
Decision-Making Bias in Instance Matching
Model Selection

Mayank Kejriwal(B) and Daniel P. Miranker

University of Texas at Austin, Austin, USA
{kejriwal,miranker}@cs.utexas.edu

Abstract. Instance matching has emerged as an important problem in
the Semantic Web, with machine learning methods proving especially
effective. To enhance performance, task-specific knowledge is typically
used to introduce bias in the model selection problem. Such biases tend to
be exploited by practitioners in a piecemeal fashion. This paper introduces
a framework where the model selection design process is represented as a
factor graph. Nodes in this bipartite graphical model represent opportu-
nities for explicitly introducing bias. The graph is first used to unify and
visualize common biases in the design of existing instance matchers. As
a direct application, we then use the graph to hypothesize about poten-
tial unexploited biases. The hypotheses are evaluated by training 1032
neural networks on three instance matching tasks on Microsoft Azure’s
cloud-based platform. An analysis over 25 GB of experimental data indi-
cates that the proposed biases can improve efficiency by over 65% over a
baseline configuration, with effectiveness improving by a smaller margin.
The findings lead to a promising set of four recommendations that can be
integrated into existing supervised instance matchers.

Keywords: Instance matching · Model selection · Decision-making bias

1 Introduction

With its growing cross-domain collection of ontologies and instances, the Seman-
tic Web has evolved into a diverse information space [21], [15]. Its growth has
motivated researchers to investigate high-quality and automated solutions to the
instance matching problem, which concerns identifying pairs of instances that
refer to the same underlying entity [14].

Given their robust generalization properties, machine learning methods have
come to dominate instance matching [17], [2], [19]. Once a machine learning
model (e.g. a neural network) is trained on labeled data, unseen data is classified,
and :sameAs-like links are forged between equivalent instances [21].

Designing a full instance matching system requires a practitioner to make
decisions with respect to the model selection problem. For example, a practitioner
must decide on a sampling strategy for acquiring labeled data, craft functions
for converting raw labeled data into feature vectors, decide on a classifier and

c© Springer International Publishing Switzerland 2015
M. Arenas et al. (Eds.): ISWC 2015, Part I, LNCS 9366, pp. 392–407, 2015.
DOI: 10.1007/978-3-319-25007-6 23

Decision-Making Bias in Instance Matching Model Selection 393

hyperparameter optimization strategy (for tuning the classifier), and partition
the labeled data into training and validation sets. In order to keep the model
selection process tractable, it is necessary to base some of these decisions on task-
specific knowledge. For example, certain features, such as phonetic and string-
similarity features, are known to be especially effective for instance matching
tasks that involve names and misspellings [4]. As another example, the real-
world observation that class distribution in the instance matching problem often
exhibits data skew (Section 3) influences sampling decisions (Section 4.1).

Given the challenging nature of instance matching in the Semantic Web, sys-
tems have become steadily more complex as practitioners have exploited task-
specific knowledge as piecemeal heuristics to improve overall system performance
[12], [17], [19]. These heuristics inevitably bias both the design and performance
of any system that relies on them. For example, recent studies of dataset bias in
the computer vision community show that systems that exhibit superior perfor-
mance on one set of benchmarks may not necessarily be superior on a different
dataset [20]. The reason was that, whether consciously or subconsciously, sys-
tem designers used their knowledge of the task and the dataset to bias model
selection decisions. Understanding such decision-making biases is a crucial step
for subsequent research to reproduce and improve complex models, as well as to
adapt them to novel situations without repeating the entire design process.

This paper attempts to achieve this goal by explicitly modeling decision-
making bias in instance matching model selection as a bipartite undirected
graphical model called a factor graph [10], with factor nodes representing
bias opportunities. Several common decision-making biases in existing instance
matching designs are explained and visualized by using this model. As a direct
application of this visualization, we use the model to derive new opportunities for
decision-making bias that, to the best of our knowledge, are not utilized by the
majority of instance matchers. We empirically evaluate the proposed biases by
training 1032 neural networks on Microsoft Azure’s cloud-based platform using
labeled data from three challenging instance matching benchmarks.

Evaluations on the test data lead to a set of four general recommendations
that could potentially be used to improve existing supervised machine learning-
based instance matchers both in terms of effectiveness and efficiency. Specifically,
the analysis shows that (1) proportionate allocation stratified sampling [13] is
a better sampling strategy for labeled data than a balanced (and traditionally
more favored) approach, that (2) the training and validation sets should be as
equal-sized as possible, that, (3) despite much lower efficiency, a hyperparam-
eter optimizer based on grid search is no more effective than a random search
conducted around reasonably set default hyperparameter values, and that, (4)
under reasonable supervision assumptions, a setting that favors validation over
training leads to run-time reductions of almost 70%, with a relatively smaller
loss in effectiveness. Together, the last two recommendations are shown to lead
to efficiency savings of over 65% with a small increase in effectiveness as well.

To enable repeatability, we provide screenshots of the employed experimental
template, which may be run in a browser on a free MS Azure subscription.

394 M. Kejriwal and D.P. Miranker

For further analysis, all 25 GB of structured experimental data are exposed on
a high-availability server via a public URL.

2 Related Work

In the general Artificial Intelligence community, instance matching is a 50-year
old problem that continues to be actively researched, with a good survey of
frameworks provided by Köpcke and Rahm [11]. Examples of some Semantic Web
instance matching systems are Silk, RDF-AI and Limes [21], [18] [14]. Recent
years have seen a proliferation of sophisticated machine learning approaches
for improving instance matching performance, with Soru and Ngomo providing
a comparative evaluation of various supervised classifiers [19], and Köpcke et
al. providing a comparative evaluation of various competing systems that have
emerged as popular choices for practitioners [12]. The latter work, in particular,
showed that most systems only succeeded in certain settings, with hand-crafted
features and with non-trivial amounts of training data [12]. In a similar manner,
other systems have made expert-guided decisions on model and feature selection,
an example being the random forest-based system of Rong et al. [17]. Instead
of developing another instance matcher that competes with existing systems,
the goal of this work is to model the myriad model selection decisions made by
instance matching practitioners using a unified framework.

There are two important lines of prior research that come closest to this goal.
The first line of research concerns knowledge-guided model construction in the
context of expert systems [5]. In contrast, this work considers knowledge-guided
model selection decisions in a machine learning-based instance matching context.
A second, more recent line of research, attempts to unify various applications of
Statistical Relational Learning (SRL) using Markov Logic [7]. This paper takes a
complementary approach by restricting the application (e.g. instance matching)
but not restricting the learning technique (e.g. SRL). Instead, we investigate and
exploit the decision-making biases that go into the design of a generic machine
learning-based instance matcher.

Much of the discourse on machine learning models in this paper is derived
from classic material, Bishop’s text being the primary reference [3]. Rojas’ text
is used for a more detailed discourse on neural networks [16]. Factor graphs, a
special class of probabilistic graphical models central to the developments herein,
are detailed in the text by Koller and Friedman [10].

3 Preliminaries

In the Semantic Web, link discovery is the problem of locating pairs of instances
that satisfy a hidden specification function [14]. Without loss of generality, the
specification function is often assumed to be that of equivalence, in which case
the problem is referred to as instance matching [11]. Forging such :sameAs-like
links between entities is important for maintaining connectivity in Linked Open
Data per the fourth Linked Data principle [21].

Decision-Making Bias in Instance Matching Model Selection 395

Before the emergence of the RDF data model, it was often the case in the
Relational Database literature that schema matching and record linkage tasks
were considered orthogonal components of the broader data integration applica-
tion [11]. The dominance of the RDF data model in the Semantic Web enables
practitioners in the related sub-areas of ontology matching and instance matching
to cross-fertilize their research, a manifestation of which is the annual Ontology
Alignment Evaluation Initiative1. Although this paper primarily covers instance
matching, an evaluation task in Section 5 also involves ontology matching.

An important issue that affects real-world instance matching problem
instances is data skew [15]. Consider two RDF datasets GA and GB with respec-
tive sets of instances EA and EB . A näıve instance matcher attempts to classify
the full Cartesian product space EA × EB , a process that is time-prohibitive
even for moderate datasets. Under reasonable assumptions, the number of true
positives is O(min(|EA|, |EB |)) and is far outnumbered by the number of true
negatives (a quadratic function) [4], [15]. One common technique that reduces
this skew before further processing is blocking [15], [14]. A blocking algorithm
clusters instances into blocks, based on a heuristic function. Instances sharing
a block are paired and become candidates for further evaluation. Although the
size of the candidate set is small relative to the Cartesian product, the skew is
not completely eliminated and is still quite considerable (Section 5).

This paper assumes that the specification function is unknown but that it
can be approximated through training a machine learning classifier. A typical
machine learning-based instance matcher works as follows. First, a candidate set
of instance pairs is generated through blocking, as described above [15]. Next,
each pair is converted to a feature vector [4]. The choice of features is important,
and guided by knowledge of the task [12]. Thus, it is a source of decision-making
bias in the model selection design process, as described in the next section. A set
of labeled feature vectors is split into training and validation sets and respectively
used to train and tune the classifier, which is then used to label unseen instance
pairs (the test data). The choice of classifier, the number of labeled samples
on which the classifier is trained, the hyperparameter tuning strategy and the
proportion of positively and negatively labeled samples are all issues that are
crucial to the design and complexity of the final instance matcher. A framework
for this decision-making process is subsequently presented.

4 Decision-Making Bias in Model Selection

Before a machine learning classifier can be trained on labeled data, the model
selection problem must be solved. For instance, a practitioner must craft the
features that should be extracted from the data, and decide on hyperparam-
eter optimization and sampling strategies. Usually, there are many choices
at each step of the decision process, including default options (e.g. bag-of-
words features for text representations [19], and random search for hyperpa-
rameter optimization [1]) derived from a survey of existing instance matchers.
1 http://oaei.ontologymatching.org/

http://oaei.ontologymatching.org/

396 M. Kejriwal and D.P. Miranker

Empirical evidence indicates that this passive effort is typically insufficient, with
non-trivial tasks demanding considerable model selection effort [12]. We also
note that this decision-making process is not restricted to the machine learning
component of model selection, but is an integral design component of any non-
trivial system that models some phenomenon and is required to be empirically
testable2.

In this broader model selection process, decision-making bias arises because it
is infeasible to consider all points in the design space, even when certain aspects
of the model are fixed (e.g. restricting the instance matcher to only use machine
learning). The decisions are typically justified through a variety of means, most
notably early experimental findings or a study of existing systems [12], [4]. As
briefly illustrated in Section 2, recent instance matchers have become steadily
more complex in an effort to outperform the state-of-the-art. With added com-
plexity, it becomes important to model the set of (possibly interlinked) decisions
in order to reproduce (and improve upon) the system.

Figure 1 illustrates a possible framework for this process, namely a bipartite
undirected graphical model, or a factor graph [10]. In the figure, oval nodes
represent sets of objects, with shaded nodes representing sets provided to a
practitioner a priori3. As in traditional factor graphs, the square nodes (labeled
Nodes 1-4) represent points of interaction between their neighboring decision
nodes [10]. Described below, these nodes can also be used to exercise prior task-
specific knowledge to bias certain decisions towards a model selection outcome
that is expected to be empirically favorable.

4.1 Node 1: Decision-Making Bias in Sampling Strategy

In a supervised setting, data has to be collected and labeled in order to train
(and tune) the machine learning classifier. Intuitively, the more labeled data is
collected, the better the performance of the classifier. Labeling data can be a
costly endeavor. The level of supervision, expressed as a percentage of the labeled
instances to the total instances, depends directly on the allocated labeling budget.
Once the level of supervision is determined (e.g. 50%), a practitioner has to pick
an appropriate sampling strategy. With simple random sampling, an instance from
the data pool is chosen (for labeling) with uniform probability till the budget is
exhausted. Data skew can be problematic for this default strategy, since under
moderate budgets, the probability of under-sampling true positives is high.

The risk of under-representing true positives in the labeled set can be mit-
igated by randomly sampling q/2 instances from each of the two classes, with
q the total number of labelings allowed by the budget. This technique, which
is a variant of stratified sampling, was designed by statisticians to reduce the
variance caused by simple random sampling in skewed datasets [13].
2 In the context of instance matching, for example, the choice of machine learning is

itself a model selection decision, since it indicates that we model the unknown link
specification function (see Section 3) using a trainable classifier.

3 Thus, these nodes represent the fixed aspects of the model, or the design constraints,
described in the previous paragraph.

Decision-Making Bias in Instance Matching Model Selection 397

Fig. 1. A factor graph representing the model selection process. The oval nodes repre-
sent generic sets of objects (the concrete results of design decisions) while the square
nodes represent opportunities for decision-making bias based on exploiting task-specific
knowledge. Shaded nodes represent sets provided a priori (and are hence, design con-
straints) and the dashed lines indicate specific influences studied in this work.

Existing stratified sampling strategies used in several instance matchers
attempt an approximate balancing strategy in order to eliminate the skew from
the labeled set [12]. This violates a key assumption of predominant machine
learning theory, namely that the labeled data has (at least approximately) the
same distribution as the unlabeled test data [3]. In keeping with machine learn-
ing norm, the authors hypothesize that skew should not be eliminated in the
labeled set for good empirical performance on test data. In other words, the
domain expert should use her knowledge of data skew to perform proportionate
allocation stratified sampling [13]. For example, if the domain expert estimates,
a priori or through experience and an educated guess, that 90% of the data
pool is negatively labeled, she should use this estimate to sample 0.9q and 0.1q
instances from the negative and positive pools respectively. We empirically com-
ment on this hypothesis in Section 5. In Figure 1, this influence is noted through
the dashed line incident on Node 1. We note that decision-making bias arises in

398 M. Kejriwal and D.P. Miranker

the choice of sampling strategy because of knowledge of the task. If, for some
reason, the practitioner suspects that her data does not exhibit skew, the bias
should be in the opposite direction. A third alternative is that nothing can be
said about the data with reasonable probability. In this case, it is dangerous to
introduce any bias at all in the choice of sampling strategy; a better approach
is to model the data distribution through additional analysis.

4.2 Node 2: Decision-Making Bias in Feature Crafting

In many instance matching tasks, special features can be devised (or chosen
from a global feature space, as illustrated in Figure 1) to maximize performance.
Traditionally, string similarity and token similarity features such as Levenstein
and tf-idf have been popular; other practitioners have followed suit with pho-
netic and numeric functions as well [4], [17]. Crafting features for a machine
learning problem using knowledge of the underlying task is by no means unique
to instance matching, but also arises in other tasks such as speech recognition
and computer vision [3]. Research on this issue in recent years have led to the
emergence of deep learning techniques for automatically devising high-level fea-
tures [8], but to the best of our knowledge, deep learning has not been applied
to instance matching. Thus, decision-making bias in crafting features remains
important in current instance matchers. For example, Soru and Ngomo favor
token-based features in their evaluations [19], while Rong et al. devise special
features individually for short text, descriptions and dates [17]. We do not study
this bias further in this paper, but leave an extensive treatment for future work.

4.3 Node 3: Decision-Making Bias in Training-Validation Strategy

The labeled sets of feature vectors need to be split up into training and vali-
dation sets, which are both assumed to have the same proportion of positive
and negative samples. A practitioner is typically expected to provide a sampling
parameter that determines the ratio4 of the size of the training set to the labeled
set. In the literature, authors have experimented with several ratios, the most
common being 50% and 90% (with the other 50% and 10% used for validation)
[2], [19]. Once the sampling (and splitting) process is complete, a hyperparam-
eter optimization strategy must also be chosen, in order to minimize chances of
overfitting [3]. In principal, the validation set can be used to provide an unbiased
estimate of classifier error [3]. Thus, the chosen optimizer makes hyperparameter
assignments so as to maximize validation set performance [1].

Two extreme (and common) cases of hyperparameter optimization strate-
gies are random search and grid search strategies [1]. In a random search, the
optimizer randomly tests s different hyperparameter settings before selecting
the best one, s being a user-defined parameter. A grid search, which can be
performed at arbitrarily fine levels of granularity, exhaustively searches through
combinations of hyperparameter value assignments.

4 If the training ratio is r, the validation ratio is automatically 1 − r.

Decision-Making Bias in Instance Matching Model Selection 399

We argue that there is scope for introducing decision-making bias by exploit-
ing information about the level of supervision (or indirectly, the labeling budget).
This hypothesis is indicated by the dashed lines in Figure 1 incident on Node
3. The rationale behind the hypothesis is as follows. First, the training time for
most machine learning models depends directly on the size of the training set [3].
Thus, if the level of supervision is low, training times are also expected to be low.
Thus, expensive grid search can potentially compensate for the adverse effects of
low supervision. The level of supervision can also be used to inform the training-
validation ratio under the assumption that both parameter and hyperparameter
optimization (controlled by the training and validation sets respectively) exhibit
diminishing returns with more labeled data. The choice of ratio is important
under efficiency considerations, as making the validation set larger allows the
training time to be reduced, along with better hyperparameter optimization.
In principle, this form of bias can be used for more efficient training, without
significantly sacrificing performance (and possibly improving it), as empirically
investigated in Section 5.

4.4 Node 4: Decision-Making Bias in Classification

Node 4 offers additional potential for decision-making bias that involves choos-
ing an appropriate machine learning classifier based on task-specific information.
As one example, boosted multi-layer perceptrons were recently investigated for
minimally supervised instance matching tasks (with extremely low labeling bud-
gets) [9]. Similarly, logistic regression models were empirically demonstrated to
be suitable for noisy instance matching tasks [19]. The takeaway is that, if the
characteristics of the dataset are known, prior experience can be used to inform
the choice of classifier. Conversely, if nothing is known about the data with rea-
sonable certainty, a caveat similar to the one presented in Section 4.1 applies.
A practitioner may be forced to investigate several classifiers and training algo-
rithms (e.g. through pilot experiments) before selecting one.

4.5 Undirected vs. Directed Graphical Representation

There are two reasons why the model selection process in Figure 1 is framed
as an undirected graphical model rather than a directed model (e.g. a Bayes
Network [10]). First, decision making processes are typically iterative in real-
world operational settings, and not necessarily causal as directed edges in a Bayes
Network would seem to indicate. In a ‘first pass’, for example, a practitioner
may choose default settings to get an initial feel for system performance on a
specific instance matching task. If the task is inherently less challenging than
presupposed5, the default settings may be adopted with minor changes. For
more challenging cases, an iterative trial-and-error model selection process may
be necessary for good performance.

5 Two concrete examples are the OAEI benchmarks Restaurants and Persons 1, which
have yielded 90%+ f-scores in several Semantic Web evaluations [19], [9].

400 M. Kejriwal and D.P. Miranker

A second reason for choosing a factor graph is its bipartite nature. Crucially,
the graph allows us to distinguish between decision nodes and object nodes
and captures the mutual influence exerted by various components of the model
selection process on each other. The graph can also serve as a visual tool and be
crafted in as much detail as warranted by the practitioner and the task. These
advantages allow us to detect potential beneficial sources of decision-making bias
(or lack thereof). The dashed edges in Figure 1 are examples of bias that the
graph allowed us to detect and exploit. To the best of our knowledge, these
biases have not been exploited in recent instance matchers. For example, we are
unaware of any instance matcher that has explicitly used the labeling budget to
inform training-validation ratios.

The factor graph may also be useful where several (possibly conflicting)
sources of decision-making bias are involved in the design of the instance
matcher. This scenario can occur because of differences in opinion (among col-
laborators) about dataset characteristics, different practical experiences or sim-
ply a lack of evidence. The factor graph is useful in this scenario because, by
definition, factors are used to model probability distributions over neighboring
object nodes. In principal, this is similar to the framework used by Domingos
and Richardson whereby Markov logic was used to unify various applications of
Statistical Relational Learning [7]. Although not explored here, the probabilistic
study of decision-making bias is the natural next step for attempting to explain
the bias and is left for future work.

4.6 The Cost of Decision-Making Bias

Throughout this paper, the assumption is that introducing decision-making bias
into the model selection process is beneficial to actual system performance, that
is, reduces the variance of prediction. We note that the concept of both intro-
ducing and penalizing statistical bias in model selection to reduce variance is
well established [3]. The Occam’s razor principle essentially states that, all else
equal, simple hypotheses are inherently more superior than complex hypotheses
[3]. The no free lunch theorem of Wolpert and Macready disproves this superior-
ity in the mathematical sense [22]; in this framework, simplicity itself is a form
of decision-making bias that makes model selection tractable.

In the present context, this finding has an intuitive takeaway, namely that
each decision-making bias introduced into the system implies a cost. The reason
is that biases are introduced precisely because a practitioner has task-dependent
knowledge; the more the system is tuned for the specific task, the less applicable
it will be to other tasks. In the longer run, this may be undesirable if instance
matching tasks of many different flavors are involved, and a single system is
expected to service them over a long horizon. With respect to the current state of
the research, this is also problematic; if researchers exhibited significant decision-
making bias in their design, their system may not perform as expected beyond
the datasets in their experimental design. The computer vision community has
already begun addressing this issue as dataset bias [20]. Given the complexity of

Decision-Making Bias in Instance Matching Model Selection 401

Table 1. Test suite details. The second column only includes true negatives and pos-
itives in the candidate set (see Section 5.1). Mean sparsity (with resp. standard devi-
ations in paranthesis) is the average percentage of features set to 0 in an arbitrary
feature vector in the true negatives/positives in the candidate set. A skew of y% at x%
(with x=10/50/90%) indicates that y% of the negative pool equals x% of the positive
pool. Exact numbers may vary slightly due to rounding error

Dataset Name True Nega-
tives/Positives

Mean Negatives/
Positives Sparsity

Skew at
10%/50%/90%

Amazon-Google
Products (AGP)

95,889/1300 67.64%/55.68%
(7.66%/9.14%)

0.14%/0.68%/1.22%

Abt-Buy (AB) 40,917/1097 63.06%/58.00%
(12.27%/12.20%)

0.27%/1.34%/2.41%

Film (F) 53,070/412 88.12%/80.79%
(4.85%/6.96%)

0.078%/0.39%/0.70%

recent instance matchers in the Semantic Web (see Section 2), we believe that
costs introduced by decision-making bias are worth investigating.

5 Experiments

5.1 Test Suite: Preparation and Statistics

The proposed biases are tested on three instance matching benchmarks.
Two benchmarks, Amazon-GoogleProducts and Abt-Buy are public e-commerce
datasets evaluated by Köpcke et al. on state-of-the-art approaches [12]. As the
authors of that evaluation noted, these are difficult test cases in that the best
supervised performance (in terms of f-scores; see Section 5.2) achieved on them
was well below 70% [12]. The third test case concerns real-world film data from
IMDB, but with artificial semantic noise injected into the data using an estab-
lished Semantic Web generator [6]. The final test case involves both instance and
ontology matching and has been used in OAEI evaluations.

We do not consider other OAEI benchmarks like Persons and Restaurants
(see footnote 5) in these evaluations. The main reason is that even simple systems
have performed well on these test cases, leaving little room for more improve-
ment. A second reason is that the datasets used in our evaluations have also
been used in at least three recent evaluations [12], [19], [9]. Because performance
on them continues to be poor, they present interesting challenges for modern
matchers. Finally, the most recent OAEI instance matching benchmarks do not
have publicly accessible ground-truths at the time of writing.

As performing classification on all O(n2) instance pairs (with n being the
number of instances) is infeasible, blocking techniques are used to heuristically
generate a smaller candidate set of instance pairs that does not exclude the
true positives [14], [4]. Instance pairs not in the candidate set are automatically
classified as negatives. In this paper, we use a recently proposed unsupervised
method called Attribute Clustering to generate a high-performing candidate set

402 M. Kejriwal and D.P. Miranker

[15]. Algorithm parameters are adjusted to ensure that all true positives in the
ground-truth are included. Table 1 summarizes test suite details; note that the
candidate set is still skewed, but less so (by over three orders of magnitude) than
the space of all O(n2) pairs.

Once generated, all instance pairs in the candidate set are converted into
binary feature vectors. Specifically, for every pair of matching attributes in every
instance pair (or properties in RDF terminology), 28 features are generated,
including phonetic, numeric and string comparison features. This feature set is
used because of good performance in prior work6 and shown to exhibit high
performance [4]. In pilot experiments, the features were also found to work well
in binary rather than real-valued form, possibly because of reduced classifier
overfitting due to sparsity. As another advantage, sparsity is also known to lead
to faster training convergence [16], [3]. Complete details on feature generation
are provided on the project website (footnote 11).

5.2 Methodology

All experiments were run on Microsoft Azure’s cloud-based machine learning stu-
dio7 on a free preview subscription. At the time of experimentation, Microsoft
was the only cloud vendor that offered a full suite of easy-to-deploy machine
learning facilities. Since that time, some other vendors have released similar
products, most notably Amazon. We leave repeating the experiments herein on
alternate cloud vendors for future work. In all experiments, the classifier is fixed
as a fully-connected, two-class neural network with a single hidden layer compris-
ing 100 sigmoid units to guarantee sufficient expressivity [16]. The backpropaga-
tion algorithm is used for training the network, with five algorithm parameters8

constituting the hyperparameters that need optimizing. Since the feature set is
also fixed, the experimental goal is to test newly proposed biases.

To this end, four categorical variables are introduced to investigate the dashed
influences in Figure 1, namely Skew ={True, False}, Hyper ={Random Search,
Grid Search}, Level-of-Supervision ={10%, 50%, 90%}, Training-ratio= {90%,
50%, 10%}. Skew relates to Node 1 decision-making bias, with a True value
indicating that complete data skew is maintained in the labeled set. A False
value indicates instead that equal numbers are maintained (called the balanced
approach; see Section 4.1). Hyper refers to the two hyperparameter optimiza-
tion strategies employed in this work. Specifically, Random Search explores ten
randomly chosen hyperparameter vectors in an attempt to improve upon the
default hyperparameter settings in their neighborhood. Grid Search performs a
full hyperparameter sweep at a pre-defined granularity9. Level-of-Supervision or

6 This is an example of Node 2 decision-making bias (Section 4.2).
7 Accessed at https://studio.azureml.net/.
8 The learning rate, number of learning iterations, initial learning weights diameter,

momentum and normalizer type.
9 Based on the observed data, the MS Azure grid search setting divides the hyperpa-

rameter space into roughly 20-30 grid cells.

https://studio.azureml.net/

Decision-Making Bias in Instance Matching Model Selection 403

LoS refers to the quantity |LabeledDataPool|/|DataPool|; note that both neg-
atively and positively labeled samples are included in the numerator, with Skew
determining the relative proportion. Training-ratio is the ratio r in footnote 6.

For each test case and joint assignment to the four categorical variables, a
model selection framework of the form in Figure 1 can be fully instantiated, with
the end result being an instance matcher. This model is tested on the portion of
the data pool that was not sampled and included in the labeled set. We measure
instance matching performance using precision and recall metrics. Let the set of
samples labeled as positives by the classifier be denoted as P , with RP ⊆ P being
the true positives retrieved by the classifier. Let TP denote the set of all true
positives. The ratios |RP |/|P | and |RP |/|TP | respectively quantify precision
and recall . Their harmonic mean, or f-score, illustrates their tradeoff and is a
measure of system effectiveness [19].

To measure system efficiency, we record and add the run-times of both hyper-
parameter optimization and classifier training. The Microsoft Azure platform
allows the experimenter to record fine-grained run-times of read and write times
as well. These are not included herein as they are subject to data-center vari-
ance. Note that the actual optimization and classifier training takes place on a
single node (attested to by the MS Azure documentation), and is not subject
to such variance. Thus, the reported run-times are expected to be low-variance
proxies for true model selection time.

Ten random trials are conducted for each dataset and joint categorical assign-
ment, with the random number generator provided by Microsoft Azure. In total,
almost10 3×2×2×3×3×10 = 1080 model selection experiments were conducted
to investigate the biases. All 25 GB of experimental data, structured in directo-
ries and spreadsheets, have been made available on a high-availability server11,
together with screenshots of the experimental template that was used and all
experimental data.

5.3 Results and Analysis

The subsequent analysis focuses is on the data tabulated in Table 2, with
Skew=True. We comment on the Skew=False case, but due to space constraints,
reproduce the full table for Skew=False only on the project website.

A cursory count of the bold (or better) f-score values in the two Hyper
columns of Table 2 shows that, on 17/27 cases, Grid Search outperforms Random
Search as a hyperparameter optimization strategy. This is expected (since Grid
Search explores more hyperparameter space) and is closer to the empirical norm
in the literature [12]. A more informed analysis indicates that Random Search
also has its merits. The mean difference in f-scores between Grid Search and
Random Search is 0.99%, which is not statistically significant from 0 at the 95%

10 The actual number was 1032. In the final phase of the experimental runs, 48 trials
on the Film dataset did not terminate due to subscription exhaustion.

11 The project website is accessed at https://sites.google.com/a/utexas.edu/
mayank-kejriwal/projects/semantics-and-model-selection

https://sites.google.com/a/utexas.edu/mayank-kejriwal/projects/semantics-and-model-selection
https://sites.google.com/a/utexas.edu/mayank-kejriwal/projects/semantics-and-model-selection

404 M. Kejriwal and D.P. Miranker

Table 2. Mean results (over 10 random trials/cell) on described metrics (Section 5.2)
for the three test cases (Table 1) and with Skew=True. The bold lines separate (from
top to bottom) results for Training-ratio=90%, 50% and 10% respectively. Bold values
indicate better performance across the two Hyper columns, and shaded cells indicate
best values across the three Training-ratio segments

Test |LoS
Hyper=Random Search Hyper=Grid Search

Precision Recall F-score Run-time Precision Recall F-score Run-time

AGP 10% 54.13% 25.77% 34.89% 14.16s 48.62% 33.08%39.37%26.02s

AGP 50% 61.51% 28.77% 39.20%1m 0.47s 54.76% 29.23%38.11% 1m 50.70s

AGP 90% 73.27% 27.69% 40.22% 1m 31.93s 65.67% 33.85%44.67%3m 8.97s

AB 10% 70.00% 6.38% 11.70% 7.80s 72.90% 7.90% 14.26%13.10s

AB 50% 71.90% 20.07%31.38%25.01s 63.10% 19.34% 29.61% 44.99s

AB 90% 91.67% 20.00% 32.84% 36.81s 85.19% 20.91%33.58%1m 18.35s

F 10% 68.46% 57.48%63.99% 56.72s 86.20% 51.35% 64.36%57.85s

F 50% 83.59% 79.13%81.30%2m 1.34s 83.42% 78.16% 80.70% 3m 53.09s

F 90% 74.07% 97.56%84.21%3m 29.42s 76.09% 85.37% 80.46% 6m 49.84s

AGP 10% 45.47% 35.64%39.96%10.16s 49.46% 31.28% 38.33% 17.88s

AGP 50% 55.50% 34.92% 42.87% 32.02s 57.87% 35.08%43.68%1m 8.56s

AGP 90% 66.67% 36.92% 47.53% 54.73s 62.79% 41.54%50.00%1m 57.03s

AB 10% 52.10% 16.31% 24.85% 6.31s 48.23% 24.82%32.78%22.72s

AB 50% 67.77% 14.96% 24.51% 14.93s 67.77% 14.96% 24.51% 31.64s

AB 90% 76.32% 26.36% 39.19%23.00s 63.83% 27.27%38.22% 45.24s

F 10% 79.93% 57.95% 67.19% 18.32s 80.00% 62.53%70.20%35.97s

F 50% 85.85% 85.44% 85.65% 1m 10.78s 85.51% 85.92%85.71%2m 24.32s

F 90% 73.59% 95.12% 82.98% 2m 3.22s 74.07% 97.56%84.21%6m 9.18s

AGP 10% 39.88% 40.94%40.41%5.71s 44.93% 34.44% 38.99% 8.49s

AGP 50% 54.02% 21.69% 30.96% 11.43s 48.06% 28.62%35.87%20.15s

AGP 90% 58.33% 32.31% 41.58% 16.95s 64.18% 33.08%43.66%32.02s

AB 10% 0% 0% 0% 4.84s 0% 0% 0% 5.68s

AB 50% 63.72% 13.14%21.79%6.92s 62.62% 12.23% 20.46% 10.46s

AB 90% 68.97% 18.18% 28.78% 8.85s 60.00% 19.09%28.97%14.86s

F 10% 75.00% 32.35% 45.20% 8.38s 74.47% 32.86%45.60%14.07s

F 50% 84.08% 64.08% 72.73% 22.57s 82.08% 68.93%74.93%44.91s

F 90% 77.55% 92.68% 84.44% 35.34s 78.00% 95.12%85.71%1m 14.33s

confidence level12 (c.l.). When contrasted with the (statistically significant at
the 99% c.l.) average percentage increase of 93.44% in run-time of Grid Search
over Random Search, the latter is clearly a better choice.

In terms of run-time, two definitive observations can be derived from Table
2. First, when comparing a row across LoS settings, the run-time declines
(as LoS declines), albeit not proportionally. This is again expected, since the

12 Significance levels were tested using the Student’s t-test for sample means.

Decision-Making Bias in Instance Matching Model Selection 405

backpropagation algorithm does not typically13 run in linear time in the training
set size [16]. Similarly, when comparing across table segments (different values
of Training-ratio) run-time also declines. The latter observation is interesting
because the same amount of labeled data is used for a fixed LoS ; the change is
merely in the relative proportion allocated to training versus validation.

Quantitatively, the average percentage reduction in run-time when compar-
ing Training-ratios of 90% against 50% (with mean taken at all values of LoS and
Hyper in Table 2) is 30.83%, which is statistically significant at the 99% c.l., while
the average f-score increases by 4.08% (not statistically significant from 0 at the
95% c.l.). The difference is more dramatic when performing the same comparison
but with Hyper=Grid Search at Training-ratio=90% and Hyper=Random Search
at Training-ratio=50%. The average run-time for this case reduces by 66.70%,
while the average f-score increases by 11.98%. Although the f-score increase is
not significant (even at 95% c.l.), the run-time reduction is significant at the
99% level.To the best of our knowledge, the only (Relational Database) data
matcher that has used a Training-ratio of 50% is MARLIN, which continues to
outperform many systems [2], [12]. Systems can improve efficiency and (poten-
tially) effectiveness by using this combined bias (that is, favoring Hyper=Random
Search and Training-ratio=50% over alternate options).

As another example of how Figure 1 can favorably inform the model selec-
tion process, consider system performance at LoS values of 50% and 90%, and
with Training-ratio=10%. While system performance at Training-ratio=10%
degrades significantly14 at LoS=10%, with AB achieving 0% f-score, the loss
is less drastic at other LoS values. At LoS=50% and 90%, the average percent-
age reductions in f-score (compared to the best f-score achieved by the other
two Training-ratio settings) are 21.56% and 18.99%, with average run-times
decreasing by 70.16% and 67.59% respectively. Although there is a cost15 (in lost
f-score performance) to using Training-ratio=10%, a practitioner constrained by
efficiency (e.g. in real-time applications) should consider this bias.

The analysis is concluded with a brief note on the Skew=False setting. The
broad conclusions noted above were also found to hold for this setting; a com-
parison between the two settings found that Skew=False performed much worse
overall than Skew=True, with the average f-score reducing by 58.27% and 63.71%
across the Hyper=Random Search and Grid Search settings respectively. These
values are statistically significant at the 99% level. This confirms machine learn-
ing theory [3], in that the training set should be as representative of the full
skewed distribution as possible. Traditional systems tended to (approximately)
favor the balancing (i.e. Skew=False) heuristic [12].

13 Empirically, that is. A closed-form formula is not known [16].
14 The exception is AGP, which achieves its best f-score performance (40.41%) at

Training-ratio=90% when LoS=10%.
15 Even with only six sample (mean) data point comparisons for the two LoS settings

described, the f-score reductions are significant at the 95% level but not the 99%
level. Both run-time reductions are significant at the 99% level.

406 M. Kejriwal and D.P. Miranker

Standard deviations on all effectiveness metrics across each set of trial runs
were observed to be very low (in many cases 0), an advantage of cloud-based
experimentation in obtaining reliable estimates. Run-time standard deviations
were also extremely low (<< 5% on average). The last point justifies the chosen
proxy for true model selection run-time in Section 5.2.

6 Summary and Future Work

This paper studies the application of decision-making bias to the instance match-
ing model selection problem. First, the model selection design process is pre-
sented as a factor graph, with one class of nodes representing opportunities for
bias. Existing decision-making biases in the instance matching literature are
explicitly cast as special fragments of this model. These biases, and their mutual
influences on each other, can then be visualized or further analyzed by a practi-
tioner to understand the full extent of their design decisions.

As one form of analysis, we show that the model can be used to hypoth-
esize about unexploited potential biases. Four specific recommendations were
derived from the analysis. First, a practitioner should not artificially balance the
labeled data but maintain skew through proportionate allocation stratified sam-
pling (Skew=True). Secondly, good results are achieved, on average, when the
training and validation ratios are equal (Training-ratio=50%). Third, the mean
difference in effectiveness (i.e. f-scores) is not significant when a more expensive
hyperparameter optimization strategy (Hyper=Grid Search) is preferred over
simple random search in the neighborhood of default hyperparameter values
(Hyper=Random Search), despite considerably increased run-times. Together,
the last two prescriptions can be used to achieve a run-time reduction of over
65%, along with a slight increase in effectiveness.

Future work will study decision-making bias on a more theoretical foun-
dation, and use the factor graphs for probabilistically reasoning about multiple
sources of bias, as explained in Section 4.5. Also interesting is the issue of whether
the proposed model can be applied to applications other than instance matching.

Acknowledgments. The authors thank Microsoft Research for providing infrastruc-
ture support. The authors were also supported by a US National Science Foundation
grant.

References

1. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. The
Journal of Machine Learning Research 13(1), 281–305 (2012)

2. Bilenko, M., Mooney, R.J.: Adaptive duplicate detection using learnable string
similarity measures. In: Proceedings of the Ninth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 39–48. ACM (2003)

3. Bishop, C.M., et al.: Pattern Recognition and Machine Learning, vol. 4. Springer,
New York (2006)

Decision-Making Bias in Instance Matching Model Selection 407

4. Christen, P.: Data Matching: Concepts and Techniques for Record Linkage, Entity
Resolution, and Duplicate Detection. Springer, Heidelberg (2012)

5. Clancey, W.J.: Model construction operators. Artificial Intelligence 53(1), 1–115
(1992)

6. Daskalaki, E.: Instance matching benchmarks for linked data
7. Domingos, P., Richardson, M.: 1 markov logic: A unifying framework for statistical

relational learning. In: Statistical Relational Learning, p. 339 (2007)
8. Hinton, G., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief

nets. Neural Computation 18(7), 1527–1554 (2006)
9. Kejriwal, M., Miranker, D.P.: Semi-supervised instance matching using boosted

classifiers. In: Gandon, F., Sabou, M., Sack, H., d’Amato, C., Cudré-Mauroux,
P., Zimmermann, A. (eds.) ESWC 2015. LNCS, vol. 9088, pp. 388–402. Springer,
Heidelberg (2015)

10. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press, Cambridge (2009)

11. Köpcke, H., Rahm, E.: Frameworks for entity matching: A comparison. Data &
Knowledge Engineering 69(2), 197–210 (2010)

12. Köpcke, H., Thor, A., Rahm, E.: Evaluation of entity resolution approaches
on real-world match problems. Proceedings of the VLDB Endowment 3(1–2),
484–493 (2010)

13. Neyman, J.: On the two different aspects of the representative method: the method
of stratified sampling and the method of purposive selection. Journal of the Royal
Statistical Society, 558–625 (1934)

14. Ngomo, A.-C.N.: A time-efficient hybrid approach to link discovery. In: Ontology
Matching, p. 1 (2011)

15. Papadakis, G., Ioannou, E., Niederée, C., Fankhauser, P.: Efficient entity resolution
for large heterogeneous information spaces. In: Proceedings of the Fourth ACM
International Conference on Web Search and Data Mining, pp. 535–544. ACM
(2011)

16. Rojas, R.: Neural Networks: A Systematic Introduction. Springer, Heidelberg
(1996)

17. Rong, S., Niu, X., Xiang, E.W., Wang, H., Yang, Q., Yu, Y.: A machine learning
approach for instance matching based on similarity metrics. In: Cudré-Mauroux, P.,
et al. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 460–475. Springer, Heidelberg
(2012)

18. Scharffe, F., Liu, Y., Zhou, C.: Rdf-ai: an architecture for rdf datasets matching,
fusion and interlink. In: Proc. IJCAI 2009 Workshop on Identity, Reference, and
Knowledge Representation (IR-KR), Pasadena, CA US (2009)

19. Soru, T., Ngomo, A.-C.N.: A comparison of supervised learning classifiers for link
discovery. In: Proceedings of the 10th International Conference on Semantic Sys-
tems, pp. 41–44. ACM (2014)

20. Torralba, A., Efros, A., et al.: Unbiased look at dataset bias. In: 2011 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp. 1521–1528. IEEE
(2011)

21. Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Discovering and maintaining links
on the web of data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L.,
Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823,
pp. 650–665. Springer, Heidelberg (2009)

22. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation 1(1), 67–82 (1997)

	Decision-Making Bias in Instance Matching Model Selection
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Decision-Making Bias in Model Selection
	4.1 Node 1: Decision-Making Bias in Sampling Strategy
	4.2 Node 2: Decision-Making Bias in Feature Crafting
	4.3 Node 3: Decision-Making Bias in Training-Validation Strategy
	4.4 Node 4: Decision-Making Bias in Classification
	4.5 Undirected vs. Directed Graphical Representation
	4.6 The Cost of Decision-Making Bias

	5 Experiments
	5.1 Test Suite: Preparation and Statistics
	5.2 Methodology
	5.3 Results and Analysis

	6 Summary and Future Work
	References

