Skip to main content

An Empirical Evaluation of Robust Gaussian Process Models for System Identification

  • Conference paper
  • First Online:
Book cover Intelligent Data Engineering and Automated Learning – IDEAL 2015 (IDEAL 2015)

Abstract

System identification comprises a number of linear and nonlinear tools for black-box modeling of dynamical systems, with applications in several areas of engineering, control, biology and economy. However, the usual Gaussian noise assumption is not always satisfied, specially if data is corrupted by impulsive noise or outliers. Bearing this in mind, the present paper aims at evaluating how Gaussian Process (GP) models perform in system identification tasks in the presence of outliers. More specifically, we compare the performances of two existing robust GP-based regression models in experiments involving five benchmarking datasets with controlled outlier inclusion. The results indicate that, although still sensitive in some degree to the presence of outliers, the robust models are indeed able to achieve lower prediction errors in corrupted scenarios when compared to conventional GP-based approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rasmussen, C., Williams, C.: Gaussian Processes for Machine Learning, 1st edn. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  2. Williams, C.K.I., Barber, D.: Bayesian classification with Gaussian processes. IEEE Trans. Pattern Anal. 20(12), 1342–1351 (1998)

    Article  Google Scholar 

  3. Lawrence, N.D.: Gaussian process latent variable models for visualisation of high dimensional data. In: Advances in Neural Information Processing Systems, pp. 329–336 (2004)

    Google Scholar 

  4. Kocijan, J., Girard, A., Banko, B., Murray-Smith, R.: Dynamic systems identification with Gaussian processes. Math. Comput. Model. Dyn. 11(4), 411–424 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Murray-Smith, R., Johansen, T.A., Shorten, R.: On transient dynamics, off-equilibrium behaviour and identification in blended multiple model structures. In: European Control Conference (ECC 1999), Karlsruhe, BA-14. Springer (1999)

    Google Scholar 

  6. Solak, E., Murray-Smith, R., Leithead, W.E., Leith, D.J., Rasmussen, C.E.: Derivative observations in Gaussian process models of dynamic systems. In: Advances in Neural Information Processing Systems 16 (2003)

    Google Scholar 

  7. Rottmann, A., Burgard, W.: Learning non-stationary system dynamics online using Gaussian processes. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds.) Pattern Recognition. LNCS, vol. 6376, pp. 192–201. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Ažman, K., Kocijan, J.: Dynamical systems identification using Gaussian process models with incorporated local models. Eng. Appl. Artif. Intel. 24(2), 398–408 (2011)

    Article  Google Scholar 

  9. Petelin, D., Grancharova, A., Kocijan, J.: Evolving Gaussian process models for prediction of ozone concentration in the air. Simul. Model. Pract. Theory 33, 68–80 (2013)

    Article  Google Scholar 

  10. Frigola, R., Chen, Y., Rasmussen, C.: Variational Gaussian process state-space models. In: Advances in Neural Information Processing Systems (NIPS), vol. 27, pp. 3680–3688 (2014)

    Google Scholar 

  11. Jordan, M.I., Ghahramani, Z., Jaakkola, T.S., Saul, L.K.: An introduction to variational methods for graphical models. Mach. Learn. 37(2), 183–233 (1999)

    Article  MATH  Google Scholar 

  12. Minka, T.P.: Expectation propagation for approximate Bayesian inference. In: Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence (UAI 2001), pp. 362–369. Morgan Kaufmann (2001)

    Google Scholar 

  13. Nakayama, H., Arakawa, M., Sasaki, R.: A computational intelligence approach to optimization with unknown objective functions. In: Dorffner, G., Bischof, H., Hornik, K. (eds.) ICANN 2001. LNCS, vol. 2130, pp. 73–80. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  14. Kuss, M., Pfingsten, T., Csató, L., Rasmussen, C.E.: Approximate inference for robust Gaussian process regression. Technical report 136, Max Planck Institute for Biological Cybernetics, Tubingen, Germany (2005)

    Google Scholar 

  15. Tipping, M.E., Lawrence, N.D.: Variational inference for student-\(t\) models: robust Bayesian interpolation and generalised component analysis. Neurocomputing 69(1), 123–141 (2005)

    Article  Google Scholar 

  16. Jylänki, P., Vanhatalo, J., Vehtari, A.: Robust gaussian process regression with a student-\(t\) likelihood. J. Mach. Learn. Res. 12, 3227–3257 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Berger, B., Rauscher, F.: Robust Gaussian process modelling for engine calibration. In: Proceedings of the 7th Vienna International Conference on Mathematical Modelling (MATHMOD 2012), pp. 159–164 (2012)

    Google Scholar 

  18. Kuss, M.: Gaussian process models for robust regression, classification, and reinforcement learning. Ph.D. thesis, TU Darmstadt (2006)

    Google Scholar 

  19. Rasmussen, C.E.: Evaluation of Gaussian processes and other methods for non-linear regression. Ph.D. thesis, University of Toronto, Toronto, Canada (1996)

    Google Scholar 

  20. Narendra, K.S., Parthasarathy, K.: Identification and control of dynamical systems using neural networks. IEEE Trans. Neural Networks 1(1), 4–27 (1990)

    Article  Google Scholar 

  21. Majhi, B., Panda, G.: Robust identification of nonlinear complex systems using low complexity ANN and particle swarm optimization technique. Expert Syst. Appl. 38(1), 321–333 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the financial support of FUNCAP, IFCE, NUTEC and CNPq (grant no. 309841/2012-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César Lincoln C. Mattos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Mattos, C.L.C., Santos, J.D.A., Barreto, G.A. (2015). An Empirical Evaluation of Robust Gaussian Process Models for System Identification. In: Jackowski, K., Burduk, R., Walkowiak, K., Wozniak, M., Yin, H. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2015. IDEAL 2015. Lecture Notes in Computer Science(), vol 9375. Springer, Cham. https://doi.org/10.1007/978-3-319-24834-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24834-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24833-2

  • Online ISBN: 978-3-319-24834-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics