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Abstract. We use an algebra of preference strict-orders to give a formal
derivation of the standard Block-Nested Loop (BNL) algorithm for com-
puting the best or maximal objects w.r.t. such an order. This derivation
is presented in terms of antichains, i.e., sets of mutually incomparable
objects. We define an approximation relation between antichains that
reflects the steps taken by the BNL algorithm. This induces a semilat-
tice and the operator computing the maximal objects of a subset can be
viewed as a closure operator in an associated pre-ordered set and hence
yields a characterisation of antichains in terms of a Galois connection.
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1 Introduction

The motivation for this work arose in the area of preference databases (see [7]).
Classical databases had supported only queries with so-called hard constraints,
by which the objects sought in the database are clearly and sharply characterised.
Hence, if there are no exact matches the empty result set is returned, which is
often very frustrating for users. As a remedy, over the last decades queries with
soft constraints have been studied. These constraints arise from a formalisation
of the user’s preferences in the form of partial strict-orders.

For instance, a person wanting to have a vacation may prefer inexpensive ho-
tels closer to the beach over expensive ones further off. This could be formalised
as the following preference relation ≺ between tuples s, t:

s ≺ t ⇔df (t.prize < s.prize ∧ t.dist ≤ s.dist) ∨
(t.prize ≤ s.prize ∧ t.dist < s.dist)

A query with such a preference order may then return the set of “best” or max-
imal objects found in the search space. As usual in partial orders, the maximal
objects are pairwise incomparable, i.e., form an antichain.

If the search space has two dimensions, like in the above example, it can be
depicted in a 2D rectangular coordinate system. The maxima then are the end
points of a stair-case like shape, a.k.a. the “skyline” [1], see Fig. 1.



Fig. 1. A skyline diagram

In earlier papers [8, 7] we have developed an algebraic calculus for reasoning
about the set a . p of maximal objects in a set p w.r.t. a preference relation a,
independent of the special application area of databases. In the present paper
we extend these results by a number of additional ones. As a test case we give
a derivation of the standard Block-Nested Loop (BNL) algorithm (e.g. [1]) for
computing the maximal objects. To the best of our knowledge this is the first
calculational treatment of that algorithm. A closer analysis exhibits that there
is an approximation order between antichains underlying that algorithm which
even induces a semilattice structure. While, w.r.t. the inclusion order, the max-
ima operator a . p is antitone (i.e., monotonically decreasing) in a, it is neither
isotone (i.e., monotonically increasing) nor antitone in p. Fortunately, isotony
can be recovered by passing to the approximation order. Last, the maxima op-
erator can be viewed as a closure operator in an associated preordered set and
hence yields a characterisation of antichains in terms of a Galois connection.

The paper is structured as follows. In Sect. 2 we recapitulate basic notions
about preorders and orders as well as the algebraic notions in terms of semirings
that underlie our calculus. Sect. 3 presents basic results about the algebraic
representation of the maxima operator. Next to new properties concerning the
relation between what we call normality of a strict-order and its noetherity, we
show a couple of auxiliary results for the following sections. Sect. 4 provides
various characterisations of antichains and properties concerning the maxima
of a union of sets. In Sect. 5 we give the announced calculational derivation of
the BNL algorithm. Sect. 6 presents an approximation order between antichains
and shows that it induces a semilattice as well as some results on isotony and
suprema preservation of the maxima operator. The BNL algorithm is shown to
construct an ascending chain of antichains w.r.t. that order. In Sect. 7 we then
prove that a modified version of the approximation order exhibits the maxima
operator as a closure operator in a preordered set and hence as an adjoint in a
Galois connection. Since both closures and Galois connections are usually only
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dealt with in partial orders, we provide the necessary results on the preorder
case, partially in an Appendix. The paper finishes with a brief conclusion and
outlook in Sect. 8.

2 Preliminaries

2.1 Preorders and Partial Orders

A preorder is a pair (A,≤), where A is a set and ≤ is a reflexive and transitive
binary relation on A. The relation ∼ defined by x ∼ y ⇔df x ≤ y ∧ y ≤ x is an
equivalence relation, called the equivalence induced by ≤. If ≤ is also antisym-
metric then (A,≤) is called an order ; in this case ∼ coincides with equality.

A useful tool for working with preorders are the rules of indirect inequality :

x ≤ y ⇔ (∀ z : z ≤ x ⇒ z ≤ y) , x ≤ y ⇔ (∀ z : y ≤ z ⇒ x ≤ z) .

The direction (⇒) needs transitivity of ≤, whereas (⇐) needs reflexivity. By
combining these, we obtain the rule of indirect equivalence:

x ∼ y ⇔ (∀ z : z ≤ x ⇔ z ≤ y) ⇔ (∀ z : x ≤ z ⇔ y ≤ z) .

2.2 Algebraic Notions

Throughout we assume an idempotent semiring (S,+, 0, ·, 1). This means that
+ and · are associative operators on set S, with neutral elements 0 and 1, resp.;
moreover, + is assumed to be commutative and idempotent, i.e., to satisfy a+a =
a for all a ∈ S. Finally, · is assumed to distribute through + in both arguments
and to preserve 0, i.e., 0 · a = 0 = a · 0.

Because of the properties of + one can define a partial order ≤ on S by
a ≤ b ⇔df a + b = b. It is called the natural order or subsumption order . It
induces an upper semilattice in which + is the binary supremum operator. If
that semilattice is even a complete lattice and · distributes through arbitrary
suprema then S is called a quantale.

A prominent example of an idempotent semiring, that is even a quantale, is
provided by the set of all binary relations over a set M , with union as + and
relational composition as ·. The roles of 0 and 1 are played by the empty relation ∅
and the identity relation I. The natural order coincides with relational inclusion.
Partial identity relations IN =df {(x, x) |x ∈ N} ⊆ I, a.k.a. coreflexives or
monotypes, can be used to encode subsets N ⊆M as relations.

Inspired by that, we model preference relations between database tuples ab-
stractly by general semiring elements a ∈ S and sets of database tuples by tests
p ≤ 1, analogous to the above partial identity relations. Tests p are required to
have a complement ¬p relative to 1, uniquely characterised by the conditions
p+ ¬p = 1 and p · ¬p = 0 = ¬p · p.

The set of all tests of S is denoted by test(S); it forms a Boolean algebra
with + as supremum and · as infimum, least element 0 and greatest element 1.
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Between tests the order ≤ is the abstract counterpart of set inclusion. We define
the difference operator for p, q ∈ test(S) as p − q =df p · ¬q and assume that
it associates to the left. We also note that it is right-commutative, i.e., satisfies
p− q − r = p− r − q.

An element p ∈ test(S) is called atomic if p 6= 0 and ∀ q ∈ test(S) : q ≤ p ⇒
q = 0 ∨ q = p. While general tests stand for sets of database tuples, atomic
tests correspond to single database tuples. Because of that we will frequently
use set-theoretic terminology when talking about them, such as “all objects in
p” and the like. Finally, we note that an atom x in a Boolean algebra satisfies
x ≤ p+ q ⇒ x ≤ p ∨ x ≤ q. In particular,

x 6≤ p ⇒ x ≤ ¬p . (1)

Tests are used to define the central operators of a modal semiring , namely
box and diamond which can be defined in a forward and backward form. In
the present note we will only use the forward diamond |a〉 : test(S) → test(S),
which can be axiomatised by

|a〉q ≤ p ⇔ ¬p · a · q ≤ 0 , |a · b〉q = |a〉|b〉q =df |a〉(|b〉q) .

Informally, the test |a〉q represents all database tuples that are a-related to (or
dominated by) some tuple in the set represented by q. Hence |a〉 can be viewed as
an algebraic form of the inverse image operator on binary relations. In particular,
the domain of element a can be defined as the inverse image of the largest test
1 as pa =df |a〉1.

A corresponding forward box operator |a] is defined as the De Morgan dual of
|a〉 by |a]q =df ¬|a〉¬q. It is an algebraic counterpart of Dijkstra’s wlp operator
and can be used to define an algebraic version of Hoare triples.

Diamond and box satisfy many useful laws (e.g. [3]). The most important
ones for diamond are additivity (and hence isotony) in both arguments:

|a+ b〉p = |a〉p+ |b〉p , |a〉(p+ q) = |a〉p+ |a〉q .

In fact, |a〉 preserves arbitrary suprema; if S is a quantale then | 〉 preserves
abitrary suprema in both arguments.

If the underlying semiring is a Kleene algebra, i.e., has an operation ∗ for finite
iteration with the standard axioms (e.g. [6]), we have the unfold and induction
rules for the diamond of a starred element:

|a∗〉p = p+ |a〉|a∗〉p , (star-dia-unfold)

p ≤ q ∧ |a〉q ≤ q ⇒ |a∗〉p ≤ q . (star-dia-induct)

3 Strict-Orders and Maxima

Definition 3.1 An element a is called d-transitive (“d” standing for “diamond”)
if all tests p satisfy |a〉|a〉p ≤ |a〉p. By the second diamond axiom this is equiva-
lent to |a·a〉p ≤ |a〉p. It is, however, more liberal than stipulating a·a ≤ a; for the
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case of relations both formulations coincide. An element a is called d-irreflexive
if for all atomic tests x we have x · |a〉x ≤ 0. A d-transitive and d-irreflexive
element is called a strict-order .

Corollary 3.2 For d-transitive a and test p, |a〉|a+ 1〉p = |a〉p = |a+ 1〉|a〉p.

Proof. We only show the first equation; the second one is symmetric. By dis-
tributivity of diamond, |1〉 being the identity, the assumption and the definition
of ≤ we have |a〉|a+ 1〉p = |a〉|a〉p+ |a〉|1〉p = |a〉|a〉p+ |a〉p = |a〉p. ut

In a Kleene algebra, for any d-transitive element a and test p,

|a∗〉p = |a+ 1〉p = |a〉p+ |1〉p = |a〉p+ p . (2)

Definition 3.3 The best or maximal objects w.r.t. an element a and a test p
are represented by the test

a . p =df p− |a〉p .

This can be understood as follows. The expression |a〉p, the inverse image
of p under preference element a, denotes the set of objects that are dominated
by some object in p. Hence p − |a〉p consists of the non-dominated and hence
maximal objects in p.

The following lemma collects useful properties of the maximality operator;
proofs can be found in [7].

Lemma 3.4 The following holds for arbitrary elements a, b and test p:
1. a . 0 = 0.
2. a . 1 = ¬pa.
3. pb ≤ pa ⇔ a . 1 ≤ b . 1.
4. a . p ≤ p.
5. a . (a . p) = a . p.
6. (a+ b) . p = (a . p) · (b . p).
7. b ≤ a ⇒ a . p ≤ b . p, i.e., . is antitone in its first argument.
8. 1 ≤ a ⇒ a . p = 0.

So far, we have not required any special properties of the elements a that
represent, e.g., preference relations. Instead of d-transitivity or d-irreflexivity we
need an assumption that such elements admit “enough” maximal objects. This
is expressed by requiring every non-maximal object to be dominated by some
maximal one. In a setting with finitely many objects, such as a database, and a
preference relation on them this property is always satisfied. We will treat the
case of infinite sets in Theorem 3.9 and Cor. 3.11 where we establish a connection
between the notions of normality and being noetherian.

Definition 3.5 An element a is called normal [7] if ∀ p : |a〉p ≤ |a〉(a . p),
meaning that every object dominated by some object of p is also dominated by
a maximal object of p. By a . p ≤ p and isotony of diamond this is equivalent to

∀ p : |a〉p = |a〉(a . p) . (3)
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One of the most important applications of normality is the following law.

Theorem 3.6 Let a be normal. Then a . (p+ q) = a . (a . p+ a . q).

This theorem paves the way for a distributed computation of maxima, as for
disjoint p and q the calculations a . p and a . q are independent. Early examples
are found in [2, 10], further ones again in [1]. For a proof of the theorem see [7];
it generalises from + to arbitrary existing suprema in test(S).

Next we present the announced connection between noetherity and the exis-
tence of maximal elements which will be used in Sect. 6.

Definition 3.7 An object a is called noetherian if, for all tests p,

a . p ≤ 0⇒ p ≤ 0 .

This definition can be understood as follows. By contraposition and leastness
of 0 it is equivalent to

p 6= 0⇒ a . p 6= 0 ,

which means that every non-empty p contains at least one maximal object (which
is the dual of the usual well-foundedness condition). In the relational case it is
therefore also equivalent to the absence of infinitely ascending chains. For details
see [4]. The following properties are straightforward by Boolean algebra.

Corollary 3.8 Assume an element a.

1. For arbitrary test p we have a . p ≤ 0 iff p ≤ |a〉p.
2. a is Noetherian iff for all tests p we have p ≤ |a〉p⇒ p ≤ 0.

Theorem 3.9 Let a ∈ S be noetherian and let a∗ be its reflexive and transitive
closure. Then for any q ∈ test(S) we have q ≤ |a∗〉(a.q). Informally, this means
that any point in the set abstractly represented by q is dominated w.r.t. a∗ by
some point in a . q.

Proof. q ≤ |a∗〉(a . q)
⇔ {[ Boolean algebra ]}

q − |a∗〉(a . q) ≤ 0

⇐ {[ noetherity of a and Corollary 3.8.2 ]}
q − |a∗〉(a . q) ≤ |a〉(q − |a∗〉(a . q))

⇔ {[ Boolean algebra ]}
q ≤ |a∗〉(a . q) + |a〉(q − |a∗〉(a . q))

⇔ {[ (star-dia-unfold) and distributivity ]}
q ≤ a . q + |a〉|a∗〉(a . q) + |a〉(q − |a∗〉(a . q))

⇔ {[ Boolean algebra and distributivity ]}
q − a . q ≤ |a〉(|a∗〉(a . q) + (q − |a∗〉(a . q))

⇔ {[ Boolean algebra ]}
q · |a〉q ≤ |a〉(|a∗〉(a . q) + q)

6



⇐ {[ lattice algebra ]}
|a〉q ≤ |a〉(|a∗〉(a . q) + q)

⇐ {[ isotony of diamond ]}
q ≤ |a∗〉(a . q) + q

⇔ {[ lattice algebra ]}
TRUE .

ut

Corollary 3.10 If a is noetherian and d-transitive then for all tests p, q we have

q ≤ |a+ 1〉(a . q) ,
p ≤ |a+ 1〉q ⇔ a . p ≤ |a+ 1〉q .

Proof. The first claim follows from Th. 3.9 and (2).
For the second claim, (⇒) follows from a . p ≤ p. For (⇐) we have, by the

first claim, the assumption with isotony of diamond and finally d-transitivity of
a and hence of a+ 1 that p ≤ |a+ 1〉(a . p) ≤ |a+ 1〉|a+ 1〉q ≤ |a+ 1〉q. ut

This allows a much shorter proof of the following property from [7].

Corollary 3.11 A noetherian and d-transitive element is normal.

Proof. For arbitrary test q we obtain by Cor. 3.10, isotony of diamond and
Cor. 3.2 that q ≤ |a+1〉(a.q) ⇒ |a〉q ≤ |a〉|a+1〉(a.q) ⇔ |a〉q ≤ |a〉(a.q). ut

In [7] it is also proved that every normal element is noetherian and d-
transitive. We conclude with a further property of d-transitive elements.

Lemma 3.12 If a is d-transitive then for all p we have a . (|a+ 1〉p) = a . p.

Proof. a . (|a+ 1〉p)
= {[ definition of a . ]}
|a+ 1〉p− |a〉|a+ 1〉p

= {[ Cor. 3.2 ]}
(|a〉p+ p)− |a〉p

= {[ right distributivity of − ]}
(|a〉p− |a〉p) + (p− |a〉p)

= {[ Boolean algebra ]}
p− |a〉p

= {[ definition of a . ]}
a . p .

ut
4 Antichains
An antichain is a set M of objects of a partially ordered set such that any two
objects of M are incomparable. Equivalently, M is an antichain if it coincides
with its set of maximal elements, characterised algebraically as follows.
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Definition 4.1 Given a semiring object a, a test p is an a-antichain if p = a.p,
i.e., if p is a fixed point of the operator a .. The set of all a-antichains is denoted
by AC(a). By Lm. 3.4.1, 0 ∈ AC(a) for every a. When a is clear from the context
we will just write “antichain” instead of “a-antichain”.

Lemma 4.2 p is an antichain ⇔ p ≤ ¬|a〉p ⇔ p · |a〉p ≤ 0. In particular, if a
is d-irreflexive then every atomic test is an antichain.

Proof. By the definition of ., order theory, definition of −, · coinciding with
infimum on tests, reflexivity of ≤ and Boolean algebra,

p = a . p ⇔ p = p− |a〉p ⇔ p ≤ p− |a〉p ⇔
p ≤ p ∧ p ≤ ¬|a〉p ⇔ p ≤ ¬|a〉p ⇔ p · |a〉p ≤ 0 .

ut

Corollary 4.3 AC(a) is downward closed, i.e., p ∈ AC(a)∧q ≤ p⇒ q ∈ AC(a).

Proof. By isotony we have q · |a〉q ≤ p · |a〉p ≤ 0. ut

Lemma 4.4 Consider tests p, q. Then p + q is an antichain iff p and q are
antichains and p · |a〉q ≤ 0 ∧ q · |a〉p ≤ 0.

Proof. p+ q antichain

⇔ {[ by Lm. 4.2 ]}
(p+ q) · |a〉(p+ q) ≤ 0

⇔ {[ distributivity ]}
p · |a〉p ≤ 0 ∧ p · |a〉q ≤ 0 ∧ q · |a〉p ≤ 0 ∧ q · |a〉q ≤ 0

⇔ {[ by Lm. 4.2 ]}
p, q antichains ∧ p · |a〉q ≤ 0 ∧ q · |a〉p ≤ 0 .

ut

Lemma 4.5 For p, q ∈ AC(a) we have a . (p+ q) = (p− |a〉q) + (q − |a〉p).

Proof. a . (p+ q)

= {[ definition of . ]}
(p+ q)− |a〉(p+ q)

= {[ distributivity ]}
(p+ q)− (|a〉p+ |a〉q)

= {[ De Morgan ]}
(p+ q)− |a〉p− |a〉q

= {[ distributivity and right-commutativity of − ]}
(p− |a〉p− |a〉q) + (q − |a〉q − |a〉p)

= {[ p, q antichains and Lm. 4.2 ]}
(p− |a〉q) + (q − |a〉p) .

ut
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5 Deriving the BNL Algorithm

We now give an algebraic, calculational derivation of the BNL algorithm in [1]
for computing the maximal objects of a set. For this, we assume that the test
algebra of the underlying semiring is finite and hence atomic, i.e., every test is
the sum of the atoms below it.

Consider a test r that represents all available tuples in a database and let a
be a fixed strict-order representing a preference relation. The task is to compute
a . r, i.e., a test representing the set of all a-maximal objects in r.

A common technique for deriving an algorithmic solution of a specification
is to make a constant of the specification into a parameter and then calculate
an inductive or recursive version of the generalised specification.

Here we make r into a parameter called u. So for test u we define the function
ma(u) that computes the maxima of u w.r.t. preference a as

ma(u) =df a . u .

The aim is now to develop a recursive version of the function ma by induction
on the size of the parameter u. By the assumptions of finiteness and atomicity
the size |u| of u can be defined as the cardinality of the set of atoms below u.

Base Case |u| = 0. Then u = 0 and we have ma(0) = 0− |a〉0 = 0.

Inductive Case. Choose an atomic test x ≤ u and set v =df u − x. By the
definitions, Th. 3.6, d-irreflexivity of a, atomicity of x, and the definition of ma:

ma(u) = a . (x+ v) = a . (a . x+ a . v) = a . (x+ a . v) = a . (x+ ma(v)) .

Now we observe that a . v is an antichain and define an auxiliary function

inc(x, p) =df a . (x+ p) ,

where x is an atomic test and p an antichain. Then we can continue the above
derivation to obtain ma(u) = inc(x,ma(v)).

Altogether, we have derived the recursion

ma(u) = if u = 0 then 0
else choose atom x ≤ u in

inc(x,ma(u− x)) .

Our original task is now solved using the call ma(r). We will transform this
recursion into a simpler one in Sect. 6.

Next we derive a recursive version of the function inc(x, p). The parameter p
is frequently called the (working) window . It contains candidates for objects of
the overall maxima set and is incrementally adapted as the single tuples x are
inspected in turn.

Base Case |p| = 0 and hence p = 0: we have inc(x, 0) = a . (x+ 0) = a . x = x.

Inductive Case: choose an atomic test y ≤ p and set q =df p− y.
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Subcase 1: x ≤ |a〉y, i.e., x is dominated by y. Therefore x cannot be maximal in
r and can be discarded. Let us show this formally. First, by isotony of diamond,
x ≤ |a〉p, since y ≤ p, and hence x − |a〉p ≤ 0 by Boolean algebra. Moreover,
again by isotony of diamond, d-transitivity of a and p being an antichain,

p · |a〉x ≤ p · |a〉|a〉p ≤ p · |a〉p ≤ 0 .

By Boolean algebra therefore p ≤ ¬|a〉x and hence p − |a〉x = p. Now Lm. 4.5
with q specialised to x shows inc(x, p) = p.

Subcase 2: x 6≤ |a〉y. Then x is not dominated by y and cannot be discarded
immediately. Rather, two subcases arise. If x dominates y then y can be discarded
from the window p. Otherwise y still remains a candidate for a maximal object,
while x needs to be compared with the remainder q of the window p. Again, we
do the formal calculations.

First, since x is an atomic test, (1) implies x ≤ ¬|a〉y and x− |a〉y = x.
Subcase 2.1: y ≤ |a〉x and hence y − |a〉x = 0. By Lm. 4.5, distributivity,
Boolean algebra and Lm. 4.5 again we obtain

inc(x, p) = a . (x+ y + q) = (x− |a〉(y + q)) + ((y + q)− |a〉x)
= (x− |a〉y − |a〉q) + (y − |a〉x) + (q − |a〉x)
= (x− |a〉q) + (q − |a〉x) = inc(x, q) .

Subcase 2.2: y 6≤ |a〉x, hence y ≤ ¬|a〉x and therefore y ·|a〉x ≤ 0 and y−|a〉x =
y by atomicity of y. Since y ∈ p and p is an antichain, we know that also
y · |a〉q ≤ 0, hence y · |a〉(x + q) ≤ 0. Moreover, since we are in a case where
x · |a〉y = 0, we know that also (x+ q) · |a〉y ≤ 0. Now

inc(x, p)

= {[ by Lm. 4.5 ]}
(x− |a〉p) + (p− |a〉x)

= {[ above decomposition p = y + q, additivity of diamond
and Boolean algebra ]}

(x− |a〉y − |a〉q) + (y − |a〉x) + (q − |a〉x)

= {[ by x− |a〉y = x and y − |a〉x = y, as remarked above ]}
(x− |a〉q) + y + (q − |a〉x)

= {[ rearrangement and Lm. 4.5, since q ≤ p by Cor. 4.3
is an antichain and x · q ≤ x · p ≤ 0 ]}

y + inc(x, q) .

With this, the recursive version of inc is complete:

inc(x, p) = if p = 0 then x
else choose atom y ≤ p in

if x ≤ |a〉y then p
else if y ≤ |a〉x then inc(x, p− y)

else y + inc(x, p− y) .
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We show the algorithm at work in our example from Fig. 1 in Sect. 1. The test r
represents the set of hotels (with abbreviated names) {GW,WH,OH,A,WW,SSp,
RC,H,SH}. The strict-order a is the relation ≺. We show the values of p, x and
y, all in set notation, during the evaluation of the recursion for inc(x, p) with
initial values x = {SSp} and p = {GW,H,WH,WW}.

step 1 2 3 4 5

p {GW,H,WH,WW} {GW,H,WH} {H,WH} {WH} ∅
y {WW} {GW} {H} {WH} –
partial result {WW} {GW} ∅ {WH} x

In the first step we choose y = {WW}. Then x 6⊆ |≺〉y and y 6⊆ |≺〉x. Therefore y
is preserved as a partial result and the recursion continues with the remainder of
the window. The second and fourth steps are analogous. In step 3 y is dominated
by x and hence discarded. Altogether, {GW,SSp,WH,WW} is returned.

6 The Lattice Structure of Antichains

In this section we will exhibit a lattice structure on the set of antichains w.r.t.
a strict-order. To this end we first define an approximation relation.

Definition 6.1 Test p is improved by test q, in symbols p v q, if q results from
removing some objects of p that are dominated by q-objects and possibly adding
others that are not dominated by p-objects. Formally,

p v q ⇔df p− |a〉q ≤ q ∧ q · |a〉p ≤ 0 .

By Boolean algebra and distributivity we equivalently have

p v q ⇔ p ≤ |a+ 1〉q ∧ q · |a〉p ≤ 0 .

Lemma 6.2

1. ∀ p ∈ test(S) : 0 v p.
2. v is reflexive precisely on AC(a), i.e., p v p ⇔ p ∈ AC(a).
3. v is antisymmetric.
4. If a is d-transitive, then for antichains the second conjunct in the definition

of v is implied by the first one, i.e., for p, q ∈ AC(a), p v q ⇔ p ≤ |a+ 1〉q.
5. If a is d-transitive then v is transitive and hence a partial order on AC(a).
6. If a is normal then p v a . p.

Proof.

1. Immediate from the definition and Lm. 4.2.
2. p v q ∧ q v p

⇔ {[ definition ]}
p− |a〉q ≤ q ∧ q · |a〉p ≤ 0 ∧ q − |a〉p ≤ p ∧ p · |a〉q ≤ 0

⇔ {[ commutativity of ∧ and Boolean algebra ]}
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p− |a〉q ≤ q ∧ p ≤ ¬|a〉q ∧ q − |a〉p ≤ p ∧ q ≤ ¬|a〉p
⇔ {[ since p ≤ ¬|a〉q ∧ q ≤ ¬|a〉p imply

p− |a〉q = p and q − |a〉p = q ]}
p ≤ q ∧ q ≤ p

⇒ {[ antisymmetry of ≤ ]}
p = q .

3. Assume p ≤ |a + 1〉q, which is equivalent to p ≤ |a〉q + q. Then by isotony
and distributivity of diamond, d-transitivity of a and Lm. 4.2,

q · |a〉p ≤ q · (|a〉|a〉q + |a〉q) = q · |a〉q = 0 .

4. By Part 4, isotony, d-transitivity of a and hence of a+ 1, distributivity, and
Part 4 again:

p v q ∧ q v s⇔ p ≤ |a+ 1〉q ∧ q ≤ |a+ 1〉s
⇒ p ≤ |a+ 1〉|a+ 1〉s⇒ p ≤ |a+ 1〉s⇔ p v s .

5. By definition of v, normality of a (3), definition of a . and Boolean algebra,

p v a . p⇔ p− |a〉(a . p) ≤ a . p ∧ (a . p) · |a〉p ≤ 0⇔ p− |a〉p ≤
a . p ∧ (a . p) · |a〉p ≤ 0⇔TRUE .

ut

We show now that the order v holds, in particular, between p and inc(x, p).
Therefore the BNL algorithm produces a v-ascending chain of antichains. It
ends with the v-largest antichain a . r, where r is again the set of all tuples
under consideration.

Theorem 6.3 Assume a to be a noetherian strict-order.

1. The operator a . transforms all ≤-suprema existing in test(S) into v-suprema
in AC(a).

2. The operator a . is isotone w.r.t. ≤ and v, i.e.,

∀ p, q ∈ test(S) : p ≤ q ⇒ a . p v a . q .

3. AC(a) is an upper semilattice with ptq = a.(p+q) and hence inc(x, p) = ptx
and 0 t p = p.

4. If (S,≤) is a quantale then AC(a) is a complete lattice withtvA = a.(ΣA),
where Σ is the supremum operator on (S,≤).

5. For atomic test x with x · p = 0 and p ∈ AC(a) we have p v inc(x, p).
6. The operator a . preserves t on AC(a).
7. The operator a . is also isotone w.r.t. v and v on arbitrary tests, i.e.,

∀ p, q ∈ test(S) : p v q ⇒ a . p v a . q .

Proof. We recall the following characterisation of the supremum s of a subset X
of a partially ordered set M (provided it exists):

∀ y ∈M : s ≤ y ⇔ (∀x ∈ X : x ≤ y) . (∗)

12



1. Let T ⊆ test(S) have ≤-supremum z. Then

∀ q ∈ a . T : q v y
⇔ {[ definition of v ]}
∀ q ∈ a . T : q ≤ |a+ 1〉y

⇔ {[ definition of a . T ]}
∀ p ∈ T : a . p ≤ |a+ 1〉y

⇔ {[ by Cor. 3.10 ]}
∀ p ∈ T : p ≤ |a+ 1〉y

⇔ {[ definition of z ]}
z ≤ |a+ 1〉y

⇔ {[ by Cor. 3.10 ]}
a . z ≤ |a+ 1〉y

⇔ {[ definition of v ]}
a . z v y .

Hence, by (∗), a.z is the v-supremum of the image set a.T of T under a ..
2. Immediate from Part 1.
3. Immediate from Part 1.
4. Immediate from Part 1.
5. By d-irreflexivity of a we have x ∈ AC(a). Hence Part 3 entails p v x t p =
a . (x+ p) = inc(x, p).

6. For p, q ∈ AC(a), by Part 3, idempotence of . (Lm. 3.4.5), Th. 3.6, Part 3,

a . (p t q) = a . (a . (p+ q)) = a . (p+ q) = a . (a . p+ a . q) = a . p t a . q .
7. For p, q ∈ test(S), by definition of v, Part 2 and Lm. 3.12

p v q ⇔ p ≤ |a+ 1〉q ⇒ a . p v a . (|a+ 1〉q) ⇔ a . p v a . q . 2

It should be noted that noetherity is essential for these results. As a coun-
terexample to ≤-isotony of a ., consider the semiring of binary relations on the
set N of natural numbers. Take a to be the usual strict-order on N so that a+ 1
is the standard order on N. Choose as p and q the tests encoding {0} and N.
Then p ≤ q, but a . p = p 6v ∅ = a . q, since p 6≤ ∅ = |a+ 1〉∅.

We conclude with an application of the algebra for bringing the function ma
from Sect. 5 into tail-recursive form, as a preparation for transliterating it into
loop form (see e.g. [9] for details of that). The essential observation is that t as
a supremum operator is associative and has the v-least element 0 as its neutral
element. We define an auxiliary function mat(p, u) =df p t ma(u) with an
additional parameter p that will accumulate the end result during the recursion.
By neutrality of 0 we can solve the original task as ma(u) = mat(0, u). Now we
calculate a recursive version of mat based on the one for ma. In the termination
case u = 0 we obtain mat(p, 0) = p t 0 = p. In the recursive case for u 6= 0 we
get by the definitions, Th. 6.3.3, associativity of t and the definitions again

mat(p, u) = p t inc(x,ma(u− x)) = p t (x tma(u− x)) =
(p t x) tma(u− x) = mat(p t x, u− x) ,

which is a tail-recursive call.
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7 Maxima as a Closure Operator

7.1 Closure Operators

We recall the definition of a closure operator.

Definition 7.1 A closure operator on a partially ordered set (L,≤) is a total
function f : L → L with the following properties:

– x ≤ f(x) (extensivity)
– x ≤ y ⇒ f(x) ≤ f(y) (isotony)
– f(f(x)) = f(x) (idempotence)

Consider now a noetherian strict-order a. By Lm.6.2.6, Thm. 6.3.7 and Lm.
3.4.5 a . satisfies all three of these properties w.r.t. v. Unfortunately, however,
v is not even a preorder on test(S), since by Lm. 6.2.2 reflexivity holds exactly
on AC(a). To remedy this, we define another comparison relation on test(S).

Definition 7.2 For a given a we set p �a q ⇔df a . p v a . q.

Lemma 7.3 � is a preorder, but not a partial order. We have p � q ∧ q � p ⇔
a . p = a . q. Finally, p ≤ q ⇒ p � q.

Proof. Reflexivity and transitivity are immediate from reflexivity and transitiv-
ity of v. The second claim follows from the antisymmetry of v; it also shows that
in general ≺a is not antisymmetric. The final claim is immediate from Th. 6.3.2
and the definitions. ut

With this definition we can now actually view a . as a closure operator if we
carry over that notion to the case of preorders.

Definition 7.4 Consider a preorder (L,≤) with induced equivalence relation ∼.
An endofunctionH : L → L on a is called weakly idempotent ifH(H(x)) ∼ H(x)
for all x ∈ L. We call H a kernel operator if it is isotone, weakly idempotent
and contractive; by the latter property we mean H(x) ≤ x for all x ∈ A. Sym-
metrically, we call H a closure operator if it is isotone, weakly idempotent and
extensive; by the latter property we mean x ≤ H(x) for all x ∈ A.

In each case, the image set H(A) coincides with the sets of weak fixed points
of H, i.e., with the set {x ∈ A |H(x) ∼ x}. Now we have the following result.

Lemma 7.5 a . is a closure operator w.r.t. �.

Proof. Since we already know that a . is idempotent, it suffices to show exten-
sivity and isotony w.r.t. �.
Extensivity: by the definition of �, idempotence of a . (Lm. 3.4.5) and reflexivity
of v we have p � a . p ⇔ a . p v a . (a . p) ⇔ a . p v a . p ⇔ TRUE.
Isotony: by the definition of �, idempotence of a . (Lm. 3.4.5) and the definition
of � again we obtain

p � q ⇔ a . p v a . q ⇔ a . (a . p) v a . (a . q) ⇔ a . p � a . q .

ut
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7.2 A Galois Connection for the Maxima Operator

Since we have established the maxima operator as a closure operator, we can use
a well-known result concerning Galois connections, again adapted to the case of
preorders rather than partial orders.

Definition 7.6 Consider two preorders (A,≤A) and (B,≤B) and total func-
tions F : A → B and G : B → A. Then the pair (F,G) is called a Galois
connection (GC) between A and B iff

∀x ∈ A : ∀ y ∈ B : F (x) ≤B y ⇔ x ≤A G(y) .

Then F is called the lower , G the upper adjoint of the GC.

Details of the theory of Galois connections for the preorder case can be found
in the Appendix. The following Lm. is well known (e.g. [5]) for the case of partial
orders; we adapt it to preorders.

Lemma 7.7 Every closure operator H : L → L induces the following Galois
connection between L and H(L):

H(x) ≤ y ⇔ x ≤ ι(y) ,

where ι is the embedding of H(L) into L, i.e., ι(y) = y for y ∈ H(L).

Proof. (⇒) By extensivity of H and the assumption, x ≤ f(x) ≤ y = ι(y).
(⇐) First, by weak idempotence of H we have H(y) ∼ y for all y ∈ H(L). Now,
by isotony of H we obtain x ≤ ι(y) ⇒ H(x) ≤ H(ι(y)) = H(y) ∼ y. ut

Hence for p ∈ test(S) and q ∈ AC(a) we have the Galois connection

a . p � q ⇔ p � ι(q) .

As a lower adjoint therefore the a . operator preserves all existing �-suprema
(see Th. 9.7 in the Appendix). This nicely rounds off the small collection of
preservation results in Th. 6.3.

8 Conclusion

We have presented an algebraic account of an approximation relation between
antichains that induces a semilattice and renders the maxima operator isotone
in several ways. Moreover, the maxima operator has been shown to be a closure
operator in an associated preordered set and hence satisfies a Galois connection.
We have shown the calculus at work in the non-trivial example of the BNL
algorithm. Therefore we are convinced that the theory developed here will be
useful for many further calculational derivations involving the maxima operator
and antichains.
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[4] Desharnais, J., Möller, B., Struth, G.: Algebraic notions of termination. Logical
Methods in Computer Science 7(1) (2011)

[5] Erne, M., Koslowski, J., Melton, A., Strecker, G.: A primer on Galois connections.
In: Proc. 1991 Summer Conference on General Topology and Applications in
Honor of Mary Ellen Rudin and Her Work. Annals of the New York Academy of
Sciences, vol. 704, pp. 103–125. New York Academy of Sciences (1993)

[6] Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular
events. Information and Computation 110(2), 366–390 (1994)

[7] Möller, B., Roocks, P.: An algebra of database preferences. Journal of Logical and
Algebraic Methods in Programming 84, 456–481 (2015)
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9 Appendix: Galois Connections Between Preorders

We investigate in how far the standard properties of Galois connections between
partial orders hold for general preorders as well. For a good summary of the
standard case see e.g. [5].

9.1 Definition and Basic Properties

Consider two preorders (A,≤A) and (B,≤B) and total functions F : A → B and
G : B → A. Then the pair (F,G) is called a Galois connection (GC) between
A and B iff

∀x ∈ A : ∀ y ∈ B : F (x) ≤B y ⇔ x ≤A G(y) .

Then F is called the lower , G the upper adjoint of the GC.

In the sequel we shall suppress the indices of the preorders involved in a
Galois connection.

The functions in a GC are quasi-inverses of each other:
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Lemma 9.1 (Quasi-Inverses (QI)) Assume that F : A → B and G : B →
A form a GC between A and B. Then

∀x ∈ A : x ≤ G(F (x)) , ∀ y ∈ B : F (G(y)) ≤ y .

Proof. By the GC and reflexivity x ≤ G(F (x)) ⇔ F (x) ≤ F (x) ⇔ TRUE. ut

From (QI) we obtain

Corollary 9.2 (Isotony) The adjoints of a GC are isotone.

Proof. By transitivity, since QI entails z ≤ G(F (z)), and GC:

x ≤ z⇒x ≤ G(F (z))⇔F (x) ≤ F (z) .
ut

On the other hand, isotony and (QI) imply that we have a GC:

Lemma 9.3 (O. Ore) (F,G) form a GC iff F and G are isotone and quasi-
inverses of each other.

Proof. We only need to show the if-part. By isotony of G, and (QI):

F (x) ≤ y⇒G(F (x)) ≤ G(y)⇒x ≤ G(y) .

Symmetrically one shows x ≤ F (y) ⇒ F (x) ≤ y. ut

For the following results we lift the equivalence ∼ induced by the preorder
≤ pointwise to functions by setting

F1 ∼ F2 ⇔df ∀x : F1(x) ∼ F2(x) .

Then the rule of indirect equivalence immediately entails the following unique-
ness property.

Lemma 9.4 (Determination) Let (Fi, Gi) (i = 1, 2) be GCs between A and
B. Then each adjoint determines the other one uniquely up to ∼, i.e.,

F1 ∼ F2 ⇔ G1 ∼ G2 .

Now we deal with iterated application of the adjoints.

Corollary 9.5 F ◦G ◦ F ∼ F and G ◦ F ◦G ∼ G.

Proof. From (QI) we know x ≤ G(F (x)). Isotony implies F (x) ≤ F (G(F (x))).
On the other hand, (QI) gives us F (G(F (x))) ≤ F (x), so that the claim follows
by definition of ∼.

The claim on orders is immediate from that. ut

Corollary 9.6 Under the assumptions of Cor. 9.5, F ◦G and G ◦F are weakly
idempotent and hence a closure and a kernel operator, respectively.
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9.2 Galois Connections and Extremal Elements

Consider an arbitrary preorder (M,≤). The sets of lower and upper bounds of
a subset X ⊆M are given by

y ∈ lwbX ⇔df ∀x ∈ X : x ≤ y , z ∈ upbX ⇔df ∀x ∈ X : z ≤ x .

A quick calculation shows that upbX ⊇ Y ⇔ X ⊆ lwbY . So (upb, lwb) is a
GC between (P(M), ⊇ ) and (P(M), ⊆ ).

Based on these we can define the sets of least and greatest objects of X as

lstX =df X ∩ lwbX , gstX =df X ∩ upbX .

Finally, the sets of infima and suprema of X are given as

infX =df gst lwbX , supX =df lst upbX .

Note that any of these sets may be empty. All objects in a set lstX or gstX are
∼-equivalent.

Theorem 9.7 Let (F,G) form a GC. Then

1. F preserves all existing suprema, i.e., F (supX) ⊆ supF (X) for all X ⊆ A.
2. G preserves all existing infima, i.e., G(inf Y ) ⊆ inf F (Y ) for all Y ⊆ B.

Proof. We only show 1. First,

TRUE

⇔ {[ supX ⊆ upbX (definition of sup) ]}
∀x ∈ X : ∀ s ∈ supX : x ≤ s

⇒ {[ isotony ]}
∀x ∈ X : ∀ s ∈ supX : F (x) ≤ F (s)

⇒ {[ the definitions ]}
F (supX) ⊆ upbF (x) .

Second,

∀ y ∈ upbF (X) : ∀x ∈ X : F (x) ≤ y
⇔ {[ GC ]}
∀ y ∈ upbF (X) : ∀x ∈ X : x ≤ G(y)

⇔ {[ definition ]}
∀ y ∈ upbF (X) : G(y) ∈ upbX

⇔ {[ definition of sup ]}
∀ y ∈ upbF (X) : ∀ s ∈ supX : s ≤ G(y)

⇔ {[ GC ]}
∀ y ∈ upbF (X) : ∀ s ∈ supX : F (s) ≤ y

⇔ {[ definitions ]}
F (supX) ⊆ lwb upbF (X) .

Now the claim is immediate from the definitions. ut
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