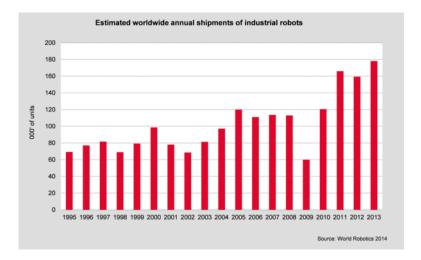
Towards Interactive Verification of Programmable Logic Controllers using Modal Kleene Algebra and KIV

Roland Glück, Florian Benedikt Krebs

ST-BT

Braga, September 28, 2015

- 1. Introduction
- 2. PLC Crash Course
- 3. Modal Kleene Algebra and Linear Temporal Logic
- 4. Function Block Diagrams in Modal Kleene Algebra
- 5. Case Study: Mutual Exclusion
- 6. Conclusion and Outlook



• cost saving

- cost saving
- reliable

- cost saving
- reliable
- strong

- cost saving
- reliable
- strong
- very strong

- cost saving
- reliable
- strong
- very strong
- insensitive

- cost saving
- reliable
- strong
- very strong
- insensitive
- dangerous
- \Rightarrow careful control is indispensable

PLC - Purpose and Function

- Programmable Logic Controllers (PLCs) used for controlling various plants
- robots, pumps, valves, mechanical and automated devices, ...
- PLC works in cyclic way (1 150 ms):
 - reads input channels (sensors, switches, internal variables)
 - computes new values

writes new values to associated output channels/registers (actuators, internal variables)

Data Types and Safety

- possible data types: bool, int, float, date, ...
- with usual operations (numerical, comparision, ...)
- special part for safety critical operations with reduced instruction set
- from now on only Boolean data and operations

Programming Languages

Programming done via:

- Instruction List (IL): assembly-like
- Ladder Diagram (LD): similar to circuit diagrams
- Sequential Function Chart (SFC): inspired by state diagrams
- Structured Text (ST): resembles C syntax
- Function Block Diagram (FBD): see next

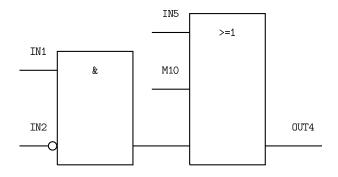
www.dlr.de - Slide 7 of 26 > PLC Verification with MKA and KIV > Roland Glück, Florian Benedikt Krebs - Braga, September 28, 2015

AND, OR and Negation in FBD



www.dlr.de - Slide 7 of 26 > PLC Verification with MKA and KIV > Roland Glück, Florian Benedikt Krebs - Braga, September 28, 2015

AND, OR and Negation in FBD



 $OUT4 \equiv (IN1 \land \neg IN2) \lor IN5 \lor M10$

Flip-Flops (Purpose and Function)

- Flip-Flops show dynamic behavior
- two inputs and one output
- TRUE-signal on set input sets output persistently to TRUE
- TRUE-signal on reset input resets output persistently to FALSE
- (until next signal on set/reset input)
- set/reset dominant depending on winner at set/reset conflict
- storing/clearing depending on input signals

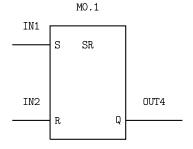
www.dlr.de - Slide 9 of 26 > PLC Verification with MKA and KIV > Roland Glück, Florian Benedikt Krebs - Braga, September 28, 2015

Flip-Flops (Truth Table)

Sn	Rn	Q_{n+1}
TRUE	FALSE	TRUE
FALSE	TRUE	FALSE
FALSE	FALSE	Qn
TRUE	TRUE	TRUE (set dominant)
TRUE	TRUE	FALSE (reset dominant)

> 20 C

www.dlr.de - Slide 10 of 26 > PLC Verification with MKA and KIV > Roland Glück, Florian Benedikt Krebs - Braga, September 28, 2015



