Skip to main content

Estimation of Species Richness Using Bayesian Networks

  • Conference paper
  • First Online:
  • 1015 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9422))

Abstract

We propose a new methodology based on continuous Bayesian networks for assessing species richness. Specifically, we applied a restricted structure Bayesian network, known as tree augmented naive Bayes, regarding a set of environmental continuous predictors. Firstly, we analyzed the relationships between the response variable (called the terrestrial vertebrate species richness) and a set of environmental predictors. Secondly, the learnt model was used to estimate the species richness in Andalusia (Spain) and the results were depicted on a map. The model managed to deal with the species richness - environment relationship, which is complex from the ecological point of view. The results highlight that landscape heterogeneity, topographical and social variables had a direct relationship with species richness while climatic variables showed more complicated relationships with the response.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Data sources: Andalusian Environmental Network, Spanish Inventory of Terrestrial Species, Spanish National Geographic Institute and Multiterritorial Information System of Andalusia.

  2. 2.

    Variables representing landscape structure [3], calculated from the Andalusian Land Use and Land Cover Map.

References

  1. Aguilera, P.A., Fernández, A., Fernández, R., Rumí, R., Salmerón, A.: Bayesian networks in environmental modelling. Environ. Model. Softw. 26, 1376–1388 (2011)

    Article  Google Scholar 

  2. Aguilera, P.A., Fernández, A., Reche, F., Rumí, R.: Hybrid Bayesian network classifiers: application to species distribution models. Environ. Model. Softw. 25(12), 1630–1639 (2010)

    Article  Google Scholar 

  3. Atauri, J., de Lucio, J.: The role of landscape structure in species richness distribution of birds, amphibians, reptiles and lepidopterans in Mediterranean landscapes. Landscape Ecol. 16, 147–159 (2001)

    Article  Google Scholar 

  4. Balmford, A., Moore, J.L., Brooks, T., Burges, N., Hansen, L.A., Williams, P., Rahbek, C.: Conservation conflicts across Africa. Science 291, 2616–2619 (2001)

    Article  Google Scholar 

  5. Boone, R.B., Krohn, W.B.: Partioning sources of variation in vertebrate species richness. J. Biogeogr. 27, 457–470 (2000)

    Article  Google Scholar 

  6. Chown, S.L., van Rensburg, B.J., Gaston, K.J., Rodrigues, A.S.L., van Jaarsveld, A.S.: Energy, species richness and human population size: conservation implications at a national scale. Ecol. Appl. 15(5), 1233–1241 (2003)

    Article  Google Scholar 

  7. Currie, D.J.: Energy and large-scale patterns of animal- and plant- species richness. Am. Nat. 137, 27–49 (1991)

    Article  Google Scholar 

  8. Diniz-Filho, J.A.F., Bini, L.M., Vieira, C.M., Blamires, D., Terribile, L.C., Bastos, R.P., de Oliveira, G., de Souza Barreto, B.: Spatial patterns of terrestrial vertebrate species richness in the brazilian Cerrado. Zool. Stud. 42(2), 146–157 (2008)

    Google Scholar 

  9. Fernández, A., Morales, M., Salmerón, A.: Tree augmented naive bayes for regression using mixtures of truncated exponentials: application to higher education management. In: Berthold, M., Shawe-Taylor, J., Lavrač, N. (eds.) IDA 2007. LNCS, vol. 4723, pp. 59–69. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Fernández, A., Salmerón, A.: Extension of Bayesian network classifiers to regression problems. In: Geffner, H., Prada, R., Machado Alexandre, I., David, N. (eds.) IBERAMIA 2008. LNCS (LNAI), vol. 5290, pp. 83–92. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Mach. Learn. 29, 131–163 (1997)

    Article  MATH  Google Scholar 

  12. Graham, J.H., Duda, J.J.: The humpbacked species richness-curves: a contingent rule for community ecology. Int. J. Ecol. 2011, 1–15 (2011)

    Article  Google Scholar 

  13. Hawkins, B.A., Porter, E.E., Diniz-Filho, J.A.F.: Productivity and history as predictors of the latitudinal diversity gradient of terrestrial birds. Ecology 84(6), 1608–1623 (2003)

    Article  Google Scholar 

  14. Hutchinson, G.E.: Homage to Santa Rosalia or Why are there so many kinds of animals? Am. Nat. 93, 145–159 (1959)

    Article  Google Scholar 

  15. Jellinek, S., Rumpff, L., Driscoll, D.A., Parris, K.M., Wintle, B.A.: Modelling the benefits of habitat restoration in socio-ecological systems. Biol. Conserv. 169, 60–67 (2014)

    Article  Google Scholar 

  16. Kerr, J.T., Packer, L.: Habitat heterogeneity as a determinant of mammal species richness in high-energy regions. Nature 385, 252–254 (1997)

    Article  Google Scholar 

  17. Lacave, C., Luque, M., Díez, F.J.: Explanation of Bayesian networks and influence diagrams in Elvira. IEEE Trans. Syst. Man Cybern. Part B Cybern. 37, 952–965 (2007)

    Article  Google Scholar 

  18. Langseth, H., Nielsen, T.D., Rumí, R., Salmerón, A.: Mixtures of Truncated Basis Functions. Int. J. Approximate Reasoning 53(2), 212–227 (2012)

    Article  MATH  Google Scholar 

  19. Langseth, H., Nielsen, T., Pérez-Bernabé, I., Salmerón, A.: Learning mixtures of truncated basis functions from data. Int. J. Approximate Reasoning 55, 940–956 (2014)

    Article  MATH  Google Scholar 

  20. Li, L., Wang, Z., Zerbe, S., Abdusalih, N., Tang, Z., Ma, M., Yin, L., Mohammat, A., Han, W., Fang, J.: Species richness patterns and water-energy dynamics in the drylands of northwest China. PLoS ONE 8, e66450 (2013)

    Article  Google Scholar 

  21. MacArthur, R.H., Wilson, E.O.: The Theory of Island Biogeography. Princeton University Press, Princeton (1967)

    Google Scholar 

  22. Moral, S., Rumí, R., Salmerón, A.: Mixtures of truncated exponentials in hybrid Bayesian networks. In: Benferhat, S., Besnard, P. (eds.) ECSQARU 2001. LNCS (LNAI), vol. 2143, pp. 156–167. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  23. Moreno-Rueda, G., Pizarron, M.: The relative influence of climate, environmental heterogeneity, and human population on the distribution of vertebrate species richness in south-eastern Spain. Acta Oecologica 32, 50–58 (2007)

    Article  Google Scholar 

  24. Mori, T., Saitoh, T.: Flood disturbance and predator-prey effects on regional gradients in species diversity. Ecology 95(1), 132–141 (2014)

    Article  Google Scholar 

  25. van Rensburg, B.J., Chown, S.L., Gaston, K.J.: Species richness, environmental correlates and spatial scale: a test usign south african birds. Am. Nat. 159, 566–577 (2002)

    Article  Google Scholar 

  26. Ruiz-Labourdette, D., Nogués-Bravo, D., Ollero, H.S., Schmitz, M.F., Pineda, F.D.: Forest composition in Mediterranean mountains is projected to shift along the entire elevational gradient under climate change. J. Biogeogr. 39, 162–176 (2012)

    Article  Google Scholar 

  27. Schmitz, M., Pineda, F., Castro, H., Aranzabal, I.D., Aguilera, P.: Cultural landscape and socioeconomic structure. Environmental value and demand for tourism in a Mediterranean territory. Consejería de Medio Ambiente. Junta de Andalucía. Sevilla (2005)

    Google Scholar 

  28. Shenoy, P.P., West, J.C.: Inference in hybrid Bayesian networks using mixtures of polynomials. Int. J. Approximate Reasoning 52(5), 641–657 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  29. Stone, M.: Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soci. Ser. B (Methodological) 36(2), 111–147 (1974)

    MATH  Google Scholar 

  30. Thornthwaite, C., Mather, J.: The Water Balance. Drexel Institute of Technology (Philadelphia) Laboratory of Climatology, vol. 8(1). Publications in climatology, Centerton (1955)

    Google Scholar 

  31. Wright, D.H.: Species-energy theory: an extension of species-area theory. Oikos 141, 496–506 (1983)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Spanish Ministry of Economy and Competitiveness through project TIN2013-46638-C3-1-P, by Junta de Andalucía through projects P12-TIC-2541 and P11-TIC-7821 and by ERDF (FEDER) funds. A.D. Maldonado and R. F. Ropero are being supported by the Spanish Ministry of Education, Culture and Sport through an FPU research grant, FPU2013/00547 and AP2012-2117 respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Maldonado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Maldonado, A.D., Ropero, R.F., Aguilera, P.A., Rumí, R., Salmerón, A. (2015). Estimation of Species Richness Using Bayesian Networks. In: Puerta, J., et al. Advances in Artificial Intelligence. CAEPIA 2015. Lecture Notes in Computer Science(), vol 9422. Springer, Cham. https://doi.org/10.1007/978-3-319-24598-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24598-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24597-3

  • Online ISBN: 978-3-319-24598-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics