Skip to main content

An Iterative Closest Point Framework for Ultrasound Calibration

  • Conference paper
  • First Online:
Book cover Augmented Environments for Computer-Assisted Interventions (AE-CAI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9365))

Included in the following conference series:

Abstract

We introduce an Iterative Closest Point framework for ultrasound calibration based on a hollow-line phantom. The main novelty of our approach is the application of a hollow-tube fiducial made from hyperechoic material, which allows for highly accurate fiducial localization via both manual and automatic segmentation. By reducing fiducial localization error, this framework is able to achieve sub-millimeter target registration error. The calibration phantom introduced can be manufactured inexpensively and precisely. Using a Monte Carlo approach, our calibration framework achieved 0.5 mm mean target registration error, with a standard deviation of 0.24 mm, using 12 or more tracked ultrasound images. This suggests that our framework is approaching the accuracy limit imposed by the tracking device used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ameri, G., McLeod, A.J., Baxter, J.S.H., Chen, E.C.S., Peters, T.M.: Line fiducial material and thickness considerations for ultrasound calibration. In: Proceedings of SPIE, vol. 9415, pp. 941529–941529-9 (2015)

    Google Scholar 

  2. Bennani Dosse, M., Ten Berge, J.: Anisotropic orthogonal procrustes analysis. J. Classif. 27, 111–128 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Besl, P., McKay, N.D.: A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

    Article  Google Scholar 

  4. Chen, E.C., McLeod, A.J., Baxter, J.S., Peters, T.M.: Registration of 3D shapes under anisotropic scaling. Int. J. Comput. Assist. Radiol. Surg. 10(6), 867–878 (2015)

    Article  Google Scholar 

  5. Chen, T.K., Thurston, A.D., Ellis, R.E., Abolmaesumi, P.: A real-time freehand ultrasound calibration system with automatic accuracy feedback and control. Ultrasound Med. Biol. 35(1), 79–93 (2009)

    Article  Google Scholar 

  6. Cheng, A., Ackerman, M.K., Chirikjian, G.S., Boctor, E.M.: Design and development of an ultrasound calibration phantom and system. In: Proceedings of SPIE, vol. 9036, pp. 903624–903624-8 (2014)

    Google Scholar 

  7. Cheung, C.L., Wedlake, C., Moore, J., Pautler, S.E., Peters, T.M.: Fused video and ultrasound images for minimally invasive partial nephrectomy: a phantom study. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part III. LNCS, vol. 6363, pp. 408–415. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Comeau, R.M., Fenster, A., Peters, T.M.: Integrated MR and ultrasound imaging for improved image guidance in neurosurgery. In: Proceedings of SPIE, vol. 3338, pp. 747–754 (1998)

    Google Scholar 

  9. Gobbi, D.G., Comeau, R.M., Peters, T.M.: Ultrasound probe tracking for real-time ultrasound/mri overlay and visualization of brain shift. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 920–927. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  10. Horn, B.K.: Closed-form solution of absolute orientation using unit quaternions. J. Opt. Soci. Am. A 4(4), 629–642 (1987)

    Article  Google Scholar 

  11. Karmakar, M.K., Li, X., Ho, A.M.H., Kwok, W.H., Chui, P.T.: Real-time ultrasound-guided paramedian epidural access: evaluation of a novel in-plane technique. Br. J. Anaesth. 102(6), 845–854 (2009)

    Article  Google Scholar 

  12. Khamene, A., Sauer, F.: A novel phantom-less spatial and temporal ultrasound calibration method. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 65–72. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Mercier, L., Langø, T., Lindseth, F., Collins, L.D.: A review of calibration techniques for freehand 3-D ultrasound systems. Ultrasound Med. Biol. 31(2), 143–165 (2005)

    Article  Google Scholar 

  14. Moore, J., Chu, M., Kiaii, B., Bainbridge, D., Guiraudon, G., Wedlake, C., Currie, M., Rajchl, M., Patel, R., Peters, T.: A navigation platform for guidance of beating heart transapical mitral valve repair. IEEE Trans. Biomed. Eng. 60(4), 1034–1040 (2013)

    Article  Google Scholar 

  15. Muratore, D.M., Galloway Jr., R.L.: Beam calibration without a phantom for creating a 3-D freehand ultrasound system. Ultrasound Med. Biol. 27(11), 1557–1566 (2001)

    Article  Google Scholar 

  16. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  Google Scholar 

  17. Prager, R., Rohling, R., Gee, A., Berman, L.: Rapid calibration for 3-D freehand ultrasound. Ultrasound Med. Biol. 24(6), 855–869 (1998)

    Article  Google Scholar 

  18. Welch, J., Bax, M., Mori, K., Krummel, T., Shahidi, R., Maurer, C.: A fast and accurate method of ultrasound probe calibration for image-guided surgery. In: Proceedings of Computer Assisted Radiology and Surgery, p. 1078 (2002)

    Google Scholar 

  19. West, J.B., Maurer, C.R.J.: Designing optically tracked instruments for image-guided surgery. IEEE Trans. Med. Imaging 23(5), 533–545 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elvis C. S. Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Chen, E.C.S., McLeod, A.J., Baxter, J.S.H., Peters, T.M. (2015). An Iterative Closest Point Framework for Ultrasound Calibration. In: Linte, C., Yaniv, Z., Fallavollita, P. (eds) Augmented Environments for Computer-Assisted Interventions. AE-CAI 2015. Lecture Notes in Computer Science(), vol 9365. Springer, Cham. https://doi.org/10.1007/978-3-319-24601-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24601-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24600-0

  • Online ISBN: 978-3-319-24601-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics