Skip to main content

Is the Colony of Ants Able to Recognize Graphic Objects?

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 538))

Abstract

This paper is to discuss a matter of ants swarm intelligence for 2D input images recognition systems. In the following sections we try to analyze possibility of using artificial ants colony algorithm to analyze input images. Experiments have been performed on a set of test images, to present and prove efficacy and precision of recognition.

This is a preview of subscription content, log in via an institution.

References

  1. Anusha, G., Prasad, T., Narayana, D.: Implementation of sobel edge detection on FPGA. Int. J. Comput. Trends Technol. 3(3), 472–475 (2012)

    Google Scholar 

  2. Aydin, D.: An efficient ant-based edge detector. Trans. Comput. Collective Intell. 1, 39–55 (2010)

    Google Scholar 

  3. Benatcha, K., Koudil, M., Benkhelat, N., Boukir, Y.: ISA an algorithm for image segmentation using ants. In: Proceedings of IEEE International Symposium on Industrial Electronics, pp. 2503–2507. IEEE (2008)

    Google Scholar 

  4. Bhandari, A.K., Singh, V.K., Kumar, A., Singh, G.K.: Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using kapurs entropy. Expert Syst. Appl. 41(7), 3538–3560 (2014)

    Article  Google Scholar 

  5. Bonanno, F., Capizzi, G., Sciuto, G.L., Napoli, C., Pappalardo, G., Tramontana, E.: A cascade neural network architecture investigating surface plasmon polaritons propagation for thin metals in OpenMP. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part I. LNCS, vol. 8467, pp. 22–33. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  6. Borowik, G., Woźniak, M., Fornaia, A., Giunta, R., Napoli, C., Pappalardo, G., Tramontana, E.: A software architecture assisting workflow executions on cloud resources. Int. J. Electron. Telecommun. 61(1), 17–23 (2015). doi:10.1515/eletel-2015-0002

    Article  Google Scholar 

  7. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986)

    Article  Google Scholar 

  8. Napoli, C., Pappalardo, G., Tramontana, E., Marszałek, Z., Połap, D., Woźniak, M.: Simplified firefly algorithm for 2D image key-points search. In: Proceedings of the IEEE Symposium on Computational Intelligence for Human-like Intelligence – CIHLI 2014, Orlando, USA, pp. 118–125. IEEE, 9–12 December 2014, doi:10.1109/CIHLI.2014.7013395

  9. Capizzi, G., Bonanno, F., Napoli, C.: A new approach for lead-acid batteries modeling by local cosine. In: Proceedings of International Symposium on Power Electronics Electrical Drives Automation and Motion (SPEEDAM), pp. 1074–1079, 14–16 June 2010. doi:10.1109/SPEEDAM.2010.5542285

  10. Damaševičius, R.: Structural analysis of regulatory DNA sequences using grammar inference and support vector machine. Neurocomputing 73(4–6), 633–638 (2010)

    Article  Google Scholar 

  11. Etemad, S., White, T.: An ant-inspired algorithm for detection of image edge features. Electron. Lett. Comput. Vis. Image Anal. 11(8), 4883–4893 (2011)

    Google Scholar 

  12. Gabryel, M., Nowicki, R.K., Woźniak, M., Kempa, W.M.: Genetic cost optimization of the GI/M/1/N finite-buffer queue with a single vacation policy. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS, vol. 7895, pp. 12–23. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  13. Napoli, C., Pappalardo, G., Tramontana, E., Nowicki, R.K., Starczewski, J.T., Woźniak, M.: Toward work groups classification based on probabilistic neural network approach. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.). LNCS, vol. 9119, pp. 79–89Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  14. Hetmaniok, E., Nowak, I., Słota, D., Zielonka, A.: Determination of optimal parameters for the immune algorithm used for solving inverse heat conduction problems with and without a phase change. Numer. Heat Transf. B 62, 462–478 (2012)

    Article  Google Scholar 

  15. Hetmaniok, E., Słota, D., Zielonka, A.: Experimental verification of immune recruitment mechanism and clonal selection algorithm applied for solving the inverse problems of pure metal solidification. Int. Commun. Heat Mass Transf. 47, 7–14 (2013)

    Article  Google Scholar 

  16. Horng, M.H.: Vector quantization using the firefly algorithm for image compression. Expert Syst. Appl. 39(1), 1078–1091 (2012)

    Article  Google Scholar 

  17. Horzyk, A.: Innovative types and abilities of neural networks based on associative mechanisms and a new associative model of neurons. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.). LNCS, vol. 9119, pp. 26–38Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  18. Horzyk, A.: How does generalization and creativity come into being in neural associative systems and how does it form human-like knowledge? Neurocomputing 144, 238–257 (2014). doi:10.1016/j.neucom.2014.04.046

    Article  Google Scholar 

  19. Keshtkar, F., Gueaieb, W.: Segmentation of dental radiographs using a swarm intelligence approach. In: Proceedings of Canadian Conference on Electrical and Computer Engineering, pp. 328–331 (2006)

    Google Scholar 

  20. Lakehal, E.: A swarm intelligence based approach for image feature extraction. In: Proceedings of International Conference on Multimedia Computing and Systems, pp. 31–35 (2009)

    Google Scholar 

  21. Martisius, I., Birvinskas, D., Damasevicius, R., Jusas, V.: EEG dataset reduction and classification using wave atom transform. In: Mladenov, V., Koprinkova-Hristova, P., Palm, G., Villa, A.E.P., Appollini, B., Kasabov, N. (eds.) ICANN 2013. LNCS, vol. 8131, pp. 208–215. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  22. Mishra, A., Agarwal, C., Sharma, A., Bedi, P.: Optimized gray-scale image water-marking using DWT SVD and firefly algorithm. Expert Syst. Appl. 41(17), 7858–7867 (2014)

    Article  Google Scholar 

  23. Napoli, C., Papplardo, G., Tramontana, E.: Improving files availability for bit-torrent using a diffusion model. In: IEEE 23rd International Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises - WETICE 2014, pp. 191–196, June 2014

    Google Scholar 

  24. Napoli, C., Pappalardo, G., Tramontana, E., Zappalà, G.: A cloud-distributed GPU architecture for pattern identification in segmented detectors big-data surveys. Comput. J. bxu147 (2014). doi:10.1093/comjnl/bxu147

    Article  Google Scholar 

  25. Niewiadomski, A.: Imprecision measures for type-2 fuzzy sets: applications to linguistic summarization of databases. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 285–294. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  26. Nowak, B.A., Nowicki, R.K., Woźniak, M., Napoli, C.: Multi-class nearest neighbour classifier for incomplete data handling. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.). LNCS, vol. 9119, pp. 469–480Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  27. Ouadfel, S., Batouche, M.: MRF-based image segmentation using ant colony system. Electron. Lett. Comput. Vis. Image Anal. 2(2), 12–24 (2013)

    Google Scholar 

  28. Wang, Y., Wan, Q.: Detecting moving objects by ant colony system in a MAP-MRF framework. In: Proceedings of International Conference on E-product E-service and E-Entertainment, pp. 1–4 (2010)

    Google Scholar 

  29. Tian, J., Yu, W., Chen, L., Ma, L.: Image edge detection using variation-adaptive ant colony optimization. In: Nguyen, N.T. (ed.) Transactions on Computational Collective Intelligence V. LNCS, vol. 6910, pp. 27–40. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  30. Uktveris, T.: Efficiency analysis of object position and orientation detection algorithms. In: Dregvaite, G., Damasevicius, R. (eds.) ICIST 2014. CCIS, vol. 465, pp. 302–311. Springer, Heidelberg (2014)

    Google Scholar 

  31. Walia, G.S., Kapoor, R.: Intelligent video target tracking using an evolutionary particle filter based upon improved cuckoo search. Expert Syst. Appl. 41(14), 6315–6326 (2014)

    Article  Google Scholar 

  32. Woźniak, M.: On applying cuckoo search algorithm to positioning GI/M/1.N finite-buffer queue with a single vacation policy. In: Proceedings of the 12th Mexican International Conference on Artificial Intelligence – MICAI 2013, Mexico City, Mexico, pp. 59–64. IEEE, 24–30 November 2013. doi:10.1109/MICAI.2013.12

  33. Woźniak, M.: Fitness function for evolutionary computation applied in dynamic object simulation and positioning. In: Proceedings of the IEEE Symposium Series on Computational Intelligence – SSCI 2014: 2014 IEEE Symposium on Computational Intelligence in Vehicles and Transportation Systems – CIVTS 2014, Orlando, Florida, USA, pp. 108–114. IEEE, 9–12 December 2014. doi:10.1109/CIVTS.2014.7009485

  34. Gabryel, M., Woźniak, M., Damaševičius, R.: An application of differential evolution to positioning queueing systems. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.). LNCS, vol. 9120, pp. 379–390Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  35. Woźniak, M., Kempa, W.M., Gabryel, M., Nowicki, R.K.: A finite-buffer queue with single vacation policy - analytical study with evolutionary positioning. Int. J. Appl. Math. Comput. Sci. 24(4), 887–900 (2014). doi:10.2478/amcs-2014-0065

    Article  MathSciNet  MATH  Google Scholar 

  36. Woźniak, M., Kempa, W.M., Gabryel, M., Nowicki, R.K., Shao, Z.: On applying evolutionary computation methods to optimization of vacation cycle costs in finite-buffer queue. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part I. LNCS, vol. 8467, pp. 480–491. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  37. Woźniak, M., Marszałek, Z.: An idea to apply firefly algorithm in 2D image key-points search. In: Dregvaite, G., Damasevicius, R. (eds.) ICIST 2014. CCIS, vol. 465, pp. 312–323. Springer, Heidelberg (2014)

    Google Scholar 

  38. Woźniak, M., Połap, D.: Basic concept of cuckoo search algorithm for 2D images processing with some research results. In: Proceedings of the 11th International Conference on Signal Processing and Multimedia Applications – SIGMAP 2014, Vienna, Austria, pp. 64–173. SciTePress – INSTICC, 28–30 August 2014. doi:10.5220/0005015801570164

  39. Woźniak, M., Połap, D.: On some aspects of genetic and evolutionary methods for optimization purposes. Int. J. Electron. Telecommun. 61(1), 7–16 (2015). doi:10.1515/eletel-2015-0001

    Article  Google Scholar 

  40. Woźniak, M., Połap, D., Gabryel, M., Nowicki, R.K., Napoli, C., Tramontana, E.: Can we process 2D images using artificial bee colony? In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.). LNCS, vol. 9119, pp. 660–671Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  41. Zhuang, X., Yang, G., Zhu, H.: A model of image feature extraction inspired by ant swarm system. In: Proceedings of International Conference on Natural Computation, pp. 553–557 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawid Połap .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Połap, D., Woźniak, M., Napoli, C., Tramontana, E., Damaševičius, R. (2015). Is the Colony of Ants Able to Recognize Graphic Objects?. In: Dregvaite, G., Damasevicius, R. (eds) Information and Software Technologies. ICIST 2015. Communications in Computer and Information Science, vol 538. Springer, Cham. https://doi.org/10.1007/978-3-319-24770-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24770-0_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24769-4

  • Online ISBN: 978-3-319-24770-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics