Skip to main content

Convex Quadratic Programming in Scheduling

  • Chapter
  • First Online:
Gems of Combinatorial Optimization and Graph Algorithms
  • 1743 Accesses

Abstract

We consider the optimization problem of scheduling a given set of jobs on unrelated parallel machines with total weighted completion time objective. This is a classical scheduling problem known to be NP-hard since the 1970s. We give a new and simplified version of the currently best-known approximation algorithm, which dates back to 1998. It achieves performance ratio 3 / 2, and is based on an optimal solution to a convex quadratic program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bruno, J.L., Coffman Jr. E.G., Sethi, R.: Scheduling independent tasks to reduce mean finishing time. Commun. Assoc. Comput. Mach. 17, 382–387 (1974)

    Google Scholar 

  2. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  3. Hoogeveen, H., Schuurman, P., Woeginger, G.J.: Non-approximability results for scheduling problems with minsum criteria. INFORMS J. Comput. 13, 157–168 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kawaguchi, T., Kyan, S.: Worst case bound of an LRF schedule for the mean weighted flow-time problem. SIAM J. Comput. 15, 1119–1129 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Schulz, A.S., Skutella, M.: Random-based scheduling: New approximations and LP lower bounds. In: Rolim, J. (ed.) Randomization and Approximation Techniques in Computer Science. Lecture Notes in Computer Science, vol. 1269, pp. 119–133. Springer (1997)

    Google Scholar 

  6. Schulz, A.S., Skutella, M.: Scheduling unrelated machines by randomized rounding. SIAM J. Discret. Math. 15, 450–469 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Schuurman, P., Woeginger, G.J.: Polynomial time approximation algorithms for machine scheduling: Ten open problems. J. Sched. 2, 203–213 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Schwiegelshohn, U.: An alternative proof of the Kawaguchi-Kyan bound for the largest-ratio-first rule. Oper. Res. Lett. 39, 255–259 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Sethuraman, J., Squillante, M.S.: Optimal scheduling of multiclass parallel machines. In: Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 963–964, Baltimore (1999)

    Google Scholar 

  10. Sitters, R.A.: Approximability of average completion time scheduling on unrelated machines. In: Halperin, D., Mehlhorn, K. (eds.) Algorithms–ESA’08. Lecture Notes in Computer Science, vol. 5193, pp. 768–779. Springer (2008)

    Google Scholar 

  11. Skutella, M.: Approximation and Randomization in Scheduling. Ph.D. thesis, Technische Universität Berlin, Germany (1998)

    Google Scholar 

  12. Skutella, M.: Semidefinite relaxations for parallel machine scheduling. In: Proceedings of the 39th Annual IEEE Symposium on Foundations of Computer Science, pp. 472–481. Palo Alto (1998)

    Google Scholar 

  13. Skutella, M.: Convex quadratic programming relaxations for network scheduling problems. In: Nešetřil, J. (ed.) Algorithms–ESA’99. Lecture Notes in Computer Science, vol. 1643, pp. 127–138. Springer (1999)

    Google Scholar 

  14. Skutella, M.: Convex quadratic and semidefinite programming relaxations in scheduling. J. ACM 48, 206–242 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Skutella, M., Woeginger, G.J.: A PTAS for minimizing the total weighted completion time on identical parallel machines. Math. Oper. Res. 25, 63–75 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Smith, W.E.: Various optimizers for single-stage production. Nav. Res. Log. Q. 3, 59–66 (1956)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Skutella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Skutella, M. (2015). Convex Quadratic Programming in Scheduling. In: Schulz, A., Skutella, M., Stiller, S., Wagner, D. (eds) Gems of Combinatorial Optimization and Graph Algorithms . Springer, Cham. https://doi.org/10.1007/978-3-319-24971-1_12

Download citation

Publish with us

Policies and ethics