Skip to main content

Increasing the Power of Shape Descriptor Based Object Analysis Techniques

  • Conference paper
  • First Online:
Perspectives in Shape Analysis

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

  • 1448 Accesses

Abstract

An advantage of shape based techniques, for object analysis tasks, is that shape allows a large number of numerical characterizations. Some of these have an intuitively clear meaning, while others do not, but they are still very useful because they satisfy some desirable properties (e.g. invariance with respect to a set of certain transformations). In this chapter we focus on numerical shape characteristics that have a clear intuitive interpretation – i.e. based on such numerical values, we can predict, to some extent, what the considered object looks like. This is beneficial, since it enables a priori appraisal of whether certain shape characteristics have suitable discriminative potential that make them appropriate for the intended task. By their nature, the number of such methods cannot be as large as the number of methods to allocate shape/object characteristics based on some formalism (algebraic, geometric, probabilistic, etc.). Because of that, some other possibilities to increase the discriminative capacity of the methods based on numerical shape characteristics, with an intuitively predictable meaning, are considered. Herein, we observe two such possibilities: the use of tuning parameters to obtain a family of shape characteristics, and the use of multiple shapes derived from the objects analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For an extension to the circularity measures with α ∈ (−1, 0), see [45].

  2. 2.

    We note that our results for \(\mathcal{C}_{st}(S)\) listed in Table 5.1 do not match Rangayyan et al.’s [28] reported accuracies for \(\mathcal{C}_{st}(S)\). This can be attributed to several factors: (i) different classifiers were used, and also (ii) different methods for estimating perimeter may have been used.

References

  1. Aktaş, M.A., Žunić, J.: Measuring shape ellipticity. In: Pinz, A., et al. (eds.) Pattern Recognition – Joint 34th DAGM and 36th OAGM Symposium, Graz. Lecture Notes in Computer Science, vol. 7476, pp. 307–316 (2012)

    Article  Google Scholar 

  2. Aktaş, M.A., Žunić, J.: A family of shape ellipticity measures for galaxy classification. SIAM J. Imaging Sci. 6, 765–781 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arandjelović, O.: Computationally efficient application of the generic shape illumination invariant to face recognition from video. Pattern Recognit. 45, 92–103 (2012)

    Article  Google Scholar 

  4. Bazell, D., Peng, Y.: A comparison of neural network algorithms and preprocessing methods for star-galaxy discrimination. Astrophys. J. Suppl. Ser. 116, 47–55 (1998)

    Article  Google Scholar 

  5. Bowman, E.T., Soga, K., Drummond, T.: Particle shape characterization using Fourier analysis. Geotechnique 51, 545–554 (2001)

    Article  Google Scholar 

  6. Castro-Bleda, M.J., Boquera, S., Gorbe, J., Zamora, F., Llorens, D., Marzal, A., Prat, F., Vilar-Torres, J.M.: Improving a DTW-based recognition engine for on-line handwritten characters by using MLPs. In: Proceedings of the 10th International Conference on Document Analysis and Recognition, Barcelona, pp. 1260–1264 (2009)

    Google Scholar 

  7. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27 (2011)

    Article  Google Scholar 

  8. Di Ruberto, C., Dempster, A.: Circularity measures based on mathematical morphology. Electron. Lett. 36, 1691–1693 (2000)

    Article  Google Scholar 

  9. Dorst, L., Smeulders, A.W.M.: Length estimators for digitized contours. Comput. Vis. Graph. Image Process. 40, 311–333 (1987)

    Article  Google Scholar 

  10. Frei, Z., Guhathakurta, P., Gunn, J.E., Tyson, J.A.: A catalog of digital images of 113 nearby galaxies. Astron. J. 111, 174–181 (1996)

    Article  Google Scholar 

  11. Gautama, T., Mandić, D.P., Van Hulle, M.M.: Signal nonlinearity in fMRI: A comparison between BOLD and MION. IEEE Trans. Med. Images 22, 636–644 (2003)

    Article  Google Scholar 

  12. Goderya, S.N., Lolling, S.M.: Morphological classification of galaxies using computer vision and artificial neural networks: a computational scheme. Astrophys. Space Sci. 279, 377–387 (2002)

    Article  MATH  Google Scholar 

  13. Grisan, E., Foracchia, M., Ruggeri, A.: A novel method for the automatic grading of retinal vessel tortuosity. IEEE Trans. Med. Imaging 27, 310–319 (2008)

    Article  Google Scholar 

  14. Guo, Q., Guo, F., Shao, J.: Irregular shape symmetry analysis: theory and application to quantitative galaxy classification. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1730–1743 (2010)

    Article  Google Scholar 

  15. Han, M.: The luminosity structure and objective classification of galaxies. Astrophys. J. 442, 504–522 (1995)

    Article  Google Scholar 

  16. Haralick, R.M.: A measure for circularity of digital figures. IEEE Trans. Syst. Man Cybern. 4, 394–396 (1974)

    Article  MATH  Google Scholar 

  17. Hu, M.: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 8, 179–187 (1962)

    MATH  Google Scholar 

  18. Lee, D.R., Sallee, T.: A method of measuring shape. Geogr. Rev. 60, 555–563 (1970)

    Article  Google Scholar 

  19. Lekshmi, S., Revathy, K., Prabhakaran Nayar, S.R.: Galaxy classification using fractal signature. Astron. Astrophys. 405, 1163–1167 (2003)

    Article  Google Scholar 

  20. Mähönen, P., Frantti, T.: Fuzzy classifier for star-galaxy separation. Astrophys. J. 541, 261–263 (2000)

    Article  Google Scholar 

  21. Mei, Y., Androutsos, D.: Robust affine invariant region-based shape descriptors: the ICA Zernike moment shape descriptor and the whitening Zernike moment shape descriptor. IEEE Signal Process. Lett. 16, 877–880 (2009)

    Article  Google Scholar 

  22. Odewahn, S., Stockwell, E., Pennington, R., Humphreys, R., Zumach, W.: Automated star/galaxy discrimination with neural networks. Astron. J. 103, 318–331 (1992)

    Article  Google Scholar 

  23. Otsu, N.: A threshold selection method from gray level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979)

    Article  Google Scholar 

  24. Pan, F., Keane, M.: A new set of moment invariants for handwritten numeral recognition. In: Proceedings of the International Conference on Image Processing, Austin, pp. 154–158 (1994)

    Google Scholar 

  25. Proffitt, D.: The measurement of circularity and ellipticity on a digital grid. Pattern Recognit. 15, 383–387 (1982)

    Article  Google Scholar 

  26. Rahtu, E., Salo, M., Heikkilä, J.: A new convexity measure based on a probabilistic interpretation of images. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1501–1512 (2006)

    Article  Google Scholar 

  27. Ramer, U.: An iterative procedure for the polygonal approximation of plane curves. Comput. Graph. Image Process. 1, 244–256 (1972)

    Article  Google Scholar 

  28. Rangayyan, R.M, Elfaramawy, N.M., Desautels, J.E.L., Alim, O.A.: Measures of acutance and shape for classification of breast-tumors. IEEE Trans. Med. Imaging 16, 799–810 (1997)

    Article  Google Scholar 

  29. Richardson, E., Werman, M.: Efficient classification using the Euler characteristic. Pattern Recognit. Lett. 49, 99–106 (2014)

    Article  Google Scholar 

  30. Rosin, P.L.: Measuring shape: ellipticity, rectangularity, and triangularity. Mach. Vis. Appl. 14, 172–184 (2003)

    Article  Google Scholar 

  31. Rosin, P.L.: Measuring sigmoidality. Pattern Recognit. 37, 1735–1744 (2004)

    Article  Google Scholar 

  32. Rosin, P.L., Mumford, C.L.: A symmetric convexity measure. Comput. Vis. Image Underst. 103, 101–111 (2006)

    Article  Google Scholar 

  33. Rosin, P.L., Pantović, J., Žunić, J.: Measuring linearity of closed curves and connected compound curves. In: Kyoung Mu Lee et al.: (eds.) 11th Asian Conference on Computer Vision, Daejeon. Lecture Notes in Computer Science, vol. 7726, pp. 310–321 (2012)

    Article  Google Scholar 

  34. Rosin, P.L., Žunić, J.: Measuring squareness and orientation of shapes. J. Math. Imaging Vis. 39, 13–27 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rosin, P.L., Žunić, J.: Orientation and anisotropy of multi component shapes from boundary information. Pattern Recognit. 44, 2147–2160 (2011)

    Article  Google Scholar 

  36. Stojmenović, M., Nayak, A., Žunić, J.: Measuring linearity of planar point sets. Pattern Recognit. 41, 2503–2511 (2008)

    Article  MATH  Google Scholar 

  37. Teja, S.P., Namboodiri, A.M.: A ballistic stroke representation of online handwriting for recognition. In: International Conference on Document Analysis and Recognition, Washington, DC, pp. 857–861 (2013)

    Google Scholar 

  38. Tool, A.Q.: A method for measuring ellipticity and the determination of optical constants of metals. Phys. Rev. (Ser. I) 31, 1–25 (1910)

    Google Scholar 

  39. Wang, B.: Shape retrieval using combined Fourier features. Opt. Commun. 284, 3504–3508 (2011)

    Article  Google Scholar 

  40. Žunić, J., Martinez-Ortiz, C.: Linearity measure for curve segments. Appl. Math. Comput. 215, 3098–3105 (2009)

    MathSciNet  MATH  Google Scholar 

  41. Žunić, J., Rosin, P.L.: Rectilinearity measurements for polygons. IEEE Trans. Pattern Anal. Mach. Intell. 25, 1193–1200 (2003)

    Article  Google Scholar 

  42. Žunić, J., Rosin, P.L.: A new convexity measurement for polygons. IEEE Trans. Pattern Anal. Mach. Intell. 26, 923–934 (2004)

    Article  Google Scholar 

  43. Žunić, J., Rosin, P.L.: Convexity measure for shapes with partially extracted boundaries. Electron. Lett. 43, 380–382 (2007)

    Article  Google Scholar 

  44. Žunić, D., Žunić, J.: Shape ellipticity from Hu moment invariants. Appl. Math. Comput. 226, 406–414 (2014)

    MathSciNet  MATH  Google Scholar 

  45. Žunić, J., Hirota, K., Rosin, P.L.: A Hu moment invariant as a shape circularity measure. Pattern Recognit. 43, 47–57 (2010)

    Article  MATH  Google Scholar 

  46. Žunić, J., Kakarala, R., Aktaş, M.A.: Elliptical shape signature (Submitted)

    Google Scholar 

Download references

Acknowledgements

This work is partially supported by the Ministry of Science of the Republic of Serbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joviša Žunić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Žunić, J., Rosin, P.L., Aktaş, M.A. (2016). Increasing the Power of Shape Descriptor Based Object Analysis Techniques. In: Breuß, M., Bruckstein, A., Maragos, P., Wuhrer, S. (eds) Perspectives in Shape Analysis. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-24726-7_5

Download citation

Publish with us

Policies and ethics