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Abstract. Benchmarking is indispensable when aiming to assess tech-
nologies with respect to their suitability for given tasks. While several
benchmarks and benchmark generation frameworks have been devel-
oped to evaluate triple stores, they mostly provide a one-fits-all solution
to the benchmarking problem. This approach to benchmarking is how-
ever unsuitable to evaluate the performance of a triple store for a given
application with particular requirements. We address this drawback by
presenting FEASIBLE, an automatic approach for the generation of
benchmarks out of the query history of applications, i.e., query logs.
The generation is achieved by selecting prototypical queries of a user-
defined size from the input set of queries. We evaluate our approach on
two query logs and show that the benchmarks it generates are accurate
approximations of the input query logs. Moreover, we compare four dif-
ferent triple stores with benchmarks generated using our approach and
show that they behave differently based on the data they contain and
the types of queries posed. Our results suggest that FEASIBLE generates
better sample queries than the state of the art. In addition, the better
query selection and the larger set of query types used lead to triple store
rankings which partly differ from the rankings generated by previous
works.

1 Introduction

Triple stores are the data backbone of many Linked Data applications [9]. The
performance of triple stores is hence of central importance for Linked-Data-based
software ranging from real-time applications [8,13] to on-the-fly data integration
frameworks [1,15,18]. Several benchmarks (e.g., [2,4,7,9,16,17]) for assessing the
performance of the triple stores have been proposed. However, many of them
(e.g., [2,4,7,17]) rely on synthetic data or on synthetic queries. The main advan-
tage of such synthetic benchmarks is that they commonly rely on data generators
that can produce benchmarks of different data sizes and thus allow to test the
scalability of triple stores. However, they often fail to reflect reality. In particu-
lar, previous works [5] point out that artificial benchmarks are typically highly
structured while real Linked Data sources are most commonly weakly structured.
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Moreover, synthetic queries most commonly fail to reflect the characteristics of
the real queries sent to applications [3,11]. Thus, synthetic benchmark results
are rarely sufficient to detect the most suitable triple store for a particular real
application. The DBpedia SPARQL Benchmark (DBPSB) [9] addresses a por-
tion of these drawbacks by evaluating the performance of triple stores based
on real DBpedia query logs. The main drawback of this benchmark is however
that it does not consider important data-driven and structural query features
(e.g., number of join vertices, triple patterns selectivities or query execution
times etc.) which greatly affect the performance of triple stores [2,6] during the
query selection process. Furthermore, it only considers SELECT queries. The other
three basic SPARQL query forms, i.e., ASK, CONSTRUCT, and DESCRIBE are not
included.

In this paper we present FEASIBLE, a benchmark generation framework able
to generate benchmarks from a set of queries (in particular from query logs). Our
approach aims to generate customized benchmarks for given use cases or needs of
an application. To this end, FEASIBLE assumes that it is given a set of queries
well as the number of queries (e.g., 25) to be included into the benchmark as
input. Then, our approach computes a sample of the selected subset that reflects
the distribution of the queries in the input set of queries. The resulting queries
can then be fed to a benchmark execution framework to benchmark triple stores.
The contributions of this work are as follows:

1. We present the first structure and data-driven feature-based benchmark gen-
eration approach from real queries. By comparing FEASIBLE with DBPSB,
we show that considering data-driven and structural query features leads to
benchmarks that are better approximations of the input set of queries.

2. We present a novel sampling approach for queries based based on exem-
plars [10] and medoids.

3. Beside SPARQL SELECT, we conduct the first evaluation of 4 triple stores
w.r.t. to their performance on ASK, DESCRIBE and CONSTRUCT queries sepa-
rately.

4. We show that the performance of triple stores varies greatly across the four
basic forms of SPARQL query. Moreover, we show that the features used
by FEASIBLE allow for a more fine-grained analysis of our benchmarking
results.

The rest of this paper is structured as follows: We begin by providing an
overview of the key SPARQL query features that need to be considered while
designing SPARQL benchmarks. Then, we compare existing benchmarks against
these key query features systematically (Section 3) and point out the weaknesses
of current benchmarks that are addressed by FEASIBLE. Our benchmark gener-
ation process is presented in Section 4. A detailed comparison with DBPSB and
an evaluation of the state-of-the-art triple stores follows thereafter. The results
are then discussed and we finally conclude. FEASIBLE is open-source and avail-
able online at https://code.google.com/p/feasible/. A demo can be found at
http://feasible.aksw.org/.

https://code.google.com/p/feasible/
http://feasible.aksw.org/
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2 Preliminaries

In this section, we define key concepts necessary to understand the subsequent
sections of this work. We represent each basic graph pattern (BGP) of a SPARQL
query as a directed hypergraph (DH) according to [14]. We chose this represen-
tation because it allows representing property-property joins, which previous
works [2,6] do not allow to model. The DH representation of a BGP is formally
defined as follows:

Definition 1. Each basic graph patterns BGPi of a SPARQL query can be rep-
resented as a DH HGi = (V,E, λvt), where

– V = Vs ∪ Vp ∪ Vo is the set of vertices of HGi, Vs is the set of all subjects
in HGi, Vp the set of all predicates in HGi and Vo the set of all objects in
HGi;

– E ={e1,. . . , et}⊆ V 3 is a set of directed hyperedges (short: edge). Each edge
e= (vs,vp,vo) emanates from the triple pattern <vs, vp, vo> in BGPi. We
represent these edges by connecting the head vertex vs with the tail hyper-
vertex (vp, vo). We use Ein(v) ⊆ E and Eout(v) ⊆ E to denote the set of
incoming and outgoing edges of a vertex v;

– λvt is a vertex-type-assignment function. Given a vertex v ∈ V , its vertex
type can be ’star’, ’path’, ’hybrid’, or ’sink’ if this vertex participates in
at least one join. A ’star’ vertex has more than one outgoing edge and no
incoming edge. A ’path’ vertex has exactly one incoming and one outgoing
edge. A ’hybrid’ vertex has either more than one incoming and at least one
outgoing edge or more than one outgoing and at least one incoming edge.
A ’sink’ vertex has more than one incoming edge and no outgoing edge. A
vertex that does not participate in any join is of type ’simple’.

The representation of a complete SPARQL query as a DH is the union of
the representations of query’s BGPs. As an example, the DH representation of
the query in Figure 1a is shown in Figure 1b. Based on the DH representation
of SPARQL queries we can define the following features of SPARQL queries:

Definition 2 (Number of Triple Patterns). From Definition 1, the total
number of triple patterns in a BGPi is equal to the number of hyperedges |E| in
the DH representation of the BGPi.

Definition 3 (Number of Join Vertices). Let ST ={st1,. . . , stj} be the set
of vertices of type ’star’, PT ={pt1,. . . , ptk} be the set of vertices of type ’path’,
HB ={hb1,. . . , hbl} be the set of vertices of type ’hybrid’, and SN ={sn1,. . . ,
snm} be the set of vertices of type ’sink’ in a DH representation of a SPARQL
query, then the total number of join vertices in the query #JV = |ST |+ |PT |+
|HB| + |SN |.
Definition 4 (Join Vertex Degree). Based on the DH representation of
SPARQL queries, the join vertex degree of a vertex v is JV D(v) = |Ein(v)| +
|Eout(v)|, where Ein(v) resp Eout(v) is the set of incoming resp. outgoing edges
of v.
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SELECT DISTINCT ∗ WHERE
{
?drug : d e s c r i p t i on ?drugDesc .
?drug : drugType : smal lMolecule .
?drug : keggCompoundId ?compound .
?enzyme : xSubstrate ?compound .
? Chemica l react ion : xEnzyme ?enzyme .
? Chemica lreact ion : equat ion ?ChemicalEquation .
? Chemica l react ion : t i t l e ? React ionTi t l e .
}

(a) Examplary SPARQL query

: drugType
: small
Molecule

Drug
: descri−
ption

drug
Desc

: keggCo−
mpoundId

compound : xSubs−
tract

: xEnzyme enzyme

Chemical
Reaction

: equation Chemical
Equation

Tail of hyperedge

: title

Reaction
T itle

Simple Star Path Sink

(b) Corresponding hypergraph

Fig. 1. DH representation of the SPARQL query. Prefixes are ignored for simplicity

Definition 5 (Triple Pattern Selectivity). Let tpi be a triple pattern and d
be a relevant source for tpi. Furthermore, let N be the total number of triples in
d and Nm be the total number of triples in d that matches tpi, then the selectivity
of tpi w.r.t. d is Sel(tpi, d) = Nm/N .

According to previous works [2,6], a SPARQL query benchmark should vary
the queries it contains w.r.t. the following query characteristics: number of triple
patterns, number of join vertices, mean join vertex degree, query result set sizes,
mean triple pattern selectivities, join vertex types (’star’, ’path’, ’hybrid’, ’sink’),
and SPARQL clauses used (e.g., LIMIT, OPTIONAL, ORDER BY, DISTINCT, UNION,
FILTER, REGEX). In addition, a SPARQL benchmark should contain (or provide
options to select) all four SPARQL query forms (i.e., SELECT, DESCRIBE, ASK,
and CONSTRUCT). Furthermore, the benchmark should contain queries of varying
runtimes, ranging from small to reasonably large query execution times. In the
next section, we compare state-of-the-art SPARQL benchmarks based on these
query features.

3 A Comparison of Existing Benchmarks and Query Logs

Different benchmarks have been proposed to compare triple stores for their query
execution capabilities and performance. Table 1 provides a detailed summary of
the characteristics of the most commonly used benchmarks as well as of two real
query logs. All benchmark executions and result set computations were carried
out on a machine with 16 GB RAM and a 6-Core i7 3.40 GHz CPU running
Ubuntu 14.04.2. All synthetic benchmarks were configured to generate 10 mil-
lion triples. We ran LUBM [7] on OWLIM-Lite as it requires reasoning. All
other benchmarks were ran on virtuoso 7.2 with NumberOfBuffers = 1360000,
and MaxDirtyBuffers = 1000000. As query logs, we used (1) the portion of the
DBpedia 3.5.1 query log (a total of 3,159,812 queries) collected between April
30th, 2010 and July 20th, 20101 as well as (2) the portion of the Semantic Web
Dog Food (SWDF) query log (a total of 1,414,391 queries) gathered between
1 We chose this query log because it was used by DBPSB.
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Table 1. Comparison of SPARQL benchmarks and query logs (F-DBP = FEASIBLE
Benchmarks from DBpedia query log, DBP = DBpedia query log, F-SWDF = FEA-
SIBLE Benchmark from Semantic Web Dog Food query log, SWDF = Semantic Web
Dog Food query log, TPs = Triple Patterns, JV = Join Vertices, MJVD = Mean
Join Vertices Degree, MTPS = Mean Triple Pattern Selectivity, S.D. = Standard
Deviation). Runtime(ms)

LUBM BSBM SP2Bench WatDiv DBPSB F-DBP DBP F-SWDF SWDF

#Queries 15 125 12 125 125 125 130466 125 64030

F
o
rm

s
(%

) SELECT 100 80 91.67 100 100 95.2 97.9 92.8 58.7
ASK 0 0 8.33 0 0 0 1.93 2.4 0.09

CONSTRUCT 0 4 0 0 0 4 0.09 3.2 0.04
DESCRIBE 0 16 0 0 0 0.8 0.02 1.6 41.1

C
la
u
se

s
(%

)

UNION 0 8 16.67 0 36 40.8 7.97 32.8 29.3
DISTINCT 0 24 41.6 0 100 52.8 4.1 50.4 34.18
ORDER BY 0 36 16.6 0 0 28.8 0.3 25.6 10.67

REGEX 0 0 0 0 4 14.4 0.2 16 0.03
LIMIT 0 36 8.33 0 0 38.4 0.4 45.6 1.79

OFFSET 0 4 8.33 0 0 18.4 0.03 20.8 0.14
OPTIONAL 0 52 25 0 32 30.4 20.1 32 29.5

FILTER 0 52 58.3 0 48 58.4 93.3 29.6 0.72
GROUP BY 0 0 0 0 0 0.8 7.6E-6 19.2 1.34

R
e
su

lt
s Min 3 0 1 0 197 1 1 1 1

Max 1.3E+4 31 4.3E+7 4.1E+9 4.6E+6 1.4E+6 1.4E+6 3.0E+5 3.0E+5
Mean 4.9E+3 8.3 4.5E+6 3.4E+7 3.2E+5 5.2E+4 404 9091 39.5
S.D. 1.1E+4 9.03 1.3E+7 3.7E+8 9.5E+5 1.9E+5 1.2E+4 4.7E+4 2208

B
G
P
s

Min 1 1 1 1 1 1 0 0 0
Max 1 5 3 1 9 14 14 14 14
Mean 1 2.8 1.5 1 2.69 3.17 1.67 2.68 2.28
S.D. 0 1.70 0.67 0 2.43 3.55 1.66 2.81 2.9

T
P
s

Min 1 1 1 1 1 1 0 0 0
Max 6 15 13 12 12 18 18 14 14
Mean 3 9.32 5.9 5.3 4.5 4.8 1.7 3.2 2.5
S.D. 1.81 5.17 3.82 2.60 2.79 4.39 1.68 2.76 3.21

J
V

Min 0 0 0 0 0 0 0 0 0
Max 4 6 10 5 3 11 11 3 3
Mean 1.6 2.88 4.25 1.77 1.21 1.29 0.02 0.52 0.18
S.D. 1.40 1.80 3.79 0.99 1.12 2.39 0.23 0.65 0.45

M
J
V
D

Min 0 0 0 0 0 0 0 0 0
Max 5 4.5 9 7 5 11 11 4 5
Mean 2.02 3.05 2.41 3.62 1.82 1.44 0.04 0.96 0.37
S.D. 1.29 1.63 2.26 1.40 1.43 2.13 0.33 1.09 0.87

M
T
P
S

Min 3.2E-4 9.4E-8 6.5E-5 0 1.1E-5 2.8E-9 1.2E-5 1.0E-5 1.0E-5
Max 0.432 0.045 0.53 0.011 1 1 1 1 1
Mean 0.01 0.01 0.22 0.004 0.119 0.140 0.005 0.291 0.0238
S.D. 0.074 0.01 0.20 0.002 0.22 0.31 0.03 0.32 0.07

R
u
n
ti
m
e Min 2 5 7 3 11 2 1 4 3

Max 3200 99 7.1E+5 8.8E+8 5.4E+4 3.2E+4 5.6E+4 4.1E+4 4.1E+4
Mean 437 9.1 2.8E+5 4.4E+8 1.0E+4 2242 30.4 1308 16.1
S.D. 320 14.5 5.2E+5 2.7E+7 1.7E+4 6961 702.5 5335 249.6
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May 16th, 2014 and November 12th, 2014. Note that we only considered queries
(called cleaned queries) which produce at least 1 result after the query execution
(130,466 queries from DBpedia and 64,029 queries from SWDF).2 In the follow-
ing, we compare these benchmarks and query logs w.r.t. the features shown in
Table 1.

LUBM was designed to test the triple stores and reasoners for their reason-
ing capabilities. It is based on a customizable and deterministic generator for
synthetic data. The queries included in this benchmark commonly lead to query
results sizes ranges from 2 to 3200, query triple patterns ranges from 1 to 6,
and all the queries consist of a single BGP. LUBM includes a fixed number of
SELECT queries (i.e., 15) where none of the clauses shown in Table 1 is used.

