Skip to main content

Shape Compaction

  • Conference paper
  • First Online:
Perspectives in Shape Analysis

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

  • 1472 Accesses

Abstract

We cover and discuss techniques that are designed for compaction of shape representations or shape configurations. The goal of compaction is to reduce storage space, a fundamental problem in many application domains. We consider compaction both at the representation level (i.e., digital storage) and in physical domains (i.e., physical storage). Shape representation compaction focuses on reducing the memory space allocated for storing the shape geometry data, whilst shape compaction techniques in the physical domain reduce the physical space occupied by shape configuration. We use the term shape configuration to refer to how a shape, real or conceptual, is physically modeled (e.g., design and composition of its parts) and spatially arranged (e.g., shape parts positioning and possibly in relation to other shapes). In this paper we briefly cover the representation compaction techniques whilst placing our focus on the less explored realm of shape compaction approaches on physical configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alliez, P., Gotsman, C.: Recent advances in compression of 3d meshes. In: Advances in Multiresolution for Geometric Modelling, pp. 3–26. Springer, Berlin/London (2005)

    Google Scholar 

  2. Au, O.K.-C., Tai, C.-L., Chu, H.-K., Cohen-Or, D., Lee, T.-Y.: Skeleton extraction by mesh contraction. ACM Trans. Graph. 27 (3), 44 (2008)

    Article  Google Scholar 

  3. Blum, H.: A transformation for extracting new descriptors of shape. In: Wathen-Dunn, W. (ed.) Models for the Perception of Speech and Visual Form, pp. 362–380. M.I.T. Press, Cambridge (1967)

    Google Scholar 

  4. Cagan, J., Shimada, K., Yin, S.: A survey of computational approaches to three-dimensional layout problems. Comput. Aided Des. 34, 597–611 (2002)

    Article  Google Scholar 

  5. Cole, F., Golovinskiy, A., Limpaecher, A., Barros, H.S., Finkelstein, A., Funkhouser, T., Rusinkiewicz, S.: Where do people draw lines? ACM Trans. Graph. (Proc. SIGGRAPH) 27 (3), 88 (2008)

    Google Scholar 

  6. Cole, F., Sanik, K., DeCarlo, D., Finkelstein, A., Funkhouser, T., Rusinkiewicz, S., Singh, M.: How well do line drawings depict shape? ACM Trans. Graph. 28 (3), 28 (2009). Proc. SIGGRAPH

    Google Scholar 

  7. Cornea, N.D., Silver, D., Min, P.: Curve-skeleton properties, applications, and algorithms. IEEE Trans. Vis. Comput. Graph. 13 (3), 530–548 (2007)

    Article  Google Scholar 

  8. De Goes, F., Goldenstein, S., Desbrun, M., Velho, L.: Technical section: exoskeleton: curve network abstraction for 3d shapes. Comput. Graph. 35 (1), 112–121 (2011)

    Article  Google Scholar 

  9. Demaine, E.D., O’Rourke, J.: Geometric Folding Algorithms: Linkages, Origami, Polyhedra. Cambridge University Press, Cambridge/New York (2007)

    Book  MATH  Google Scholar 

  10. Dyckhoff, H.: A typology of cutting and packing problems. Eur. J. Oper. Res. 44 (2), 145–159 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Egeblad, J., Nielsen, B.K., Odgaard, A.: Fast neighborhood search for two- and three-dimensional nesting problems. Eur. J. Oper. Res. 183 (3), 1249–1266 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fiell, C., Fiell, P.: 1000 Chairs. Taschen, New York (2000)

    Google Scholar 

  13. Gal, R., Sorkine, O., Popa, T., Sheffer, A., Cohen-Or, D.: 3D collage: expressive non-realistic modeling. In: NPAR: Proceedings of the 5th International Symposium on Non-Photorealistic Animation and Rendering, San Diego, pp. 7–14 (2007)

    Google Scholar 

  14. Heckbert, P.S., Garland, M.: Survey of polygonal surface simplification algorithms. In: Multiresolution Surface Modeling Course SIGGRAPH’97, Los Angeles (1997)

    Google Scholar 

  15. Hildebrand, K., Bickel, B., Alexa, M.: crdbrd: shape fabrication by sliding planar slices. Comput. Graph. Forum 31, 1583–592 (2012)

    Google Scholar 

  16. Hopper, E, Turton, B.C.H.: A review of the application ofmeta-heuristic algorithms to 2d strip packing problems. Artif. Intell. Rev. 16 (4), 257–300 (2001)

    Article  MATH  Google Scholar 

  17. Hu, R., Li, H., Zhang, H., Cohen-Or, D.: Approximate pyramidal shape decomposition. In: Proceedings of SIGGRAPH, Vancouver (2014)

    Google Scholar 

  18. Huang, H., Wu, S., Cohen-Or, D., Gong, M., Zhang, H., Li, G., Chen, B.: L1-medial skeleton of point cloud. ACM Trans. Graph. 32, 65:1–65:8 (2013)

    Google Scholar 

  19. Huang, H., Zhang, L., Zhang, H.-C.: Arcimboldo-like collage using internet images. ACM Trans. Graph. 30 (155), 1–8 (2011)

    Google Scholar 

  20. Jackson, P.: Folding Techniques for Designers: From Sheet to Form. Laurence King Publishing, London (2011)

    Google Scholar 

  21. Kaplan, C.S, Salesin, D.H.: Escherization. In: Proceedings of the 27th annual conference on Computer graphics and interactive techniques, SIGGRAPH’00, New Orleans, pp. 499–510. ACM Press/Addison-Wesley Publishing Co. (2000)

    Google Scholar 

  22. Leung, S.C., Lin, Y., Zhang, D.: Extended local search algorithm based on nonlinear programming for two-dimensional irregular strip packing problem. Comput. Oper. Res. 39 (3), 678–686 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, H., Alhashim, I., Zhang, H., Shamir, A., Cohen-Or, D.: Stackabilization. ACM Trans. Graph. 31 (6), 158:1–158:9 (2012)

    Google Scholar 

  24. Li, X.-Y., Ju, T., Gu, Y., Hu, S.-M.: A geometric study of v-style pop-ups: theories and algorithms. ACM Trans. Graph. 30 (4), 98:1–10 (2011)

    Google Scholar 

  25. Li, X.-Y., Shen, C.-H., Huang, S.-S., Ju, T., Hu, S.-M.: Popup: automatic paper architectures from 3d models. ACM Trans. Graph. 29 (4), 111:1–9 (2010)

    Google Scholar 

  26. Li, Z.: Compaction algorithms for non-convex polygons and their applications. Ph.D. thesis, Harvard University (1994)

    Google Scholar 

  27. Lodi, A., Martello, S., Monaci, M.: Two-dimensional packing problems: a survey. Eur. J. Oper. Res. 141 (2), 241–252 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Luebke, D., Watson, B., Cohen, J.D., Reddy, M., Varshney, A.: Level of Detail for 3D Graphics. Elsevier Science Inc., New York (2002)

    Google Scholar 

  29. Luebke, D.P.: A developer’s survey of polygonal simplification algorithms. IEEE Comput. Graph. Appl. 21 (3), 24–35 (2001)

    Article  Google Scholar 

  30. Martinet, A.: Structuring 3D geometry based on symmetry and instancing information. Ph.D. thesis, INP Grenoble (2007)

    Google Scholar 

  31. McArthur, M., Lang, R.J.: Folding Paper: The Infinite Possibilities of Origami. Turtle Publishing, Tokyo (2013)

    Google Scholar 

  32. McCrae, J., Singh, K., Mitra, N.J.: Slices: a shape-proxy based on planar sections. ACM Trans. Graph. 30 (6), 168:1–168:12 (2011)

    Google Scholar 

  33. Mehra, R., Zhou, Q., Long, J., Sheffer, A., Gooch, A., Mitra, N.J.: Abstraction of man-made shapes. ACM Trans. Graph. 28 (5), 137:1–137:10 (2009)

    Google Scholar 

  34. Mitani, J., Suzuki, H.: Computer aided design for origamic architecture models with polygonal representation. In: Proceedings of Computer Graphics International, Crete, pp. 93–99 (2004)

    Google Scholar 

  35. Mitani, J., Suzuki, H., Uno, H.: Computer aided design for origamic architecture models with voxel data structure. Trans. Inf. Process. Soc. Jpn. 44 (5), 1372–1379 (2003)

    Google Scholar 

  36. Mitra, N.J., Wand, M., Zhang, H., Cohen-Or, D., Bokeloh, M.: Structure-aware shape processing. In: EUROGRAPHICS State-of-the-art Report, Girona (2013)

    Book  Google Scholar 

  37. Mollerup, P.: Collapsible: The Genius of Space-Saving Design. Chronicle, San Francisco (2001)

    Google Scholar 

  38. Nielsen, B.K., Odgaard, A.: Fast neighborhood search for the nesting problem. Technical Report 03/03, Department of Computer Science, University of Copenhagen, Universitetsparken 1, DK-2100 Copenhagen Ø (2003)

    Google Scholar 

  39. Pauly, M., Mitra, N.J., Wallner, J., Pottmann, H., Guibas, L.: Discovering structural regularity in 3D geometry. ACM Trans. Graph. 27 (3), 43:1–11 (2008)

    Google Scholar 

  40. Peng, J., Kim, C.-S., Jay Kuo, C.C.: Technologies for 3d mesh compression: a survey. J. Vis. Commun. Image Represent. 16 (6), 688–733 (2005)

    Article  Google Scholar 

  41. Ruiz Jr., C.R., Le, S.N., Yu, J., Low, K.-L.: Multi-style paper pop-up designs from 3d models. Comput. Graph. Forum (Special Issue of Eurographics) 33 (2), 487-496 (2014)

    Google Scholar 

  42. Schattschneider, D., Escher, M.C.: Visions of Symmetry. W.H. Freeman, New York (1990)

    Google Scholar 

  43. Simari, P., Kalogerakis, E., Singh, K.: Folding meshes: hierarchical mesh segmentation based on planar symmetry. In: Symposium on Geometry Processing, Cagliari, pp. 111–119 (2006)

    Google Scholar 

  44. Stoyan, Y., Romanova, T.: Mathematical models of placement optimisation: two- and three-dimensional problems and applications. In: Fasano, G., Pintér, J.D. (eds.) Modeling and Optimization in Space Engineering. Springer, New York (2013)

    Google Scholar 

  45. Tagliasacchi, A., Alhashim, I., Olson, M., Zhang, H.: Mean curvature skeletons. Comput. Graph. Forum 31 (5), 1735–1744 (2012)

    Article  Google Scholar 

  46. Tagliasacchi, A., Zhang, H., Cohen-Or, D.: Curve skeleton extraction from incomplete point cloud. ACM Trans. Graph. 28 (3): 71, 9 (2009)

    Google Scholar 

  47. Theobalt, C., Rössl, C., de Aguiar, E., Seidel, H.-P.: Animation collage. In: Symposium on Computer Animation, San Diego, pp. 271–280. Eurographics (2007)

    Google Scholar 

  48. Timmerman, M.: Optimization methods for nesting problems. Master’s thesis, University West (2013)

    Google Scholar 

  49. van Lemmen, H.: Tiles: 1000 Years of Architectural Decoration. Harry N. Abrams, Inc., New York (1993)

    Google Scholar 

  50. Wang, Y., Xu, K., Li, J., Zhang, H., Shamir, A., Liu, L., Cheng, Z., Xiong, Y.: Symmetry hierarchy of man-made objects. Comput. Graph. Forum (Special Issue of Eurographics) 30 (2), 287–296 (2011)

    Google Scholar 

  51. Wäscher, G., Haußner, H., Schumann, H.: An improved typology of cutting and packing problems. Eur. J. Operat. Res. 183 (3), 1109–1130 (2007)

    Article  MATH  Google Scholar 

  52. Yin, S, Cagan, J.: An extended pattern search algorithm for three-dimensional component layout. ASME J. Mech. Des. 122 (1), 102–108 (2000)

    Article  Google Scholar 

  53. Yumer, M.E., Kara, L.B.: Co-abstraction of shape collections. ACM Trans. Graph. 31, 158:1–158:11 (2012). Proceedings of SIGGRAPH Asia 2012

    Google Scholar 

  54. Zhou, Y., Sueda, S., Matusik, W., Shamir, A.: Boxelization: folding 3d objects into boxes. ACM Trans. Graph. 33 (4), 71:1–71:8 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honghua Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Li, H., Zhang, H. (2016). Shape Compaction. In: Breuß, M., Bruckstein, A., Maragos, P., Wuhrer, S. (eds) Perspectives in Shape Analysis. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-24726-7_8

Download citation

Publish with us

Policies and ethics