hettierstand the trade-
offs between traditional and big data methods for CBR. GBEAR's efficiency, we
also intend to extend our methods to test more computatioeapensive variations
of the EAR family of methods as the case-base estimator redduBEAR. For ex-
ample, generating rules from neighborhoods other thanaite heighborhood of the
input query—which requires consideration of many more gasend adding contex-
tual considerations in adaptation retrieval, have prodgm®d small-scale results [10],
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but with high costs that raised concerns for their largdesapplicability by conven-
tional CBR methods. The BEAR framework suggests a path fdimggpractical such
case-intensive methods.

Previous CBR research has applied big data methods to CBR e@se retrieval re-
lies on exact match (string-based) retrieval [15]; BEAR#eas similarity-based match-
ing. However, an importaant problem is how to apply thesangpies to structured
cases.
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