Flip-Flops (FBD)

www.dlr.de - Slide 11 of 26 > PLC Verification with MKA and KIV > Roland Glück, Florian Benedikt Krebs - Braga, September 28, 2015

Kleene Algebra

Definition

A Kleene algebra is a structure $(M, +, 0, \cdot, 1, *)$ where $(M, +, 0, \cdot, 1)$ is an idempotent semiring and $*: M \to M$ has the following properties:

$$1 + xx^* \le x^* \qquad \qquad x + yz \le z \Rightarrow y^*x \le z$$

$$1 + x^*x \le x^* \qquad \qquad x + yz \le y \Rightarrow xz^* \le y$$

- + models choice, composition, * iteration
- natural order defined by $x \leq y \Leftrightarrow_{df} x + y = y$
- examples: formal languages, relations, ...

Tests

given an idempotent semiring $S = (M, +, 0, \cdot, 1)$ subsets of M can be modeled by tests:

Definition

Given an idempotent semiring $S = (M, +, 0, \cdot, 1)$ an element $p \in M$ is called a *test* if an element $\neg p$ (the *complement* of p) exists with the properties $p + \neg p = 1$ and $p \cdot \neg p = 0$ = $\neg p \cdot p$.

- set of tests denoted by **test**(*S*)
- in relational context: subsets of identity

Boxes and Diamonds

(pre)image or (pre I post)condition modeled by diamond/box operators:

Definition

A modal semiring is a structure $S = (M, +, 0, \cdot, 1, |\cdot\rangle, \langle\cdot|)$ where $S' = (M, +, 0, \cdot, 1)$ is an idempotent semiring and $|\cdot\rangle$ and $\langle\cdot|$ are functions of the type $M \to (\mathbf{test}(S') \to \mathbf{test}(S'))$ with the properties $|x\rangle p \le q \Leftrightarrow \neg qxp \le 0 \Leftrightarrow \langle x|p \le \neg q, |xy\rangle p = |x\rangle |y\rangle p$ and $\langle xy|p = \langle y|\langle x|p \text{ for all } x \in M \text{ and } p, q \in S'.$

- $|a\rangle p$: transition into p is possible
- $[a]p =_{df} \neg [a] \neg p$: transition into p is inevitable

www.dlr.de - Slide 14 of 26 > PLC Verification with MKA and KIV > Roland Glück, Florian Benedikt Krebs - Braga, September 28, 2015

Modal Kleene Algebra

putting all together:

Definition

A modal Kleene algebra (MKA for short) is a structure $(M, +, 0, \cdot, 1, |\cdot\rangle, \langle\cdot|, *)$ where $(M, +, 0, \cdot, 1, |\cdot\rangle, \langle\cdot|)$ is a modal semiring and $(M, +, 0, \cdot, 1, *)$ is a Kleene algebra.

Modal Kleene Algebra and Linear Temporal Logic

work by Möller, Höfner and Struth (2006):

- model transition system by a general MKA element a
- transforming sets of traces into sets of successors
- left total function modeled by $|a\rangle p = |a]p$ for all tests p
- formulae in linear temporal logic (LTL) correspond to expressions in MKA
- LTL formula is valid iff corresponding MKA expression evaluates to 1

www.dlr.de - Slide 16 of 26 > PLC Verification with MKA and KIV > Roland Glück, Florian Benedikt Krebs - Braga, September 28, 2015

Explicit Correspondence

$$\begin{bmatrix} \bot \end{bmatrix} = 0 [\neg \psi] = \neg [\psi] [\psi_1 \land \psi_2] = [\psi_1] \cdot [\psi_2] [\psi_1 \lor \psi_2] = [\psi_1] + [\psi_2] [\psi_1 \to \psi_2] = [\psi_1] \rightarrow [\psi_2] \quad (p \to q =_{df} \neg p + q) [\Box \psi] = [a^*] \psi [\Diamond \psi] = [a^*] \psi [\circ \psi] = [a^*] \psi [\circ \psi] = [a^*] \psi [\psi_1 \cup \psi_2] = [([\psi_1] \cdot a)^*) [\psi_2]$$

www.dlr.de - Slide 17 of 26 > PLC Verification with MKA and KIV > Roland Glück, Florian Benedikt Krebs - Braga, September 28, 2015

Variables and Overall Behavior

FBDs in MKA:

www.dlr.de - Slide 17 of 26 > PLC Verification with MKA and KIV > Roland Glück, Florian Benedikt Krebs - Braga, September 28, 2015

Variables and Overall Behavior

FBDs in MKA:

- inputs/outputs/internal variables correspond to tests
- for every signal/variable p introduce two tests p_0 and p_1
- indicating a value of FALSE and TRUE, resp.
- clearly $\neg p_0 = p_1$ and $\neg p_1 = p_0$
- characterize behavior of elementary gates (OR, AND, Flip-Flops, ...)
- elementary gates do not change noninvolved signals/variables
- remember left total functionality
- write overall behavior a as product of elementary gates

www.dlr.de - Slide 18 of 26 > PLC Verification with MKA and KIV > Roland Glück, Florian Benedikt Krebs - Braga, September 28, 2015

Elementary Gates

- AND-gate ANDk with inputs in1, in2 ..., inn :
 - in1_1 \cdot in2_1 $\cdot \dots \cdot$ inn_1 \leq andk \rangle andk_1
 - $in1_0 + in2_0 + \dots + inn_0 \le |andk\rangle andk_0$.
- OR-gate ORk with inputs in1, in2 ..., inn :
 - $in1_1 + in2_1 + \cdots + inn_1 \le |ork\rangle ork_1$
 - $in1_0 \cdot in2_0 \cdot \dots \cdot inn_0 \leq |ork\rangle ork_0$.
- negation of sk : switch sk_1 and sk_0

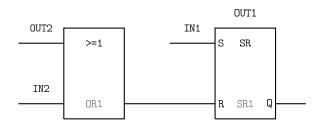
www.dlr.de - Slide 19 of 26 > PLC Verification with MKA and KIV > Roland Glück, Florian Benedikt Krebs - Braga, September 28, 2015

Flip-Flops

- set dominant flip-flop RSk with set input s, reset input r, output q and internal marker m:
 - s_1 + m_1 \cdot r_0 \le |rsk\rangle q_1
 - $s_1 + m_1 \cdot r_0 \leq |rsk\rangle m_1$
 - $s_0 \cdot r_1 + m_0 \cdot s_0 \le |rsk\rangle q_0$
 - $s_0 \cdot r_1 + m_0 \cdot s_0 \le |rsk\rangle m_0$

www.dlr.de - Slide 20 of 26 > PLC Verification with MKA and KIV > Roland Glück, Florian Benedikt Krebs - Braga, September 28, 2015

Example Construction (not Complete!)



```
out2_1 + in2_1 \le |or1\rangle or1_1

out2_0 \cdot in2_0 \le |or1\rangle or1_0

in1_0 \le |or1\rangle in1_0

in1_1 \le |or1\rangle in1_1

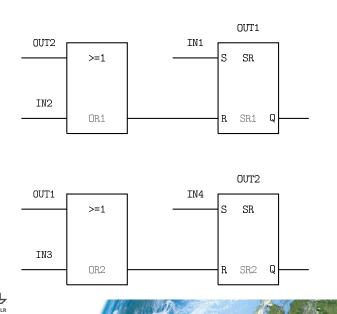
|or1\rangle p = |or1|p
```

$$\label{eq:constraint} \begin{split} & \texttt{or1_1} + \texttt{out1_0} \cdot \texttt{in1_0} \leq \texttt{|sr1}\texttt{out1_0} \\ & \texttt{in1_1} \cdot \texttt{or1_0} + \texttt{out1_1} \cdot \texttt{or1_0} \leq \texttt{|sr1}\texttt{out1_1} \end{split}$$

 $cycle = or1 \cdot sr1$

www.dlr.de - Slide 21 of 26 > PLC Verification with MKA and KIV > Roland Glück, Florian Benedikt Krebs - Braga, September 28, 2015

Mutual Exclusion



・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

www.dlr.de - Slide 22 of 26 > PLC Verification with MKA and KIV > Roland Glück, Florian Benedikt Krebs - Braga, September 28, 2015

Behavior and Desired Properties

• behavior given by cycle = or1 • sr1 • or2 • sr2

www.dlr.de • Slide 22 of 26 > PLC Verification with MKA and KIV > Roland Glück, Florian Benedikt Krebs • Braga, September 28, 2015

Behavior and Desired Properties

- behavior given by cycle = or1 sr1 or2 sr2
- desired properties in LTL:
 - $out1_0 \cdot out2_0 \rightarrow \Box (out1_1 \rightarrow out2_0)$
 - $out1_0 \cdot out2_0 \rightarrow \Box (out2_1 \rightarrow out1_0)$

www.dlr.de - Slide 22 of 26 > PLC Verification with MKA and KIV > Roland Glück, Florian Benedikt Krebs · Braga, September 28, 2015

Behavior and Desired Properties

- behavior given by cycle = or1 sr1 or2 sr2
- desired properties in LTL:
 - $out1_0 \cdot out2_0 \rightarrow \Box (out1_1 \rightarrow out2_0)$
 - $out1_0 \cdot out2_0 \rightarrow \Box (out2_1 \rightarrow out1_0)$
- in MKA (recall $p \rightarrow q =_{df} \neg p + q$):
 - $\operatorname{out1_0} \cdot \operatorname{out2_0} \rightarrow |\operatorname{cycle}^*](\operatorname{out1_1} \rightarrow \operatorname{out2_0}) = 1$
 - $\operatorname{out1_0} \cdot \operatorname{out2_0} \rightarrow |\operatorname{cycle}^*](\operatorname{out2_1} \rightarrow \operatorname{out1_0}) = 1$

www.dlr.de - Slide 23 of 26 > PLC Verification with MKA and KIV > Roland Glück, Florian Benedikt Krebs - Braga, September 28, 2015

Proof Sketch

to show: $out1_0 \cdot out2_0 \rightarrow |cycle^*](out1_1 \rightarrow out2_0) = 1$

www.dlr.de • Slide 23 of 26 > PLC Verification with MKA and KIV > Roland Glück, Florian Benedikt Krebs • Braga, September 28, 2015 **Proof Sketch**

to show: $out1_0 \cdot out2_0 \rightarrow [cycle^*](out1_1 \rightarrow out2_0) = 1$

proof sketch:

• first: out1_0 • out2_0 + out1_0 • out2_1 + out1_1 • out2_0 is an invariant of cycle

www.dlr.de • Slide 23 of 26 > PLC Verification with MKA and KIV > Roland Glück, Florian Benedikt Krebs • Braga, September 28, 2015 **Proof Sketch**

to show: $out1_0 \cdot out2_0 \rightarrow [cycle^*](out1_1 \rightarrow out2_0) = 1$

proof sketch:

- first: out1_0 out2_0 + out1_0 out2_1 + out1_1 out2_0 is an invariant of cycle
- MKA: out1_0 · out2_0 + out1_0 · out2_1 + out1_1 · out2_0 is an invariant of cycle*

> na a

to show: $out1_0 \cdot out2_0 \rightarrow [cycle^*](out1_1 \rightarrow out2_0) = 1$

proof sketch:

- first: out1_0 out2_0 + out1_0 out2_1 + out1_1 out2_0 is an invariant of cycle
- MKA: out1_0 · out2_0 + out1_0 · out2_1 + out1_1 · out2_0 is an invariant of cycle*
- MKA: $p \leq q \land qx \neg q = 0 \land q \leq r \Rightarrow p \rightarrow [x]r = 1$

to show: $out1_0 \cdot out2_0 \rightarrow [cycle^*](out1_1 \rightarrow out2_0) = 1$

proof sketch:

- first: out1_0 out2_0 + out1_0 out2_1 + out1_1 out2_0 is an invariant of cycle
- MKA: out1_0 · out2_0 + out1_0 · out2_1 + out1_1 · out2_0 is an invariant of cycle*
- MKA: $p \leq q \land qx \neg q = 0 \land q \leq r \Rightarrow p \rightarrow [x]r = 1$
- finish:
 - $\operatorname{out1_0} \cdot \operatorname{out2_0} \leq \operatorname{out1_0} \cdot \operatorname{out2_0} + \operatorname{out1_0} \cdot \operatorname{out2_1} + \operatorname{out1_1} \cdot \operatorname{out2_0}$
 - $\operatorname{out1_0} \cdot \operatorname{out2_0} + \operatorname{out1_0} \cdot \operatorname{out2_1} + \operatorname{out1_1} \cdot \operatorname{out2_0} \le \operatorname{out1_1} \to \operatorname{out2_0}$

= DOG

to show: $out1_0 \cdot out2_0 \rightarrow |cycle^*](out1_1 \rightarrow out2_0) = 1$

proof sketch:

- first: out1_0 out2_0 + out1_0 out2_1 + out1_1 out2_0 is an invariant of cycle
- MKA: out1_0 · out2_0 + out1_0 · out2_1 + out1_1 · out2_0 is an invariant of cycle*
- MKA: $p \leq q \land qx \neg q = 0 \land q \leq r \Rightarrow p \rightarrow [x]r = 1$
- finish:
 - $\operatorname{out1_0} \cdot \operatorname{out2_0} \leq \operatorname{out1_0} \cdot \operatorname{out2_0} + \operatorname{out1_0} \cdot \operatorname{out2_1} + \operatorname{out1_1} \cdot \operatorname{out2_0}$
 - $\operatorname{out1_0} \cdot \operatorname{out2_0} + \operatorname{out1_0} \cdot \operatorname{out2_1} + \operatorname{out1_1} \cdot \operatorname{out2_0} \le \operatorname{out1_1} \to \operatorname{out2_0}$
- proof done interactively in KIV

Conclusion

Conclusion

We saw:

• Programmable Logic Controllers

Conclusion

- Programmable Logic Controllers
- Modal Kleene Algebra

Conclusion

- Programmable Logic Controllers
- Modal Kleene Algebra
- Linear Temporal Logic

Conclusion

- Programmable Logic Controllers
- Modal Kleene Algebra
- Linear Temporal Logic
- interactive proving with KIV

Conclusion

- Programmable Logic Controllers
- Modal Kleene Algebra
- Linear Temporal Logic
- interactive proving with KIV
- and all working together

500

Outlook

Outlook

We plan:

• verification of real safety systems

Outlook

- verification of real safety systems
- typical features:
 - 32 64 signals from sensors
 - plus up to 16 signals from safety doors
 - 50 100 elementary gates

Outlook

- verification of real safety systems
- typical features:
 - 32 64 signals from sensors
 - plus up to 16 signals from safety doors
 - 50 100 elementary gates
- characterization of other gates in MKA

500

Outlook

- verification of real safety systems
- typical features:
 - 32 64 signals from sensors
 - plus up to 16 signals from safety doors
 - 50 100 elementary gates
- characterization of other gates in MKA
- embracing numerical operations

Outlook

- verification of real safety systems
- typical features:
 - 32 64 signals from sensors
 - plus up to 16 signals from safety doors
 - 50 100 elementary gates
- characterization of other gates in MKA
- embracing numerical operations
- timer

500

Outlook

- verification of real safety systems
- typical features:
 - 32 64 signals from sensors
 - plus up to 16 signals from safety doors
 - 50 100 elementary gates
- characterization of other gates in MKA
- embracing numerical operations
- timer
- automated construction of input files

Obrigado pela atenção

> 20 C

Obrigado pela atenção

Perguntas?