The Berlin SPARQL Benchmark (BSBM) [4] uses a total of 125 query tem-
plates to generate any number of SPARQL queries for benchmarking. Multi-
ple use cases such as explore, update, and business intelligence are included in
this benchmark. Furthermore, it also includes many of the important SPARQL
clauses of Table 1. However, the queries included in this benchmark are rather
simple with an average query runtime of 9.1 ms and a largest query result set
size of 31.

SP2Bench mirrors vital characteristics (such as power law distributions or
Gaussian curves) of the data in the DBLP bibliographic database. The queries
given in benchmark are mostly complex. For example, the mean (across all
queries) query result size is above one million and the query runtimes are in
the order of 105 ms (see Table 1).

The Waterloo SPARQL Diversity Test Suite (WatDiv) [2] addresses the lim-
itations of previous benchmarks by providing a synthetic data and query genera-
tor to generate large number of queries from a total of 125 queries templates. The
queries cover both simple and complex categories with varying number of fea-
tures such as result set sizes, total number of query triple patterns, join vertices
and mean join vertices degree. However, this benchmark is restricted to conjunc-
tive SELECT queries (single BGPs). This means that non-conjunctive SPARQL
queries (e.g., queries which make use of the UNION and OPTIONAL features) are not
considered. Furthermore, WatDiv does not consider other important SPARQL
clauses, e.g., FILTER and REGEX. However, our analysis of the query logs of DBpe-
dia3.5.1 and SWDF given in table 1 shows that 20.1% resp. 7.97% of the DBpedia
queries make use of OPTIONAL resp. UNION clauses. Similarly, 29.5% resp. 29.3%
of the SWDF queries contain OPTIONAL resp. UNION clauses.

While the distribution of query features in the benchmarks presented so far is
mostly static, the use of different SPARQL clauses and triple pattern join types
varies greatly from data set to data set, thus making it very difficult for any
synthetic query generator to reflect real queries. For example, the DBpedia and
SWDF query log differ significantly in their use of DESCRIBE (41.1% for SWDF vs
0.02% for DBpedia), FILTER (0.72% for SWDF vs 93.3% for DBpedia) and UNION
(29.3% for SWDF vs 7.97% for DBpedia) clauses. Similar variations have been

2 The datadumps, query logs and cleaned queries for both datasets can be downloaded
from project home page
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reported in [3] as well. To address this issue, the DBpedia SPARQL Benchmark
(DBPSB) [9] (which generates benchmark queries from query logs) was proposed.
However, this benchmark does not consider key query features (i.e., number of
join vertices, mean join vertices degree, mean triple pattern selectivities, the
query result size and overall query runtimes) while selecting query templates.
Note that previous works [2,6] pointed that these query features greatly affect
the triple stores performance and thus should be considered while designing
SPARQL benchmarks.

In this work we present FEASIBLE, a benchmark generation framework
which is able to generate a customizable benchmark from any set of queries, esp.
from query logs. FEASIBLE addresses the drawbacks on previous benchmark
generation approaches by taking all of the important SPARQL query features
of Table 1 into consideration when generating benchmarks. In the following, we
present our approach in detail.

4 FEASIBLE Benchmark Generation

The benchmark generation behind our approach consists of 3 main steps. The
first step is the cleaning step. Thereafter, the features of the queries are normal-
ized. In a final step, we then select a sample of the input queries that reflects the
cleaned input queries and return this sample. The sample can be used as seed in
template-based benchmark generation approaches such as DBSBM and BSBM.

4.1 Data Set Cleaning

The aim of the data cleaning step is to remove erroneous and zero-result queries
from the set of queries used to generate benchmarks. This step is not of theoreti-
cal necessity but leads to practically reliable benchmarks. To clean the input data
set (here query logs), we begin by excluding all syntactically incorrect queries.
The syntactically correct queries which lead to runtime errors3 as well as queries
which return zero results are removed from the set of relevant queries for bench-
marking. We attach all 9 SPARQL clauses (e.g., UNION, DISTINCT) and 7 query
features (i.e., runtime, join vertices, etc.) given in Table 1 to each of the queries.
For the sake of simplicity we call these 16 (i.e., 9+7) properties query features
in the following. All unique queries are then stored in a file4 and given as input
to the next step.

4.2 Normalization of Feature Vectors

The query selection process of FEASIBLE requires distances between queries to
be computed. To ensure that dimensions with high values (e.g., the result set
size) do not bias the selection, we normalize the query representations to ensure

3 The runtime errors were measured using Virtuoso 7.2.
4 A sample file can be found at http://goo.gl/YUSU9A

http://goo.gl/YUSU9A
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that all queries are located in a unit hypercube. To this end, each of the queries
gathered from the previous step is mapped to a vector of length 16 which stores
the corresponding query features as follows: For the SPARQL clauses, which are
binary (e.g., UNION is either used or not used), we store a value 1 if that clause
in used in the query. Otherwise we store a 0. All non-binary feature vectors are
normalized by dividing their value with the overall maximal value in the data
set. Therewith, we ensure that all entries of the query representations are values
between 0 to 1.

4.3 Query Selection

The query selection process is based on the idea of exemplars used in [10] and is
shown in Algorithm 1. We assume that we are given (1) a number e ∈ N of queries
to select as benchmark queries as well as (2) a set of queries L with |L| = n >> e,
where L is the set of all cleaned and normalized queries. The intuition behind
our selection approach is to compute an e-sized partition L = {L1, . . . , Le} of L
such that (1) the average distance between the points in two different elements
of the partition is high and (2) the average distance of points within a partition
is small. We can then select the point closest to the average of each Li (i.e.,
the medoid of Li) to be a prototypical example of a query from L and include
it into the benchmark generated by FEASIBLE. We implement this intuition
formally by (1) selecting e exemplars (i.e., points that represent a portion of
the space) that are as far as possible from each other, (2) partitioning L by
mapping every point of L to one of these exemplars to compute a partition
of the space at hand and (3) selecting the medoid of each of the partitions of
space as a query in the benchmark. In the following, we present each of these
steps formally. For the sake of clarity, we use the following running example:
L = {q1 = [0.2, 0.2], q2 = [0.5, 0.3], q3 = [0.8, 0.5], q4 = [0.9, 0.1], q5 = [0.5, 0.5]}
and assume that we need a benchmark with e = 2 queries. Note for the sake of
simplicity, we used feature vectors of length 2 instead of 16.

Selection of Exemplars. We implement an iterative approach to the selection
of exemplars (see lines 1-7 of Algorithm 1). We begin by finding the average
L̃ = 1

n

∑

q∈L

q of all representations of queries q ∈ L. In our example, this point

has the coordinates [0.58, 0.32]. The first exemplar X1 is the point of L that is
closest to the average and is given by X1 = arg min

x∈L
d(L̃, x), where d stands for

the Euclidean distance. In our example, this is the query q2 with a distance of
0.08. We follow an iterative procedure to extending the set X of all exemplars:

We first find η = arg max
y∈L\X

(
∑

x∈X
d(x, y)

)

. η is the point that is furthest away from

all exemplars. In our example, that is the query q4 with a distance of 0.45 from
q2. We then add η to X and repeat the procedure for finding η until |X | = e.
Given that e = 2 in our example, we get the set X = {q2, q4} as set of exemplars.
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Algorithm 1. Query Selection Approach
Data: Set of queries L; Size of the benchmark e
Result: Benchmark (set of queries) B

1 L̃ = 1
|L|

∑

q∈L

q ;

2 X1 = {argmin
x∈L

d(L̃, x)} ;

3 X = {X1} ;
4 for i = 2; i ≤ e; i + + do
5 Xi = {argmax

y∈L\X
d(y, X )};

6 X = X ∪ {Xi};
7 end
8 L = ∅;
9 for i = 1; i ≤ e; i + + do

10 Li = {Xi};
11 L = L ∪ {Li};
12 end
13 for i = 1; i ≤ e; i + + do
14 Li = {q ∈ L\X : Xi = argmin

X∈X
d(X, q)}

15 end
16 B = ∅;
17 for i = 1; i ≤ e; i + + do

18 L̃i = 1
|Li|

∑

q∈Li

q;

19 bi = argmin
q∈Li

d(L̃i, q);

20 B = B ∪ {bi};
21 end
22 return B;

Selection of Benchmark Queries. Let X = {X1, . . . , Xe} the set of all exem-
plars. The selection of benchmark queries begins with partitioning the space
according to X . The partition Li is defined as Li = {q ∈ L : ∀j �= i : d(q,Xi) ≤
d(q,Xj)} ((see lines 8-15 of Algorithm 1). It is simply the set of queries that are
closer to Xi than to any other exemplar. In case of a tie, i.e., d(q,Xi) = d(q,Xj)
with i �= j, we assign q to min(i, j). In our example, we get the following parti-
tion: X = {{q1, q2, q3, q5}, {q4}}. Finally, we perform the selection of prototypical
queries from each partition (see lines 17-22 of Algorithm 1). For each partition
Li we begin by computing the average L̃i of all representations of queries in Li.
We then select the query bi = arg min

q∈Li

d(L̃i, q). The set B of benchmark queries

is the set of all queries bi over all Li. Note that |B| = e. In our example, q4
being the only query in the second partition means that q4 is selected as repre-
sentative for the second partition. The average of the first partition is located
at [0.5, 0.375]. The query q2 is the closest to the average, leading to q2 being
selected as representative for the first partition. Our approach thus returns a
benchmark with the queries {q2, q4} as result.

Figures 2a and 2b show Voronoi diagrams of the results of our approach
for benchmarks of size 125 and 175 derived from the DBpedia 3.5.1 query log
presented in Table 1 along the two dimensions with the highest entropy. Note
that some of the queries are superposed in the diagram.
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(a) DBpedia-125 (b) DBpedia-175

Fig. 2. Voronoi diagrams for benchmarks generated by FEASIBLE along the two axes
with maximal entropy. Each of the red points is a benchmark query. Several points are
superposed as the diagram is a projection of a 16-dimensional space unto 2 dimensions.

5 Complexity Analysis

In the following, we study the complexity of our benchmark generation approach.
We denote the number of features considered during the generation process with
d. e is the number of exemplars and |L| the size of the input data set. Read-
ing and cleaning the file can be carried out in O(|L|d) as each query is read
once and the features are extracted one at a time. We now need to compute
the exemplars. We begin by computing the average A of all queries, which can
be carried out using O(|L|d) arithmetic operations. Finding the query that is
nearest to A has the same complexity. The same approach is used to detect the
other exemplars, leading to an overall complexity of O(e|L|d) for the computa-
tion of exemplars. Mapping each point to the nearest exemplar has an a-priori
complexity of O(e|L|d) arithmetic operations. Given that the distances between
the exemplars and all the points in L are available from the previous step, we
can simply look up the distances and thus gather this information in O(1) for
each pair of exemplar and point, leading to an overall complexity of O(e|L|).
Finally, the selection of the representative in the cluster demands averaging the
elements of the cluster and selecting the query that is closest to this point. For
each cluster of size |Cl|, we need (d|Cl|) arithmetic operations to find the aver-
age point. The holds for finding the query nearest to the average. Given that
the sum of the sizes of all the clusters is |L|, we can conclude that the overall
complexity of the selection step is O(d|L|). Overall, the worst-case complexity
of our algorithm is thus O(d|L||E|).

In the best case, no queries passes the cleaning test, leading to no further
processing and to the same complexity as reading the data, which is O(|L|d).
The same best-case complexity holds when a benchmark is generated. Here, the
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filtering step returns exactly e queries, leading to the exemplar generation step
being skipped and thus to a complexity of O(|L|d).

6 Evaluation and Results

Our evaluation comprises two main parts. First, we compare FEASIBLE with
DBPSB w.r.t. how well the benchmarks represent the input data. To this end,
we use the composite error function defined below. In the second part of our
evaluation, we use FEASIBLE benchmarks to compare triple stores w.r.t. their
query execution performance.

6.1 Composite Error Estimation

The benchmarks we generate aim to find typical queries for a given query log.
From the point of view of statistics, this is equivalent to computing a subset of
a population that has the same characteristics (here mean and standard devia-
tion) as the original population. Thus, we measure the quality of the sampling
approach of a benchmark by how much the mean and standard deviation of the
features of its queries deviates from that of the query log. We call μi resp. σi the
mean resp. the standard deviation of a given distribution w.r.t. to the ith feature
of the said distribution. Let B be a benchmark extracted from a set of queries
L. We use two measures to compute the difference between B and L, i.e., the
error on the means Eμ and deviations Eσ

Eμ =
1
k

k∑

j=1

(μi(L) − μi(B))2 and Eσ =
1
k

k∑

j=1

(σi(L) − σi(B))2. (1)

We define a composite error estimation E as the harmonic mean of Eμ and Eσ:

E =
2EμEσ

Eμ + Eσ
. (2)

6.2 Experimental Setup

Data sets and Query Logs: We used the DBpedia 3.5.1 (232.5M triples) and
SWDF (294.8K triples) data sets for triple store evaluation. As queries (see
Section 3), we used 130,466 cleaned queries for DBpedia and 64,029 cleaned
queries for SWDF.

Benchmarks for Composite Error Analysis: In order to compare FEASIBLE
with DBPSB, we generated benchmarks of sizes 15, 25, 50, 75, 100, 125, 150,
and 175 queries from the DBpedia 3.5.1 query log. Recall this is exactly the same
query log used in DBPSB. DBPSB contains a total of 25 query templates derived
from 25 real queries. A single query was generated per query template in order to
generate a benchmark of 25 queries. Similarly, 2 queries were generated per query
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template for a benchmark of 50 queries and so on. The 15-query benchmark of
DBPSB was generated from the 25-query benchmark by randomly choosing 15 of
the 25 queries. We chose to show results on a 15-query benchmark because LUBM
contains 15 queries while SP2Bench contains 12. We also generated benchmarks
of the same size (15-175) from SWDF to compare FEASIBLE’s composite errors
as well as the performance of triple stores across different data sets.

Triple Stores: We used four triple stores in our evaluation: (1) Virtuoso Open-
Source Edition version 7.2 with NumberOfBuffers = 680000, MaxDirtyBuffers
= 500000; (2) Sesame Version 2.7.8 with Tomcat 7 as HTTP interface and
native storage layout. We set the spoc, posc, opsc indices to those specified in
the native storage configuration. The Java heap size was set to 6GB; (3) Jena-
TDB (Fuseki) Version 2.0 with a Java heap size set to 6GB and (4) OWLIM-SE
Version 6.1 with Tomcat 7.0 as HTTP interface. We set the entity index size to
45,000,000 and enabled the predicate list. The rule set was empty and the Java
heap size was set to 6GB. Ergo, we configured all triple stores to use 6GB of
memory and used default values otherwise.

Benchmarks: Most of the previous evaluations were carried out on SELECT
queries only (see Table 1). Here, beside evaluating the performance of triples
stores on SELECT evaluation, we also wanted to compare triple stores on the
other three forms of SPARQL queries. To this end, we generated DBpedia-
ASK-100 (100-ASK-query benchmark derived from DBpedia) and SWDF-
ASK-50 (50-ASK-query benchmark derived from SWDF)5 and compared the
selected triple stores for their ASK query processing performances. Simi-
larly, we generated DBpedia-CONSTRUCT-100 and SWDF-CONSTRUCT-23,
DBpedia-DESCRIBE-25 and SWDF-DESCRIBE-100, and DBpedia-SELECT-
100 and SWDF-SELECT-100 benchmarks to test the selected systems for
CONSTRUCT, DESCRIBE, and SELECT queries, respectively. Furthermore, we gen-
erated DBpedia-Mix-175 (DBpedia benchmark of 175 mix queries of all the four
query forms) and SWDF-Mix-175 to test the selected triple stores for their gen-
eral query processing performance.

Benchmark Execution: The evaluation was carried out one triple store at a time
on one machine. First, all data sets were loaded into the selected triple store.
Once the triple store had completed the data loading, the 2-phase benchmark
execution phase began: (1) Warm-up Phase: To measure the performance of
the triple store under normal operational conditions, a warm-up phase was used
where random queries from the query log were posed to triple stores for 10
minutes; (2) Hot-run Phase: During this phase, the benchmark query mixes
were sent to the tested store. We kept track of the average execution time of each
query as well as of the number of query mixes per hour (QMpH). This phase
lasted for two hours for each triple store. Note that the benchmark and the triple

5 We chose to select only 50 queries because the SWDF log we used does not contain
enough ASK queries to generate a 100-query benchmark.
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store were run on the same machine to avoid network latency. We set the query
timeout to 180 seconds. The query was aborted after that and maximum time of
180 seconds was used as the query runtime for all queries which timed out. All
the data (data dumps, benchmarks, query logs, FEASIBLE code) to repeat our
experiments along with complete evaluation results are available at the project
website.

6.3 Experimental Results

Composite Error. Table 2 shows a comparison of the composite errors of
DBPSB and FEASIBLE for different benchmarks. Note that DBPSB queries
templates are only available for the DBpedia query log. Thus, we were not
able to calculate DBPSB’s composite errors for SWDF. As an overall composite
error evaluation, FEASIBLE’s composite error is 54.9% smaller than DBPSB.
The reason for DBPSB’s error being higher that FEASIBLE’s lies in the fact
that it only considers the number of query triple patterns and the SPARQL
clauses UNION, OPTIONAL, FILTER, LANG, REGEX, STR, and DISTINCT as features.
Important query features (such as query result sizes, execution times, triple pat-
terns and join selectivities, and number of join vertices) were not considered
when generating the 25 query templates.6 Furthermore, DBPSB only includes
SELECT queries. The other three SPARQL query forms, i.e., CONSTRUCT, ASK, and
DESCRIBE are not considered. In contrast, our approach considers all of the query
forms, SPARQL clauses, and query features reported in Table 1.7 It is important
to mention that FEASIBLE’s overall composite error across both data sets is
only 0.038.

Table 2. Comparison of the Mean Eμ , Standard Deviation Eσ and Composite E
errors for different benchmark sizes of DBpedia and Semantic Web Dog Food query
logs. FEASIBLE outperforms DBPSB across all dimensions.

Benchmark FEASIBLE DBPSB Benchmark FEASIBLE
Eμ Eσ E Eμ Eσ E Eμ Eσ E

DBpedia-15 0.045 0.054 0.049 0.139 0.192 0.161 SWDF-15 0.019 0.043 0.026
DBpedia-25 0.041 0.054 0.046 0.113 0.139 0.125 SWDF-25 0.034 0.051 0.041
DBpedia-50 0.045 0.056 0.050 0.118 0.132 0.125 SWDF-50 0.036 0.052 0.043
DDBpedia-75 0.053 0.061 0.057 0.096 0.095 0.096 SWDF-75 0.035 0.051 0.042
DDBpedia-100 0.054 0.064 0.059 0.130 0.132 0.131 SWDF-100 0.036 0.050 0.042
DDBpedia-125 0.054 0.064 0.058 0.088 0.082 0.085 SWDF-125 0.034 0.048 0.040
DBpedia-150 0.055 0.064 0.059 0.107 0.124 0.115 SWDF-150 0.033 0.046 0.038
DBpedia-175 0.055 0.065 0.059 0.127 0.144 0.135 SWDF-175 0.033 0.045 0.038

Average 0.050 0.060 0.055 0.115 0.130 0.121 Average 0.032 0.048 0.039

6 Queries templates available at: http://goo.gl/1oZCZY
7 See FEASIBLE online demo for the customization of these features

http://goo.gl/1oZCZY
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Triple Store Performance. Figure 3 shows a comparison of the selected triple
stores in terms of queries per second (QpS) and query mixes per hour (QMpH)
for different benchmarks generated by FEASIBLE. Table 3 shows the overall
rank-wise query distributions of the triple stores. Our ranking is partly different
from the DBPSB ranking. Overall, (for mix DBpedia and SWDF benchmarks
of 175 queries each, Figure 3e to Figure 3g), Virtuoso ranks first followed by
Fuseki, OWLIM-SE, and Sesame. Virtuoso is 59% faster than Fuseki. Fuseki is
1.7% faster than OWLIM-SE, which in turn 16% faster than Sesame.8

A more fine-grained look at the evaluation reveals surprising findings: On
ASK queries, Virtuoso is clearly faster than the other frameworks (45% faster
than Sesame, which is 16% faster than Fuseki, which is in turn 96% faster than
OWLIM-SE, see Figure 3a). The ranking changes for CONSTRUCT queries: While
Virtuoso is still first (87% faster than OWLIM-SE), OWLIM-SE is now faster
that 14% faster than Fuseki, which in turn is 42% faster than Sesame (Figure
3b). The most drastic change occurs on the DESCRIBE benchmark, where Fuseki
ranks first (66% faster than Virtuoso, which is 86% faster than OWLIM-SE,
which in turns 47% faster than Sesame, see Figure 3c). Yet another ranking
emerges from the SELECT benchmarks, where Virtuoso is overall 55% faster than
OWLIM-SE, which is 41% faster than Fuseki, which in turns 11% faster than
Sesame (Figure 3d). These results show that the performance of triple stores
varies greatly across the four basic SPARQL forms and none of the system is the
sole winner across all query forms. Moreover, the ranking also varies across the
different datasets (see, e.g., ASK benchmark for DBpedia and SWDF). Thus, our
results suggest that (1) a benchmark should comprise a mix of SPARQL ASK,
CONSTRUCT, DESCRIBE, and SELECT queries that reflects the real intended usage of
the triple stores to generate accurate results and (2) there is no universal winner
amongst triple stores, which points again towards the need to create customized
benchmarks for applications when choosing their backend. FEASIBLE addresses
both of these requirements by allowing users to generate dedicated benchmarks
from their query logs.

Some interesting observations were revealed by the rank-wise queries distri-
butions of triple stores shown in Table 3: First, none of the system is sole winner
or loser for a particular rank. Overall, Virtuoso’s performance mostly lies in the
higher ranks, i.e., rank 1 and 2 (68.29%). This triple store performs especially
well on CONSTRUCT queries. Fuseki’s performance is mostly in the middle ranks,
i.e., rank 2 and 3 (65.14%). In general, it is faster for DESCRIBE queries and
is on a slower side for CONSTRUCT and queries containing FILTER and ORDER
BY clauses. While OWLIM-SE’s performance is usually on the slower side, i.e.,
rank 3 and 4 (60.86 %), it performs well on complex queries with large result
set sizes and complex SPARQL clauses. Finally, Sesame is either fast or slow.
For example, for 31.71% of the queries, it achieve the rank 1 (second best after
Virtuoso) and but achieves rank 4 on 23.14% of the queries (second worse after
OWLIM-SE). In general Sesame is very efficient on simple queries with small

8 Note the percentage improvements are calculated from the QMpH values as A is
(1-QMpH(A)/QMpH(B)*100) percent faster than B.
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(d) QpS (SELECT-Only)
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Fig. 3. Comparison of the triple stores in terms of Queries per Second (QpS) and
Query Mix per Hour (QMpH), where a Query Mix comprise of 175 distinct queries.
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Table 3. Overall rank-wise ranking of triple stores. All values are in percentages.

SWDF DBpedia Overall
Triple Store 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th

Virtuoso 38.29 24.57 21.71 15.43 54.86 18.86 15.43 10.86 46.57 21.71 18.57 13.14
Fuseki 17.14 39.43 32.00 11.43 24.00 34.86 24.00 17.14 20.57 37.14 28.00 14.29
OWLIM-SE 10.29 30.29 21.14 38.29 13.14 24.57 25.14 37.14 11.71 27.43 23.14 37.71
Sesame 37.71 12.00 29.14 21.14 25.71 16.57 32.57 25.14 31.71 14.29 30.86 23.14

result set sizes, a small number of triple triple patterns, and a few SPARQL
clauses. However, it performs poorly as soon as the queries grow in complexity.
These results shows yet another aspect of the importance of taking structural
and data-driven features into consideration while generating benchmarks as they
allow deeper insights into the type of queries on which systems perform well or
poorly.

Finally, we also looked into the number of query timeouts during the complete
evaluation. Most of the systems time out for SELECT queries. Overall, Sesame has
the highest number of timeouts (43) followed by Fuseki (32), OWLIM-SE (22),
and Virtuoso (14). For Virtuoso, the timeout queries have at least one triple
pattern with an unbound subject, an unbound predicate and an unbound object
(i.e., a triple pattern of the form ?s ?p ?o). The corresponding result sets were
so large that they could not be computed in 3 minutes. The other three systems
mostly timeout for the same queries. OWLIM-SE generally performs better for
complex queries with large result set sizes. Fuseki has problems with queries
containing FILTER (12/32) and ORDER BY clauses (11/32 queries). Sesame’s per-
formance is slightly worse for complex queries containing many triple patterns
and joins as well as complex SPARQL clauses. Note that Sesame also times out
for 8 CONSTRUCT queries. All the timeout queries for each triple store are provided
at the project website.

7 Conclusion

In this paper we presented FEASIBLE, a customizable SPARQL benchmark
generation framework. We compared FEASIBLE with DBPSB and showed that
our approach is able to produce high-quality (in terms of their composite error)
benchmarks. In addition, our framework allows users to generate customized
benchmarks suited for a particular use case, which is of utmost importance
when aiming to gather valid insights into the real performance of different triple
stores for a given application. This is demonstrated by our triple store evaluation,
which shows that the ranking of triple stores varies greatly across different types
of queries as well as across datasets. Our results thus suggest that all of the
four query forms should be included in the future SPARQL benchmarks. For
the sake of future work, we have started converting linked data query logs into
RDF and made available through the LSQ [12] endpoint. Beside the key queries
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characteristics discussed in Table 1, we have attached many of the SPARQL
1.1 features to each of the query. We will extend FEASIBLE to query the LSQ
SPARQL endpoint directly so as to gather queries for the benchmark creation
process.
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