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Abstract. Enterprise Collaboration Systems are designed in such a way
to maximise the efficiency of communication and collaboration within the
enterprise. With users becoming mobile, the Internet of Things can play
a crucial role in this process, but is far from being seamlessly integrated
in modern online communications. In this paper, we showcase the use of
a solution that goes beyond today’s ad-hoc integration and processing
of heterogeneous data sources for static and streaming data, providing
more flexible and efficient processing techniques that can bridge the gap
between IoT and online Enterprise Communication Systems. We docu-
ment the technologies used for sensor deployment, sensor data acquisi-
tion based on the OpenIoT framework, and stream federation. Our main
contributions are the following, i) we present a conceptual architecture of
IoT-enabled Communication Systems, that builds upon existing frame-
works for semantic data acquisition, and tools to enable continuous pro-
cessing, discovery and federation of dynamic data sources based on Linked
Data; ii) we present a semantic information model for representing and
linking IoT data, social data and personal data by re-using and extending
the existing standard semantic models; iii) we evaluate the performance
of virtualisation of IoT sources based on OpenIoT in our testbed and show
the impact of transmission, annotation and data storage, as well as initial
results on scalability of RDF stream query processing in such a frame-
work, providing guidelines and directions for optimisation.

Keywords: IoT · RDF stream processing · Stream federation · Com-
munication systems · OpenIoT · Linked data

1 Introduction

Enterprise communication systems currently and historically have been primar-
ily aimed at person to person communication. Users of such systems typically
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interact with an endpoint such as a phone, video system or unified communi-
cations software client capable of multi-modal communications. Communication
modes typically consist of instant messaging, voice, video and voicemail to allow
individuals or groups to communicate in real time. Such systems have not histor-
ically enabled open machine to machine or machine to person communication.
The emergence of Internet of Things (IoT) provides the potential to enable
communication between sensory devices and communication systems using open
interfaces, but this potential is under investigated and few solutions have existed
in isolation. As a result, the flexible integration of a large amount of multi-modal
data streams from diverse application domains is still one of the key challenges
in developing IoT-enabled communication systems.

The lack of interoperability results into the inability for such systems to
integrate information from external sources in an easy and cost-effective way.
This issue becomes more evident if we consider advances in the IoT space, which
demands dynamic and flexible exchange of information between IoT sources.
To overcome these interoperability issues in communication systems and across
smart enterprise applications towards IoT-enabled solutions, we developed a
Linked Data infrastructure for networking, managing and analysing streaming
information. In order to ensure high reusability, we leveraged existing semantic
models for the annotation of sensor data (e.g. SSN), social web (e.g. FOAF)
and personal information (e.g. PIMO), and extended the ontological model to
incorporate personal, business and online communication concepts.

In order to set the basis for our evaluation, we identified a usecase sce-
nario in the enterprise communication space, to illustrate the potentials of IoT-
enabled Communication Systems. We then designed and developed the pro-
cessing pipeline from IoT sources to stream processing and reasoning, which is
seamlessly integrated in our framework. Our main contributions in this paper
include:

– design of a Linked Data framework for IoT-enabled smart enterprise appli-
cations that connects physical to virtual sensors and enables scalable stream
processing and reasoning;

– interoperable integration of various IoT sources (corresponding to capabili-
ties) in the context of an open source online communication system;

– demonstration of the effectiveness of our proposed framework based on a
concrete instance of OpenIoT and Apache Open Meetings;

– experimental validation of the performance and scalability of our IoT-
enabled infrastructure and lessons learned.

The remainder of this paper is organised as follows: Section 2 presents our
scenario and state of the art, Section 3 details our IoT-enabled Linked Data
infrastructure and it’s software components, which we evaluate in Section 4
before we conclude with some remarks and lessons learned in Section 5.
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2 Motivation and State of the Art

Sensor technologies and sensory devices are nowadays part of our everyday lives.
The Internet of Things (IoT) not only provides an infrastructure for sensor
deployment, but also a mechanism for better communication among connected
sensors. Data generated by these sensors is huge in size and continuously pro-
duced at a high rate. This requires mechanisms for continuous analysis in real-
time in order to build better applications and services. Data streams produced by
various sensors can be classified into three different categories, namely, (i) Phys-
ical (static) Sensors, (ii) Mobile & Wearable Sensors, and (iii) Virtual Sensors
& Social Media Streams.

Among the above three categories, mobile sensors are harder to integrate
within enterprise communication systems. This is not only due to technical inte-
gration issues and interoperability, but also due to their dynamic nature and con-
stantly changing context. Mobility and location-based sensory input, for exam-
ple, result into a higher level of unpredictability and lower level of control over the
distributed infrastructure that characterises enterprise communication systems.
These challenges are matched by new opportunities for IoT-enabled collabora-
tion and communication systems to be designed in order to sense the context
of a mobile user and take decisions according to dynamic sensory input. In the
domain of enterprise communication systems, mobile users have the potential to
produce a lot of dynamic sensory input that can be used for the next generation
of mobile enterprise collaboration, with great potentials for better user experi-
ence. In this paper we propose a framework and a set of software component for
IoT-enabled online meeting management that combine existing technologies in
a scalable infrastracture.

2.1 Motivating Scenario: IoT-Enabled Meeting Management
System

Alice is hosting an online meeting for her company FictionDynamic. The meet-
ing is planned to hold in Meeting Room B at 11:00 am. Bob and Charlie attend-
ing the meeting while they are on the move, thus their availability and ability
to participate to the meeting in various ways is dynamically changing. The IoT-
enabled Meeting Management System (IoT-MMS) enables i) automatic on-the-
fly semantic enrichment of IoT information related to the meeting attendees, ii)
communication of such richer information to the participants via their IoT-MMS
client through a panel showing IoT values and related user capabilities (e.g. abil-
ity to hear properly, share a screen, type, talk), iii) use of such rich information to
improve user experience and optimise meeting management on-the-fly. The inte-
gration of a web-based MMS with sensory input and enterprise data such as atten-
dees details, calendars and agenda items makes it possible to characterise and
manage the following aspects in a flexible and interoperable way:

– updating (enabling or disabling) users capabilities based on IoT input (via
sensors abstraction and interpretation, semantic integration and stream
query processing);
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– managing agenda items, including users involved and capability requirements
via business logic rules;

– dynamically verifying privacy-constraints on agenda items based on location
and context.

In Sections 3 and 4, we illustrate the design and implementation of our IoT-MMS
framework enabling characterisation and management of the above mentioned
aspects.

Enabling and disabling user capabilities has the potential of improving user
experience: acting on microphones and speakers of attendees based on their
participation and the level of noise can avoid unpleasant feedback loops, and
guidance for the meeting host on changing capabilities of attendees on the move
would promote more effective management of online meetings. In the same way
as capabilities are enabled or disabled, additional functionalities can be char-
acterised by adding specific semantic queries and action triggers. For example,
the IoT-MMS can support the meeting host in dynamically re-assigning agenda
slots to participants, based on users involved and their changing capabilities.
Also, queries over the attendees calendars and presence status [10] for availabil-
ity would make it possible to suggest alternative meeting slots if key attendees
become unavailable or if their capabilities become compromised.

2.2 State of the Art

Internet of Things (IoT) research in recent years has focused on modelling
domain knowledge of sensor networks and services [3,4,12,16]. The Seman-
tic Sensor Network (SSN) ontology is one of the most significant efforts in the
development of an information model for sensory data [6]. The SSN Ontology
provides a vocabulary for expressive representation of the sensors, their obser-
vations and knowledge of the surrounding environment1. SSN is being widely
adopted by many IoT-based applications for the representation of sensor data.
SSN ontology defines only a high-level scheme of sensor systems, therefore SSN
alone cannot represent an information model for a richer IoT infrastructure and
needs to be aligned with the existing ontologies or with new concepts from appli-
cation domains. Consider our scenario in Section 2.1, the SSN ontology needs
to be aligned with existing semantic models for the representation of the meet-
ing/calendar information and personal/social data.

Data acquisition from distributed heterogeneous sensors is another essential
aspect of IoT-enabled applications. The Global Sensor Network (GSN) middle-
ware facilitates flexible integration and discovery of sensor networks and sensor
data [1], enabling fast deployment and addition of new IoT platforms by sup-
porting dynamic adaptation2. X-GSN [5] is an extension of GSN and therefore
supports all virtual sensors and wrapper developed for the GSN middleware. X-
GSN is deployed as a web server which continuously listens for sensor data over

1 http://www.w3.org/2005/Incubator/ssn/ssnx/ssn
2 http://sourceforge.net/projects/gsn/

http://www.w3.org/2005/Incubator/ssn/ssnx/ssn
http://sourceforge.net/projects/gsn/
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a pre-configured port (default port = 22001), and it contains various wrappers
built as subclasses of the GSN wrappers, each acting as a thread in the GSN.

OpenIoT [2] is an open source middleware for collecting information from
sensor clouds. OpenIoT can collect and process data from virtually any sen-
sor in the world, including physical devices, sensor processing algorithms and
social media processing algorithms (http://openiot.eu). OpenIoT combines and
enhances results from leading edge middleware projects, such as the Global Sen-
sor Networks - GSN and the Linked Sensor Middleware3(LSM) [1,9].

However, IoT-enabled applications not only require to gather sensor data
from distributed sensors network, but also demand to provide adaptive appli-
cations which can query data streams generated by sensors and can take smart
decisions accordingly. Furthermore, IoT-enabled applications need to provide
robustness because of the autonomous and distributed nature of the underly-
ing architecture. OpenIoT in its current state does not support stream query
processing over data streams generated by various sensors, hence lacking the
ability to facilitate realtime decisions. We used the OpenIoT framework for sen-
sor data acquisition and semantic annotation, creating additional wrappers that
are needed for streaming IoT data, and we extended it by introducing stream
query processing [8] and stream reasoning capabilities based on rules [11].

3 IoT-enabled Communication Systems

In this section, we introduce the layered architecture of the IoT-enabled Commu-
nication System and briefly describe each of the layers involved in the processing
pipeline.

3.1 Application Architecture

Figure 1 illustrates our conceptual architecture for IoT-Enabled Communication
System. OpenIoT acts as a core component for data acquisition and semantic
annotation of the data produced by various sensors. We extended the func-
tionalities of the OpenIoT platform by introducing HTTP Listener wrapper for
capturing streaming data, and semantic querying and reasoning layer, which
allows IoT-enabled communication systems to include semantically annotated
data streams produced by sensors as an additional source information. IoT-
enabled Communication Systems can perform real-time continuous queries over
data streams and consume the results of these queries to take context-aware and
user-centric decisions in real-time. As shown in Figure 1, there are three main
layers involved in our IoT-enabled Enterprise Communication System architec-
ture, namely (i) Data Acquisition and Semantic Annotation Layer, (ii) Stream
Processing and Reasoning Layer, and (iii) Application Layer. Below, we further
elaborate on each of these layers and their components.

3 http://lsm.deri.ie

http://openiot.eu
http://lsm.deri.ie
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Fig. 1. IoT-Enabled Communication System Architecture

3.2 Data Acquisition and Semantic Annotation Layer

This layer is mainly responsible for acquiring sensor data from mobile devices
and performing semantic annotation of the acquired data using our information
model. We briefly discuss each of the components and their functionalities.

Data Acquisition

Our proposed architecture can acquire data from any type of sensor, whether
it is physical sensor deployed at a fixed location, a mobile sensor or even a
virtual sensor representing virtual data streams (e.g. social media data streams).
However, considering the IoT-MMS scenario presented in Section 2.1, we focus
on data acquisition from mobile sensors only.

Mobile Application for Data Acquisition: In order to receive data from
various mobile sensors, we developed an android base application which can
continuously sense the information from a mobile device. Once, the application
is launched, a registered user can choose the sensors for which he/she wants to
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share the data. Data produced by the selected sensors is continuously sent to
the OpenIoT server.

Sensor Registration: A sensor is considered as a basic entity in the OpenIoT
platform. Each and every sensor participating within the framework should be
registered in the OpenIoT Platform before sending any observation. Sensors are
uniquely identified within the OpenIoT platform by assigning a unique id. Mobile
devices are registered as platforms (ssn:platform4), which can host multiple sen-
sors. During the sensor registration process, some meta information (e.g. type
of sensor, owner of the device, sensor observation unit etc.) is acquired. Sensors
can be either registered individually and associated to an individual user or they
can be registered in bulk if multiple sensors have the same meta information
attached to them.

Sensor Observations Transmission: Whenever a sensor is successfully reg-
istered in the OpenIoT platform and the mobile application for data acquisition
is launched using any mobile device, all the selected sensors on that particu-
lar device start transmitting their observations to the OpenIoT platform. Our
processing pipeline makes it possible to select and de-select sensors dynami-
cally without re-launching the application. We developed an X-GSN wrapper
for mobile data acquisition, which is deployed over the X-GSN Server. As shown
in Figure 1, the Http Listener is an integral part of the X-GSN Wrapper which
continuously listens for the sensor observations. As soon as any observation is
received, this layer starts processing the data accordingly using meta information
of that particular sensor from which the observation is acquired. X-GSN also
includes a Streaming Channel component which publishes semantically anno-
tated RDF streams.

Semantic Annotation

We reused and integrated different semantic models for the representation of
all acquired information in our IoT-MMS scenario, including sensor metadata,
sensor observation, meeting/event data, meeting attendees and their capabilities.
Linked Data representation allows for easy integration of semantic information
collected from heterogeneous data streams as well as integration with static
knowledge to perform querying and reasoning.

Semantic Annotation of Sensor Data Streams: We used the SSN ontology
for representing sensors, their observations, and their platform (mobile device).
The OpenIoT platform carries out annotation of the virtualised data streams
that have been provided by the X-GSN data wrappers. We used an information
model to explicitly define semantics of sensory data such as sensor types, mod-
els, methods of operation and common measurement definitions. As a result,
sensor capabilities can be defined in accordance with existing conditions and be
integrated as Linked Data. This helps bridging the gap between real-time infor-
mation generated from various independent data sources and a huge amount of

4 http://purl.oclc.org/NET/ssnx/ssn$#$Platform

http://purl.oclc.org/NET/ssnx/ssn$#$Platform


248 M.I. Ali et al.

ssn:Sensor

ssn:Platform

ddo:Device

CiscoIoT:Agent

nco:Contact

pimo:Person

opo:OnlinePrese
nce

nco:EmailAdress

ssn:onPlatform

opo:declares

nco:hasEmailAddress

ddo:owns

foaf: http://xmlns.com/foaf/
opo:http://www.onlinepresence.net/opo/
ssn: http://www.w3.org/2005/Incubator/ssn/ssnx/ssn
ddo: http://www.semanticdesktop.org/ontologies/2011/10/05/ddo/
nco: http://www.semanticdesktop.org/ontologies/2007/03/22/nco/
pimo: http://www.semanticdesktop.org/ontologies/2007/11/01/pimo/
CiscoIoT: http://www.insight-centre.org/CiscoIoT

CiscoIoT:hasContact

Foaf:Agent

CiscoIoT:Device

CiscoIoT:Capabilities

CiscoIoT:hasCapability

Fig. 2. Information Model - Device and Contact

interconnected information already available over the Web. For example, sen-
sors and their data can be linked to geographic data (e.g. correlated natural
phenomena), user-generated data (e.g. Meeting Data), and some implicit infor-
mation (e.g. user profiles, calendar) through our semantic driven approach.

Semantic Annotation of Application Users and Mobile Devices: SSN is
a de-facto standard for semantic annotation of sensor data streams. However, it
still lacks the information to associate data generated from the sensors with any
particular owner or user of that particular sensor. Keeping the usecase scenario
of the IoT-MMS in mind, we represent the mobile client user as an owner of
sensors embedded in the particular mobile device the user has used to log-in to
the IoT-MMS mobile client. We used the NEPOMUK Contact Ontology (nco) [7]
to represent a user and his/her contact information, while we used Digital.Me
Device Ontology (ddo) to associate a device with any particular user [15]. As
described earlier, multiple sensors embedded within a single mobile device can be
easily represented using ssn:platform concept. Figure 2, depicts the information
model for integration/linkage of sensor data with the contact information of the
user as well as the device hosting that particular sensor. Each device can have
multiple capabilities (e.g. noise, light, proximity) depending on the available
sensors embedded within the device.
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Fig. 3. Information Model - Meeting Management

Semantic Annotation of Meeting Data: We used the NEPOMUK5 and
related semantic desktop ontologies6 for semantic representation of meetings,
their description, organiser, list of attendees, location, starting time and dura-
tion [14]. NEPOMUK Calendar Ontology (ncal) is used for semantic annotation
of the meetings created by any user of the IoT-MMS. Figure 3 gives an overview
of the information model for the semantic annotation of meeting data.

3.3 Stream Processing and Reasoning Layer

One of the most important factors for IoT-enabled applications is their ability to
detect events within minimal time delay. The Stream Query Processing compo-
nent -shown in Figure 1- enables to continuously query sensor data streams and
detect events in realtime, while the Stream Reasoning component contains appli-
cation logic to make smart decisions customised to the particular requirements
and context of the user.

Stream Query Processing: We integrated the CQELS (Continuous Query
Evaluation over Linked Streams) query engine for the execution of continuous
queries over semantically annotated data streams of mobile sensors [8]. CQELS
is a state of the art stream query processing engine for RDF data streams, which
allows to register queries over sensor data streams. Once a query is registered,
CQELS continuously monitors sensor data streams and produces a stream of

5 http://nepomuk.semanticdesktop.org
6 http://www.dime-project.eu

http://nepomuk.semanticdesktop.org
http://www.dime-project.eu
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results matching the query patterns. Listing 1, shows a CQELS query to monitor
the noise level of a certain user of the IoT-MMS.

Stream Reasoning: This components consumes the stream generated as a
result of the CQELS queries and facilitates smart decisions by associating pat-
terns of events to actions. This is modelled using event-condition-action (ECA)
rules in AnsProlog, where the events are triggers for actions to be executed. For
example, results of the CQELS query in Listing 1 can be used by the stream
reasoning component to trigger a rule that, based on the noise level, mutes a
single or multiple users whenever noise level surpasses the specified threshold,
and different thresholds can be dynamically selected based on indoor or outdoor
user location. Similarly, rules can be used to suggest changes to the agenda when
the associated attendee is late or temporarily disconnected, or to warn attendees
on certain privacy threats when they are in a public place like an airport lounge
or a train.

p r e f i x rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>

p r e f i x ssn : <http :// pur l . o c l c . org /NET/ ssnx/ ssn#>

p r e f i x lsm : <http :// lsm . de r i . i e /ont/ lsm . owl#>

s e l e c t ? noiseValue
WHERE {
STREAM <http :// lsm . de r i . i e / r e source /1409752298064700000> [RANGE 5s ]
{
? ob 5 rd f : type ssn : Observation .
? va lue 5 ssn : observedProperty <http :// lsm . de r i . i e / r e source /1409752298163783000>.
? ob 5 ssn : f e a t u r eO f I n t e r e s t ? f o i .
? va lue 5 lsm : isObservedPropertyOf ? ob 5 .
? va lue 5 lsm : value ? noiseValue .}
}

Listing 1. A Sample CQELS Query to Monitor Noise Level

3.4 Application Layer

This layer represents the class of enterprise applications that can benefit from
IoT intelligence which we showcase using our IoT-enabled Communication Sys-
tem based on Apache OpenMeetings. We extended the OpenMeetings server to
generate semantically annotated data and to communicate with the reasoning
component of our framework by continuously observing the status of relevant
sensors generated by the stream processing layer and take appropriate actions
at the application layer.

In what follows, we describe the process flow of our IoT-enabled OpenMeet-
ings extension and illustrate the concepts and implementation of our online
Meeting Management solution.

OpenMeetings (OM) is an open source software used for web conferencing,
collaborative white board drawing, document editing etc. It uses OpenLaszlo
RIA framework for client side generation and Red5 streaming server for remoting
and streaming. In a physical conference room it can use Real-Time Messaging
Protocol (RTMP) for high performance transmission of video, audio and data
between Flash and the server. RTMP is a TCP based protocol which keeps the
persistence connection and allows low latency communication.
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Fig. 4. Snapshots of IoT-enabled OpenMeetings Client

Fig. 5. Process Flow of IoT-enabled OpenMeetings System

Meeting Management in online communication and collaboration systems
like OpenMeetings is enhanced with IoT input using our framework. In order
to do that, the status of sensors registered on the IoT platform is monitored
by the Stream Reasoning component, which identifies their status and deter-
mines appropriate actions based on rules. The sensors we considered include
noise, proximity, light and location, while the actions are related to changing
the status of a set of capabilities. Capabilities illustrate real-time availability of
the participants to perform certain actions including talking, listening, reading
a display or typing, and they are represented in the application control panel
as a new set of IoT-related icons. Based on thresholds on the value of readings
from specific IoT sources, the status of these icons is automatically updated
from green to red or vice versa, indicating whether a participant can perform
the corresponding activity or not. This provides the meeting host with updated
information on the capability of the attendees, and can further be used to act
on specific actuators (e.g. muting a microphone). For example, the ability to
read the screen is not active if a user is connected via phone and answers a
phone call. Figure 4(A) shows a client with all capabilities active, while Figure
4(B) shows the configuration for a mobile user surrounded by a lot of noise and
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talking on the phone. Location can also be used to trigger privacy related rules
(e.g. prompt a warning, if a user is in a call with a customer in public spaces
like airport lounges).

The IoT-enabled OpenMeetings Process Flow is illustrated in Figure 5.
When a remote client (RC) connects to an online conference in OpenMeetings,
the server creates a Real Time Messaging Protocol (RTMP) connection and it
registers as a web-socket client endpoint. Semantic information related to the
client and the IoT sources is retrieved, and semantic queries are automatically
generated to monitor updates of sensory input from that client. The server also
subscribes to these queries, and when sensory updates are detected, the Stream
Reasoning component processes them by consuming events as they are produced
and applies the rules to determine which action should be executed in the client
application, returning results as a JSON object to the corresponding web socket
clients. Based on these results, the web socket client calls a remote method of
its remote client and changes the status of the relevant IoT icons accordingly,
prompting a warning message if required.

4 Evaluation

We evaluated our proposed architecture mainly by measuring performance and
scalability of OpenIoT and query processing within our framework. We believe
this is key for the applicability of our approach, since it demonstrates that seman-
tic technologies embedded in OpenIoT can be used in this practical system
without hindering feasibility and user experience, and enabling enhanced IoT-
intelligence capabilities and business logic to be deployed by leveraging semantic
representations. In the current paper we focus on the system and the software
tools. Next steps would aim at a full in-use application in an industry setting. As
a result, we aim at a realistic set-up and study that will provide more in-depth
evaluation of usability and user experience.

Performance and scalability are two critical aspects for applications which
are designed to adapt and react to changes in near real-time. In this section, we
present the results of our feasibility tests conducted to evaluate the performance
and scalability of our proposed solution. With this evaluation we also aim at
demonstrating how semantic technologies in IoT can be applied to real scenarios
and create a new market for IoT-enabled solutions like in the collaboration
and communication systems space, highlight what are the main drawbacks and
limitations of state-of-the-art technologies such as X-GSN and OpenIoT in this
setting, and provide some suggestions on what key aspects should be tackled by
the research community to make the technology deployable on a larger scale.

Experimental Setup (Testbed). We deployed our OpenIoT Server over a
machine running Debian GNU/Linux 6.0.10, with 8-cores of 2.13 GHz processor
and 64 GB RAM. Apache OpenMeetings server is installed over a machine with
Ubuntu 12.04.5 LTS, 1 core of 2.30GHz and 1 GB RAM, while Android App for
sensor data transmission was installed over a mobile device running on Android
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Fig. 6. Different Points for Processing Time Measurements

OS v4.3 (Jelly Bean), with Dual-core 1.5 GHz Krait and 1GB RAM, supporting
Android SDK version 8 to the SDK version 21.

Performance. In order to evaluate the performance of our proposed solution,
we observed the processing time required by various components of our infras-
tructure with varying size of the sensory stream. We identified various time
points of observation to examine the average time delay for each time point of
measurement. Figure 6, illustrates four time points of measurement, where:

– t1 is the start time when data generated by a sensor is sent.
– t2 is the time when X-GSN receives the data, hence we refer to TT = t2− t1

as to the the time required by the network to send the data from the sensor
to the server (transmission time).

– t3 indicates the time when the raw data has been processed and stream
elements have been created with time stamp allocation to each sensor obser-
vation, hence SE = t3 − t2 is the time needed to create a semantically
annotated stream element.

– t4 is the time when semantically annotated stream elements are are suc-
cessfully published to LSM, hence DP = t4 − t3 is the time required for
publishing the semantically annotated triples into LSM.

Figure 7 depicts the average processing time required to perform the three
main steps of the OpenIoT data processing pipeline, namely, (i) Transmission
Time (TT), (ii) Stream Element Creation Time (SE), and (iii) Data Publishing
Time (DP). We specified an average delay of 0.5 seconds before sending each
sensor observation to avoid overloading the system by concurrent requests (the
impact of concurrent requests are investigated in the scalability analysis). All
execution times shown in Figure 7 are the average of 5 executions. It is evident
from the results that there is no significant delay in the Stream Element Creation
and Data Publishing times, despite the increase in number of sensors from 10 to
10000. Similarly, it is no surprise to see the increase in the Transmission Time
corresponding to an increase in the network traffic.
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Fig. 7. Average Processing Time with Varying Number of Sensors

Scalability. We conducted our scalability test of the OpenIoT framework by
sending concurrent requests with increasing number of users and observed the
throughput (ability to deal with the concurrent users/requests per second) for
each of the three phases of the OpenIoT data processing pipeline, namely (i)
Data Acquisition, i.e. the ability of OpenIoT to receive data from sensors, (ii)
Stream Element Creation, i.e. the ability of OpenIoT to process raw data and
assign stream time stamps to each observation, and (iii) Stream Data Publica-
tion, i.e. the ability of OpenIoT to semantically annotate and publish/store the
semantically annotated data within the LSM framework.

We used Apache JMeter 7 for conducting the scalability tests, which is
a well known tool to perform stress tests over distributed web applications.
We observed the throughput of OpenIoT with increasing number of concurrent
requests (10,100,1000,5000 and 10000) sent by Apache JMeter with a ramp-up
time of (5,50,500,2500 and 5000) accordingly. We allowed the execution time of
10 minutes after the completion of ramp-up time. As shown by our results in
Figure 8, the throughput for the Data Acquisition phase remains higher than
200 requests/sec when the input size is 100 concurrent sensor requests or below,
and it is reduced to around 76 requests/sec with concurrent requests sent from
10000 sensors. Similar throughput was achieved for Stream Elements Creation
phase. However, the throughput of the Stream Data Publication phase, which
is the ability of OpenIoT to publish the semantically annotated sensor data
streams either to a streaming channel or storing within a data store, seems to be
a bottleneck. Increase in the throughput of the Stream Data Publication phase
from 1000 sensor inputs onwards, as shown in Figure 8, is a false positive. In
fact, a deeper investigation into the results of Apach JMeter logs revealed that

7 http://jmeter.apache.org/

http://jmeter.apache.org/ 
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Fig. 8. Throughput of the Various Components of OpenIoT

this higher throughput was achieved because of significant increase in error rate
caused by the fact that the LSM server starts refusing connection requests when
the number of concurrent users increases beyond 1000. Further investigation is
required in this respect to perform experiments where the noise generated by
refused connections is filtered out.

5 Discussion and Future Deployment

In this paper, we showcase the applicability of semantic technologies in the IoT
space for enterprise communication on the move. We focused on the advantages
and feasibility of using the OpenIoT framework (extended with continuous query
processing and IoT intelligence) in the Apache OpenMeetings collaboration and
communication systems. We characterised requirements that can produce scal-
able solutions and issues to be investigated more carefully.

As discussed in our introduction and scenario description, semantic-based
solutions for IoT in this space can facilitate the deployment of interoperable and
flexible IoT-enabled enterprise applications. The ability to semantically integrate
and query static and dynamic data makes it easier and more cost-effective to add
new external sources and design the business logic (IoT-intelligence) promoting
a new market of innovative services that provide significant advantages over
ad-hoc IoT deployment. Semantics also helps integrating semantic knowledge
about a user independently of the applications producing it (e.g. mobile app for
producing sensory input, desktop client for online meeting services, calendar for
meeting schedule, etc.) as long as there is a semantic information model that
relates the different pieces of knowledge.
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Performance. Results are very positive regarding the use of semantics since there
is very little and linear impact of semantic-related processing in our IoT-enabled
OpenMeetings. The real bottleneck seems to be network traffic, which suggests
increasing bandwidth or clever management of queues in order to improve trans-
mission delays.

Scalability. Test results suggests that the actual acquisition and generation of
semantic streams can manage up to 200 readings per second if the total concur-
rent requests by users is not much greater than 100. This could be reasonable
in a medium enterprise by constraining the number of concurrent meetings (or
participants) that can be scheduled on the OpenMeetings server. If we want the
processing pipeline to go as far as the IoT-intelligence goes, we can deal with a
much lower throughput of a few (concurrent) sensory input per second, due to
the time required to publish the acquired annotated sensor data to the stream
processing and reasoning layer.

The X-GSN to LSM communication is performed per-observation by default,
this is quite slow and can be very costly when there are a lot of concurrent X-GSN
threads (e.g. concurrent sensory input) to be handled. It is worth mentioning
that servlet’s threads on the server side have been managed without using any
optimisation queue, therefore there is easy margin for improvement. Hence, in
order to reduce the impact of the bottleneck to publish annotated sensor streams
to an application channel via LSM, a possible solution is to either use a cluster
version of JBoss hosting X-GSN server, or to configure a queue in the default
implementation of X-GSN that makes it possible to buffer the observations.

Deployment Plan. While acting on the application side is entirely dependent
on the type of application, acting on the X-GSN implementation is related to
improving current semantic solutions and we have already triggerred the discus-
sion to list it as a potential improvement within the OpenIoT developers commu-
nity. Regarding feasibility for continuous query evaluation and reasoning, we are
currently evaluating an initial testbed by mocking up 25 simultaneous meetings
using our IoT-MMS. Each meeting consists of 10 attendees including organiser,
while 4 type of sensor observations (noise level, proximity, location and light)
were monitored for all mobile users. Initial results show that our IoT-MMS is
capable of generating simultaneous queries over the proposed test without any
substantial performance issues, with similar results as the ones published for the
specific stream processing engine evaluation [13]. Following this simulation, we
will be setting up a deployment for in-use evaluation of our IoT-MMS system
within our partner industry in the next few months, following integration of our
solution in a proprietary online collaboration system. This will make it possi-
ble to evaluate usability and performances of specific business logic related to
online meeting management events and action triggers, and conduct a proper
in-use evaluation not only with respect to scalability and performance but also
usability and impact.
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