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Abstract We consider a natural generalization of the classical matching problem: In

the budgeted matching problem we are given an undirected graph with egde weights,

non-negative edge costs and a budget. The goal is to compute a matching of maxi-

mum weight such that its cost does not exceed the budget. This problem is weakly

NP-hard. We present the first polynomial-time approximation scheme for this prob-

lem. Our scheme computes two solutions to the Lagrangian relaxation of the prob-

lem and patches them together to obtain a near-optimal solution. In our patching

procedure we crucially exploit the adjacency relations of vertices of the matching

polytope and the solution to an old combinatorial puzzle.

1 Problem definition

The budgeted matching problem is a natural generalization of the classical matching

problem: We are given an undirected graph G=(V,E) with edge weights w : E →Q,

non-negative edge costs c : E → Q+ and a budget B ∈ Q+. Recall that a matching

of G is a subset M ⊆ E of the edges such that no two edges of M share a common

node. Let F be the set of all matchings of G. Define the weight of a matching M as

the total weight of all edges in M, i.e., w(M) := ∑e∈M w(e). Similarly, the cost of M

is defined as c(M) := ∑e∈M c(e). The goal is to compute a matching of maximum

weight whose cost is at most B, i.e.,

maximize w(M) subject to M ∈ F , c(M)≤ B. (Π̄ )
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Fig. 1 The Lagrangian value z(λ ) as a function of λ (solid line). Each dashed line represents the

Lagrangian value of a specific solution.

The budgeted matching problem is weakly NP-hard even for bipartite graphs.

This follows by a simple reduction from the knapsack problem. Here we present

the first polynomial-time approximation scheme (PTAS) for the budgeted matching

problem. For a given ε > 0, our algorithm computes a (1−ε)-approximate solution

to the problem in time O(mO(1/ε)), where m is the number of edges in the graph.

Subsequently, we use OPT to refer to the weight of an optimal solution M∗ to

(Π̄ ). Also, we use (Π ) to refer to the respective unbudgeted matching problem

(where the budget constraint “c(M)≤ B” is dropped).

2 A PTAS for Budgeted Matching

Consider the Lagrangian relaxation LR(λ ) of the budgeted matching problem (Π̄ ):

z(λ ) := maximize
(

w(M)+λ (B− c(M))
)

subject to M ∈ F . (LR(λ ))

Note that every feasible solution to the budgeted matching problem (Π̄ ) satisfies

c(M) ≤ B. Thus, for every λ ≥ 0 the optimal solution to LR(λ ) gives an upper

bound on OPT, i.e., z(λ ) ≥ OPT. The Lagrangian dual problem is to find the best

such upper bound, i.e., to determine λ ∗ such that z(λ ∗) = minλ≥0 z(λ ) (see also

Figure 1).

Note that for a fixed value of λ the Lagrangian relaxation LR(λ ) is equivalent

to solving a maximum weight matching problem with respect to the Lagrangian

weights

wλ (e) := w(e)−λ c(e) ∀e ∈ E.

Given that there are combinatorial algorithms to solve the maximum weight

matching problem, we can use standard parametric search techniques (see Section 4

for references) to determine an optimal Lagrangian multiplier λ ∗ in strongly poly-
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nomial time. In addition, we can compute within the same time bound two optimal

matchings M1 and M2 to LR(λ ∗) such that c(M1)≤ B ≤ c(M2).
The idea now is to patch M1 and M2 together to obtain a feasible solution M

to (Π̄ ) whose weight w(M) is not too far from the optimal one. More precisely,

the following lemma will be crucial to derive our polynomial-time approximation

scheme:

Lemma 1 (Patching Lemma). There is a polynomial-time algorithm to compute

a solution M to the budgeted matching problem of weight w(M) ≥ OPT− 2wmax,

where wmax is the largest weight of an edge.

A formal proof of this lemma is given in Section 3. Intuitively, our patching

procedure consists of two phases: an exchange phase and an augmentation phase.

Exchange Phase: Consider the polytope induced by the set of feasible matchings F
and let F be the face given by the solutions of maximum Lagrangian weight wλ ∗ .

This face contains both M1 and M2. We now iteratively replace either M1 or M2 with

another vertex on F , preserving the invariant c(M1)≤ B ≤ c(M2), until M1 and M2

correspond to adjacent vertices of the matching polytope. Note that the Lagrangian

weight of Mi, i ∈ {1,2}, is wλ ∗(Mi) = z(λ ∗) ≥ OPT. However, with respect to the

original weight, we can only infer that w(Mi) = z(λ ∗)− λ ∗(B− c(Mi)). That is,

we cannot hope to use these matchings directly: M1 is a feasible solution to (Π̄ )

but its weight w(M1) might be arbitrarily far from OPT. In contrast, M2 has weight

w(M2)≥ OPT, but is infeasible.

Augmentation Phase: In order to overcome the above problem, we exploit the ad-

jacency relation between M1 and M2. It is known that two matchings M1 and M2

are adjacent in the matching polytope if and only if their symmetric difference

X = M1 ⊕M2 is an alternating cycle or a path. The idea now is to patch M1 ac-

cording to a properly chosen subpath X ′ of X . We ensure that the subpath X ′ is

chosen such that the Lagrangian weight of M1 does not decrease too much, while at

the same time the gap between the budget B and the cost of M1 (and hence also the

gap between w(M1) and z(λ ∗)) is reduced. This way we obtain a feasible solution

M whose weight differs from OPT by at most 2wmax.

Surprisingly, our proof that such a patching subpath X ′ always exists is based on the

solution of an old combinatorial puzzle, also known as the Gasoline Puzzle:

“Along a speed track there are some gas-stations. The total amount of gasoline available in

them is equal to what our car (which has a very large tank) needs for going around the track.

Prove that there is a gas-station such that if we start there with an empty tank, we shall be

able to go around the track without running out of gasoline.”

With the help of our Patching Lemma we derive a polynomial-time approxima-

tion scheme by “guessing” the Θ(1/ε) largest weight edges in an optimum solution.

Theorem 1. There is a deterministic algorithm that for every ε > 0 computes a

solution to the budgeted matching problem of weight at least (1− ε)OPT in time

O(m2/ε+O(1)), where m is the number of edges in the graph.
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Proof. Let ε ∈ (0,1) be a given constant. Assume that the optimum matching M∗

contains at least p := ⌈2/ε⌉ edges. (Otherwise the problem can be solved optimally

by complete enumeration.)

Consider the following algorithm: First, we guess the p largest weight edges M∗
H

of M∗. We then remove from the graph G the edges in M∗
H , all edges incident to M∗

H ,

and all edges of weight larger than the smallest weight in M∗
H . We also decrease the

budget by c(M∗
H). Let I′ be the resulting budgeted matching instance. Note that the

maximum weight of an edge in I′ is

w′
max ≤

1
p
w(M∗

H)≤
1
2
εw(M∗

H).

Moreover, M∗
L :=M∗\M∗

H is an optimum solution to I′. We then compute a matching

M′ for I′ using the Patching Lemma and output the feasible solution M := M∗
H ∪M′.

For a given choice of M∗
H the running time of the algorithm is dominated by the

time to compute the two solutions M1 and M2. This can be accomplished in O(mO(1))
time using Megiddo’s parametric search technique. Hence the overall running time

of the algorithm is O(mp+O(1)), where the mp factor is due to the guessing of M∗
H .

By our Patching Lemma, w(M′)≥ w(M∗
L)− 2w′

max. It follows that

w(M) = w(M∗
H)+w(M′)≥ w(M∗

H)+w(M∗
L)− 2w′

max

≥ w(M∗)− εw(M∗
H)≥ (1− ε)w(M∗).

⊓⊔

3 Proof of the Patching Lemma

Let λ ∗ be the optimal Lagrangian multiplier and let M1 and M2 be two matchings of

maximum Lagrangian weight wλ ∗(M1) = wλ ∗(M2) such that c(M1) ≤ B ≤ c(M2).
Recall that M∗ refers to an optimal solution to (Π̄).

Observe that for i ∈ {1,2} we have that

wλ ∗(Mi)+λ ∗B ≥ wλ ∗(M∗)+λ ∗B ≥ wλ ∗(M∗)+λ ∗c(M∗) = OPT. (1)

Also note that by the optimality of M1 and M2, wλ ∗(e)≥ 0 for all e ∈ M1 ∪M2.

We next show how to extract from M1 ∪M2 a matching M with the desired prop-

erties in polynomial time. As outlined above, our patching procedure proceeds in

two phases:

Exchange phase: Consider the symmetric difference M′ = M1 ⊕M2. Recall that

M′ ⊆ M1 ∪M2 consists of a disjoint union of paths P and cycles C. We apply the

following procedure until eventually |P ∪ C| ≤ 1: Take some X ∈ P ∪ C and let

A := M1 ⊕X . If c(A) ≤ B replace M1 by A. Otherwise replace M2 by A. Note that

this way we maintain the invariant c(M1)≤ B ≤ c(M2).
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Note that in each step the number of connected components in M1 ⊕ M2 de-

creases; hence this procedure terminates after at most O(n) steps. Moreover, by

the optimality of M1 and M2 the Lagrangian weight of the two matchings does not

change during the process, i.e., the two matchings remain optimal. To see this note

that if there is some X ∈ P ∪C such that wλ ∗(M1 ⊕X) < wλ ∗(M1) then there must

exist some X ′ ∈ P ∪C such that wλ ∗(M1 ⊕X ′)> wλ ∗(M1), which is a contradiction

to the optimality of M1. It follows that wλ ∗(A) = wλ ∗(M1) = wλ ∗(M2).

Note that at the end of this phase we have for every i ∈ {1,2}

w(Mi) = wλ ∗(Mi)+λ ∗c(Mi) = wλ ∗(Mi)+λ ∗B−λ ∗(B− c(Mi))

≥ OPT−λ ∗(B− c(Mi)), (2)

where the inequality follows from (1).

In particular, if c(Mi) = B for some i ∈ {1,2}, we are done: Mi is a feasible solu-

tion to the budgeted matching problem and w(Mi) ≥ OPT. Otherwise, we continue

with the augmentation phase.

Augmentation Phase: The symmetric difference M1 ⊕M2 now consists of a unique

path or cycle

X = (x0,x1, . . . ,xk−1)⊆ E

such that

c(M1 ⊕X) = c(M2)> B > c(M1).

Observe that from (2) it follows that M1 is a feasible solution whose original weight

is close to optimal if its cost is sufficiently close to the budget B. The basic idea is to

exchange edges along a subpath X ′ of X in order to obtain a feasible solution whose

cost is close to the budget but still has large Lagrangian weight.

To this aim, we exploit the Gasoline Lemma. A formal statement is given below.

We leave the proof of this lemma to the reader.

Lemma 2 (Gasoline Lemma). Let a0, . . . ,ak−1 be a sequence of k real numbers

such that ∑
k−1
j=0 a j = 0. There exists an index i ∈ {0, . . . ,k− 1} such that for every

h ∈ {0, . . . ,k− 1},
i+h

∑
j=i

a j (mod k) ≥ 0.

Consider the sequence

a0 = δ (x0)wλ ∗(x0), a1 = δ (x1)wλ ∗(x1), . . . , ak−1 = δ (xk−1)wλ ∗(xk−1),

where δ (xi) = 1 if xi ∈ M2 and δ (xi) = −1 otherwise. (Note that, if X is a path,

x0 and xk−1 might both belong to either M1 or M2). This sequence has total value

∑
k−1
j=0 a j = 0 because of the optimality of M1 and M2. By the Gasoline Lemma there

exists an edge xi, i ∈ {0,1, . . . ,k− 1}, of X such that for any cyclic subsequence

X ′ = (xi, x(i+1) (mod k), . . . , x(i+h) (mod k)),
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Fig. 2 Examples illustrating the construction used in the proof of the Patching Lemma. Each edge

xi is labeled with the value ai.

where h ∈ {0, . . . ,k− 1}, we have that

0 ≤
i+h

∑
j=i

a j (mod k) = ∑
e∈X ′∩M2

wλ ∗(e)− ∑
e∈X ′∩M1

wλ ∗(e). (3)

Let X ′ be the longest such subsequence satisfying c(M1 ⊕X ′) ≤ B (see Figure

2 for examples). Note that X ′ consists of either one or two alternating paths. (The

latter case only occurs if X is a path whose first and last edge belong to X ′). Let

e1 = xi. Without loss of generality, we can assume e1 ∈ M2. (X ′ might start with one

or two edges of M1 with Lagrangian weight zero, in which case the next edge in M2

is a feasible starting point of X ′ as well).

Observe that M1 ⊕X ′ is not a matching unless X is a path and e1 its first edge.

However, M := (M1 ⊕X ′)\ {e1} is always a matching. Moreover,

c(M) = c(M1 ⊕X ′)− c(e1)≤ c(M1 ⊕X ′)≤ B.

That is, M is a feasible solution to the budgeted matching problem.

It remains to lower bound the weight of M. We have

w(M1 ⊕X ′) = wλ ∗(M1 ⊕X ′)+λ ∗c(M1 ⊕X ′)

= wλ ∗(M1 ⊕X ′)+λ ∗B−λ ∗(B− c(M1 ⊕X ′))

≥ wλ ∗(M1)+λ ∗B−λ ∗(B− c(M1 ⊕X ′))

≥ OPT−λ ∗(B− c(M1 ⊕X ′)), (4)

where the first inequality follows from (3) and the second inequality follows from

(1).
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Let e2 = x(i+h+1) (mod k). The maximality of X ′ implies that c(e2) > B− c(M1 ⊕
X ′) ≥ 0. Moreover, by the optimality of M1 and M2, the Lagrangian weight of any

edge e ∈ M1 ∪M2 is non-negative, and thus 0 ≤ wλ ∗(e2) = w(e2)−λ ∗c(e2). Alto-

gether

λ ∗(B− c(M1 ⊕X ′))≤ λ ∗c(e2)≤ w(e2)

and hence by (4)

w(M1 ⊕X ′)≥ OPT−w(e2).

We conclude that

w(M) = w(M1 ⊕X ′)−w(e1)≥ OPT−w(e2)−w(e1)≥ OPT− 2wmax,

which proves the Patching Lemma. ⊓⊔

4 Extension and notes on the literature

The presented polynomial-time approximation scheme also extends to the budgeted

matroid intersection problem. Here, we are given two matroids M1 = (E,F1) and

M2 = (E,F2) on a common ground set of elements E . (We assume that these ma-

troids are given implicitly by an independence oracle.) Moreover, we are given ele-

ment weights w : E →Q, element costs c : E →Q+ and a budget B ∈ Q+. The set

of all feasible solutions F :=F1 ∩F2 is defined by the intersection of M1 and M2.

The weight of an independent set X ∈ F is defined as w(X) := ∑e∈X w(e) and the

cost of X is c(X) := ∑e∈X c(e). The goal is to compute a common independent set

X∗ ∈ F of maximum weight w(X∗) among all feasible solutions X ∈ F satisfying

c(X)≤ B.

Problems that can be formulated as the intersection of two matroids are, for ex-

ample, matchings in bipartite graphs, arborescences in directed graphs, spanning

forests in undirected graphs, etc. Although technically more involved, the ideas

underlying our polynomial-time approximation scheme for the budgeted matching

problem extend to this problem. More details can be found in [1].

Our algorithm needs to compute an optimal Lagrangian multiplier λ ∗ together

with two respective optimal solutions. This can be done in polynomial time by stan-

dard techniques whenever the unbudgeted problem (Π ) can be solved in polyno-

mial time [9]. It can even be done in strongly polynomial time by using Megiddo’s

parametric search technique [5]. This technique can be used because combinatorial

algorithms (only using comparisons and additions of weights) exist for (Π ) (see,

e.g., [10]). A similar idea was used by Goemans and Ravi [3] to derive strongly

polynomial-time approximation scheme for the constrained minimum spanning tree

problem.

The description of the Gasoline Puzzle was taken from the book “Combinatorial

Problems and Exercises” by Lovász [4, Problem 3.21].
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Naor et al. [7] proposed a fully polynomial-time approximation scheme (FPTAS)

for a rather general class of problems, which contains the budgeted matching prob-

lem considered here as a special case. However, personal communication revealed

that unfortunately the stated result [7, Theorem 2.2] is incorrect.

An interesting open problem is whether there is a fully polynomial-time approx-

imation scheme for the budgeted matching problem. We conjecture that budgeted

matching is not strongly NP-hard. However, finding an FPTAS for this problem

might be a very difficult task because of its relation to the exact perfect matching

problem: In this problem, we are given an undirected graph G = (V,E) with edge

weights w : E → Q and a parameter W ∈ Q. The goal is to find a perfect matching

of weight exactly W (if it exists).

This problem was first posed in 1982 by Papadimitriou and Yannakakis [8]. The

problem admits a polynomial-time Monte Carlo algorithm [2,6] if the edge weights

are polynomially bounded. It is thus very unlikely that the exact perfect matching

problem with polynomial weights is NP-hard because this would imply that RP =
NP. However, the problem of finding a deterministic algorithm to solve the exact

perfect matching problem remained open so far. For polynomial weights and costs

the budgeted matching problem is equivalent to the exact perfect matching problem;

see [1] for more details. As a consequence, a (deterministic) FPTAS for the budgeted

matching problem would resolve a long-standing open problem.
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