Skip to main content

Comparison of Clustering Methods in Cotton Textile Industry

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2015 (IDEAL 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9375))

Abstract

Clustering is the task of partitioning data objects into groups, so that the objects within a cluster are similar to one another and dissimilar to the objects in other clusters. The efficiency random algorithm for good k is used to estimate the optimal number of clusters. In this research two important clustering algorithms, namely centroid based k-means, and representative object based fuzzy c-means clustering algorithms are compared in the original real-world U.S. cotton textile and apparel imports data set. This data set is not analyzed very often, it is dictated by business, economics and politics environments and its behaviour is not well known. The analysis of several different real-world economies and industrial data sets of one country is possible to predict it’s economic development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice Hall, Upper Saddle River (1988)

    MATH  Google Scholar 

  2. http://otexa.trade.gov/Msrcat.htm. Accessed 29 April 2015

  3. Larose, D.T.: Discovering Knowledge in Data: An Introduction to Data Mining. Wiley, New York (2005)

    MATH  Google Scholar 

  4. Spath, H.: Cluster Analysis Algorithms. Ellis Horwood, Chichester (1980)

    MATH  Google Scholar 

  5. Han, J., Kamber, M.: Data Mining. Morgan Kaufmann Publishers, Burlington (2001)

    MATH  Google Scholar 

  6. Duda, R., Hart, P.: Pattern Classification and Scene Analysis. Wiley, New York (1973)

    MATH  Google Scholar 

  7. Jain, A.K., Murty, N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31(3), 264–323 (1999)

    Article  Google Scholar 

  8. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  9. Gersho, A., Gray, R.M.: Vector quantization and Signal Compression. Communications and Information Theory. Kluwer Academic Publishers, Norwell (1992)

    Book  MATH  Google Scholar 

  10. Steinbach, M., Karypis, G., Kumar, V.: A comparison of document clustering techniques. In: 6th ACM SIGKDD, World Text Mining Conference, Boston (2000)

    Google Scholar 

  11. Ester, M., Frommlet, A., Kriegel, H.P., Sander, J.: Spatial data mining: database primitives, algorithms and efficient DBMS support. Data Min. Knowl. Discov. 4(2–3), 193–216 (2000)

    Article  Google Scholar 

  12. Heer, J., Chi, E.: Identification of web user traffic composition using multimodal clustering and information scent. In: 1st SIAM ICDM, Workshop on Web Mining, Chicago, pp. 51–58 (2001)

    Google Scholar 

  13. Petrov, N., Georgieva, A., Jordanov, I.: Self-organizing maps for texture classification. Neural Comput. Appl. 22(7–8), 1499–1508 (2013)

    Article  Google Scholar 

  14. Tibshirani, R., Hastie, T., Eisen, M., Ross, D., Botstein, D., Brown, P.: Clustering methods for the analysis of DNA microarray data. Department of Statistics, Stanford University, Stanford, Technical report. http://statweb.stanford.edu/~tibs/ftp/jcgs.ps. Accessed 29 April 2015

  15. Piórkowski, A., Gronkowska–Serafin, J.: Towards precise segmentation of corneal endothelial cells. In: Ortuño, F., Rojas, I. (eds.) IWBBIO 2015, Part I. LNCS, vol. 9043, pp. 240–249. Springer, Heidelberg (2015)

    Google Scholar 

  16. Bigus, J.P.: Data Mining with Neural Networks. McGraw-Hill, New York (1996)

    Google Scholar 

  17. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice Hall, Upper Saddle River (1988)

    MATH  Google Scholar 

  18. Mecca, G., Raunich, S., Pappalardo, A.: A New algorithm for clustering search results. Data Knowl. Eng. 62(3), 504–522 (2007)

    Article  Google Scholar 

  19. Valafar, F.: Pattern recognition techniques in microarray data analysis: a survey. Ann. N. Y. Acad. Sci. 980, 41–64 (2002)

    Article  Google Scholar 

  20. Jiang, D., Tang, C., Zhang, A.: Cluster analysis for gene expression data: a survey. IEEE Trans. Knowl. Data Eng. 16(11), 1370–1386 (2004)

    Article  Google Scholar 

  21. Das, N.: Hedge fund classification using k-means clustering method. In: 9th International Conference on Computing in Economics and Finance (2003) http://www.ijarcsms.com/docs/paper/volume1/issue6/V1I6-0015.pdf. Accessed 25 June 2015

  22. Shi, W., Zeng, W.: Application of k-means clustering to environmental risk zoning of the chemical industrial area. Front. Environ. Sci. Eng. 8(1), 117–127 (2014)

    Article  Google Scholar 

  23. Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic Press, San Diego (1990)

    MATH  Google Scholar 

  24. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Springer, New York (1981)

    Book  MATH  Google Scholar 

  25. Akaike, H.: A new look at statistical model identification. IEEE Trans. Autom. Control 19(6), 716–723 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  26. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  27. Milligan, G.W., Cooper, M.C.: An examination of procedures for determining the number of clusters in a data set. Psychometrika 50(2), 159–179 (1985)

    Article  Google Scholar 

  28. Tibshirani, R., Walther, G., Hastie, T.: Estimating the number of clusters in a data set via the gap statistic. J. R. Stat. Soc. 63(2), 411–423 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support for research project TR 36030, funded by the Ministry of Science and Technological Development of Serbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragan Simić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Simić, D., Jackowski, K., Jankowski, D., Simić, S. (2015). Comparison of Clustering Methods in Cotton Textile Industry. In: Jackowski, K., Burduk, R., Walkowiak, K., Wozniak, M., Yin, H. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2015. IDEAL 2015. Lecture Notes in Computer Science(), vol 9375. Springer, Cham. https://doi.org/10.1007/978-3-319-24834-9_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24834-9_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24833-2

  • Online ISBN: 978-3-319-24834-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics