CityBench: A Configurable Benchmark
to Evaluate RSP Engines Using Smart City
Datasets

Muhammad Intizar Ali®*), Feng Gao, and Alessandra Mileo

Insight Centre for Data Analytics, National University of Ireland, Galway, Ireland
{ali.intizar,feng.gao,alessandra.mileo}@insight-centre.org

Abstract. With the growing popularity of Internet of Things (IoT)
and IoT-enabled smart city applications, RDF stream processing (RSP)
is gaining increasing attention in the Semantic Web community. As a
result, several RSP engines have emerged, which are capable of process-
ing semantically annotated data streams on the fly. Performance, cor-
rectness and technical soundness of few existing RSP engines have been
evaluated in controlled settings using existing benchmarks like LSBench
and SRBench. However, these benchmarks focus merely on features of the
RSP query languages and engines, and do not consider dynamic appli-
cation requirements and data-dependent properties such as changes in
streaming rate during query execution or changes in application require-
ments over a period of time. This hinders wide adoption of RSP engines
for real-time applications where data properties and application require-
ments play a key role and need to be characterised in their dynamic
setting, such as in the smart city domain.

In this paper, we present CityBench, a comprehensive benchmarking
suite to evaluate RSP engines within smart city applications and with
smart city data. CityBench includes real-time IoT data streams gener-
ated from various sensors deployed within the city of Aarhus, Denmark.
We provide a configurable testing infrastructure and a set of continu-
ous queries covering a variety of data- and application- dependent char-
acteristics and performance metrics, to be executed over RSP engines
using CityBench datasets. We evaluate two state of the art RSP engines
using our testbed and discuss our experimental results. This work can
be used as a baseline to identify capabilities and limitations of existing
RSP engines for smart city applications.

1 Introduction

Recent advances in Semantic Technologies for IoT have created great opportuni-
ties for rendering IoT-enabled services in smart cities. As a result, an increasing
number of cities have started to invest in data-driven infrastructures and services

This research has been partially supported by Science Foundation Ireland (SFI)
under grant No. SFI/12/RC/2289 and EU FP7 CityPulse Project under grant
No0.603095. http://www.ict-citypulse.eu

© Springer International Publishing Switzerland 2015

M. Arenas et al. (Eds.): ISWC 2015, Part II, LNCS 9367, pp. 374-389, 2015.
DOI: 10.1007/978-3-319-25010-6_25

http://www.ict-citypulse.eu

CityBench: A Configurable Benchmark to Evaluate RSP 375

for citizens, mostly focusing on creating and publishing a rich pool of dynamic
datasets that can be used to create new services [8,17]. Leveraging this data
and semantic technologies, tools and solutions have been developed to abstract,
integrate and process this distributed and heterogenous data sources.

One of the major aspects that captured the attention of the scientific commu-
nity and standardisation bodies is the design of query languages, processes and
tools to process RDF streams dynamically and in a scalable way!. Despite the
success of RDF Stream Processing (RSP) solutions in this direction[1,2,4,12,14],
available benchmarks for their evaluation are either synthetic or mostly based on
static data dumps of considerable size that cannot be characterised and broken
down[13,18]. Few of the existing RSP engines have been evaluated using offline
benchmarks such as SRBench and LSBench [6,13,18], but none of them has been
tested based on features that are significant in real-time scenarios. There is a
need for a systematic evaluation in a dynamic setting, where the environment in
which data is being produced and the requirements of applications using it are
dynamically changing, thus affecting key evaluation metrics.

In this paper, we distinguish different characteristics of benchmarking for
RSP engines with a closer look to real-time requirements of smart city appli-
cations. We use real-time datasets from the city of Aarhus and present their
schema, time-dependent features and interdependencies. We provide a testing
environment together with a set of queries classified into different categories for
evaluation of selected application scenarios. CityBench will prove as a tool for
evaluating RSP engines within smart city applications based on their dynamic
features (including performance), and comparing RSP engines in terms of their
ability to fulfil application-specific requirements.

Our main contributions in this paper can be summarised as follows:

— we identify a set of dynamic requirements of smart applications which must
be met by RSP engines;

— we design a benchmark based on such requirements, using realtime datasets
gathered from sensors deployed within the City;

— we provide a configurable benchmarking infrastructure, which allows to set
up evaluation tests enabling fine tuning of various configuration parameters;

— we provide a set of queries covering broader features of the RSP Query
Languages in selected scenarios;

— finally, we evaluate state of the art RSP engines on our benchmark with
different configurations, and we perform an empirical analysis of the exper-
imental results.

Structure of the Paper: Section 2 defines challenges and dynamic require-
ments for benchmarking of RSP engines in Smart City applications. We present
the CityBench Benchmarking Suite in Section 3 and its evaluation in Section 4.
Section 5 discusses state of the art, we conclude with final remarks in Section 6.

! https://www.w3.org/community /rsp/ (La. Apr. 2015).

https://www.w3.org/community/rsp/

376 M.I. Ali et al.

2 Smart City Applications: Challenges and Requirements
for RSP

Challenges and requirements of smart city applications are inherently related to
their dynamic nature and changing environment [9]. In this section, we identify
various challenges (Cn) and respective requirements (Rn) which can potentially
effect performance, scalability and correctness of smart city applications designed
to query and integrate dynamic smart city datasets via RSP.

C1l: Data Distribution. City data streams are instinctively distributed.
Increase in the number of streams to be processed within a single query can
have adverse effect over the performance of the engine. R1: RSP engines should
be capable of addressing the challenge of high distribution and their performance
should not be effected with higher degree of distribution.

C2: Unpredictable Data Arrival Rate. Data streams originated from sensor
observation are mostly generated at a fixed rate. For example, a temperature
sensor can be easily configured to produce each observation after a certain time
period. Event data streams instead produce data at a variable rate and the
observation rate for events is dependent upon the detection of a query pattern
representing the event. R2: Applications consuming aggregated data streams at
variable rates (e.g. events) should be able to cope with sudden increases in the
streaming rate. Such increase or stream burst can potentially compromise the
performance of RSP engines.

C3: Number of Concurrent Queries. Similar to the stream bursts, the num-
ber of users of an IoT-enabled smart city applications can suddenly increase.
For example, a sudden increase of concurrent users of an application designed
to monitor traffic conditions can be observed during traffic jams or accidents.
R3: RSP engines should be stress tested by increasing the number of concurrent
queries in their performance evaluation.

C4: Integration with Background Data. Some of the existing RSP engines
have already demonstrated their capability to integrate background data. Exe-
cuting queries over a larger size of such static background data may strongly
affect the performance of RSP engine, and this aspect has not been thoroughly
considered in current benchmarks. R4: RSP engines should be capable to deal
with large amount of background data by applying proper data management
techniques.

C5: Handling Quasi-Static Background Data. Current RSP implementa-
tions load background data before query execution over static and dynamic data
and cache it for longer periods. However, some of the background data can be
quasi-static (e.g. changing with irregular periodicity) such as the number of fol-
lower of a twitter user, or the price of utilities. Materialising this data at query
time is not efficient, but caching might result in out-of-date results. R5: RSP
engines should be able to efficiently update the quasi-static background data
during query execution using effective strategies to determine what data is more
likely to be out-of-date.

CityBench: A Configurable Benchmark to Evaluate RSP 377

C6: On-Demand Discovery of Data Streams. In smart city environments,
many applications do not have prior knowledge of the available streaming data
sources that can potentially be relevant for a specific task. Therefore, discovering
relevant streaming sources on the fly is a challenge. R6: RSP query languages
should provide support for stream discovery and federation, possibly taking into
account quality constraints so that the best available source is considered.

C7: Adaptation in Stream Processing. Smart city applications are oper-
ated over dynamic and distributed infrastructure, without any central control.
This makes it difficult to provide efficient strategies for adapting to changing
environments that are typical of smart city applications. For example availabil-
ity of sensors, communication issues, changes in the environment or user needs
can demand for the use of alternative data streams. R7: RSP solutions should
be able to switch between multiple semantically equivalent data streams during
query execution.

3 CityBench Benchmarking Suite

In this section, we present CityBench Benchmarking Suite consisting of, (i)
Benchmark Datasets, designed over realtime smart city datasets, (ii) Config-
urable Testbed Infrastructure, containing a set of tools for dataset preparation
and testbed set-up to benchmark RSP engines, and (iii) Queries, a set of con-
tinuous queries covering the query features and challenges discussed in Section
2. In what follows, we discuss each of these three components.

3.1 Benchmark Datasets

Leveraging the outcomes of the CityPulse project?, we use the dataset collected
from the city of Aarhus, Denmark®*. In this section, we briefly describe each of
the dataset in the benchmark and elaborate on the semantic representation of
the datasets.

Vehicle Traffic Dataset. This dataset contains traffic data. The City admin-
istration has deployed 449 pairs of sensors over the major roads in the city.
Traffic data is collected by observing the vehicle count between two points over
a duration of time. Observations are currently generated every five minutes. A
meta-data dataset is also provided which contains information about location of
each traffic sensor, distance between one pair of sensors and type of road where
the sensors have been deployed. Each pair of traffic sensors reports the average
vehicle speed, vehicle count, estimated travel time and congestion level between
the two points set over a segment of road.

2 http://www.ict-citypulse.eu/

3 We acknowledge the CityPulse consortium team for the provision of Datasets http: //
iot.ee.surrey.ac.uk:8080/datasets.html (L.a. Apr. 2015)

4 CityBench datasets are made publicly available by EU Project CityPulse, for use of
any part of these datasets, the source must be properly acknowledged. The accuracy
or reliability of the data is not guaranteed or warranted in any way.

http://www.ict-citypulse.eu/
http://iot.ee.surrey.ac.uk:8080/datasets.html
http://iot.ee.surrey.ac.uk:8080/datasets.html

378 M.I. Ali et al.

Parking Dataset. Parking lots in Aarhus are equipped with sensors and capa-
ble of producing live data streams indicating number of vacant places. The Park-
ing Dataset consists of observations generated by 8 public parking lots around
the city.

Weather Dataset. Currently, there is only a single weather sensor available in
the city to collect live sensor observations about the weather condition. Weather
sensor data provides observations related to dew point (°C), humidity (%), air
pressure (mBar), temperature (°C), wind direction (°), and wind speed (kph).

Pollution Dataset. Pollution is directly related to the traffic level, however due
to unavailability of the pollution sensors, a synthesised pollution data for the city
of Aarhus is made available to complement the traffic dataset. Observation points
for traffic sensors (446) are replicated to create mock-up sensors for pollution at
the exact same location as traffic sensors. An observation for air quality index
is generated every 5 minutes using a pre-selected pattern. Details regarding the
procedure followed to synthesised pollution data are accessible at: http://iot.ee.
surrey.ac.uk:8080/datasets/pollution /readme.txt.

Cultural Event Dataset. This dataset is quasi-static and contains cultural
events provided by the municipality of Aarhus. The dataset is periodically
updated to reflect the latest information related to planned cultural events,.
Updates are available as data stream (a notification service notify of any updates
in the dataset). However, due to the low frequency of updates, we consider this
dataset as background knowledge and use it to demonstrate integration of the
static data with the data streams.

Library Events Data. This dataset contains a collection of past and future
library events hosted by libraries in the city. A total collection of 1548 events
is described in this dataset. Similarly to the Cultural Events Dataset, updates
in the Library Events Dataset are also not frequent, therefore the dataset is
considered quasi-static.

User Location Stream. Most of the IoT-enabled smart city application are
designed to be location-aware, therefore they strongly rely over updates on the
location of mobile users. We synthesised a User Location Stream to mock-up a
real usecase scenario of users roaming around. This data stream contains periodic
observations with geo-location coordinates of a fictional mobile user.

Users of CityBench can download the existing as well as any future datasets
from the CityBench website®. All of the above mentioned datasets are seman-
tically annotated and interlinked using the CityPulse information model®.

5 https://github.com/CityBench/Benchmark
5 http://iot.ee.surrey.ac.uk:8080/info.html

http://iot.ee.surrey.ac.uk:8080/datasets/pollution/readme.txt
http://iot.ee.surrey.ac.uk:8080/datasets/pollution/readme.txt
https://github.com/CityBench/Benchmark
http://iot.ee.surrey.ac.uk:8080/info.html

CityBench: A Configurable Benchmark to Evaluate RSP 379

ssn:FeatureOfint
erest

sao:Observation

ssn:Observation
Value

sao:hasValue —»

ssn:observedProperty

/
ssn:observedBy
< cesthasPhysical
EventSource

@prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#>
@prefix ces: <http://www.insight-centre.org/ces#>
@prefix owls: <http://www.damlorg/services/owl-s/1.2/Service.owl#>

ssn:Property

ces:PrimitiveS
ervice

ct:AvgSpeed
ct:VehicleCount
ct:EstimatedTime
ct:CongestionLevel

- - Sub Class @prefix sao: <http://purl.oclc.org/NET/sao/>
@prefix ct: <http://www.insight-centre.org/citytraffic#>
—_— Property @prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>

Fig. 1. Ontological Representation of Traffic Sensor Observation

[CityBench Queries J
0 ,”””"””"””"’; ””””””””””” \)
! Configurable Testbed Infrastructure (CTI) !
— i @
SmartCity | —»1 | § Query Performance %—» el
Data Streams . i] Configuration Evaluator — 8
= Modul ! =
— (2o == — "5
—— 1|53 B
! 3 - > i =
— |3z 12
e RSP Engine Benchmark ! t
Static | % Results | g
Datastore = i Lz
——— 1 i
N e e e e e e e e 7 -/

Fig. 2. An Overview of the Configurable Testbed Infrastructure

The SSN Ontology [5] is a de-facto standard for sensor observation represen-
tation, and it is also a central part of the CityPulse Information Model. Figure 1
shows a sample representation of traffic sensor observations semantically anno-
tated using the SSN ontology.

3.2 Configurable Testbed Infrastructure

As discussed in Section 2, performance of RSP engines does not depend only
on language features but also on dynamic metrics related to the data and
to the application. To evaluate the performance of RSP engines according to
the dynamic requirements of smart city applications, we provide a Config-
urable Testbed Infrastructure (CTI) containing a set of Application Programming
Interface (API’s) to set up the testbed environment 7. CTI allows its users to

" https://github.com/CityBench/Benchmark /tree/master

https://github.com/CityBench/Benchmark/tree/master

380 M.I. Ali et al.

configure a variety of metrics for the evaluation of RSP engine. Figure 2 provides
an overview of the CTI, there are three main modules, (i) Dataset Configuration
Module: allows configuration of stream related metrics, (ii) Query Configuration
Module: allows configuration of query related metrics, and (iii) Performance
Evaluator: is responsible for recording and storing the measurements of the per-
formance metrics. We discuss configuration metrics in what follows.

Changes in Input Streaming Rate: The throughput for data stream gen-
eration can be configured in CityBench. For example, a rate r € [1,inf] can be
configured to set up the streaming rate to the real interval between observations
(r = 1 means replay at original rate), or a frequency f can be used to set a
different streaming rate.

PlayBack Time: CityBench also allows to playback data from any given time
period to replay and mock-up the exact situation during that period.

Variable Background Data Size: CityBench allows to specify which dataset
to use as background knowledge, in order to test the performance of RSP engines
with different static datasets. We also provide duplicated versions (with varying
size) of two static datasets, Cultural Event Dataset and Library Event Dataset.
Any version of the given background datasets can be loaded to test RSP engines
with different size of background data.

Number of Concurrent Queries: CityBench provides the ability to specify
any number of queries to be deployed for testing purposes. For example, any
number of queries can be selected to be executed concurrently any number of
times. Such situation will simulate a situation where a number of simultaneous
users are executing the same query using any application.

Increase in the Number of Sensor Streams within a Single Query: In
order to test the capability of the RSP engine to deal with data distribution,
CityBench makes it possible to configure various size of streams involved within
a single query. We achieved this by increasing the number of streams to be
observed as relevant for the query. Query similar to traffic condition monitoring
over a given path are best candidates for distribution test and number of streams
involved within a query can be increased by simply increasing the length of the
observed path.

Selection of RSP Query Engines: CityBench allows to seamlessly use dif-
ferent query engines as part of the testing environment. Currently, we support
CQELS and C-SPARQL. However, we encourage users to extend the list of RSP
engines by embedding the engine within CTT.

CityBench: A Configurable Benchmark to Evaluate RSP 381

3.3 Smart City Applications Queries over CityBench Datasets

In this section, we present a set of 13 queries covering most of the features and
challenges discussed in Section 2. Our main goal while designing the queries is
to highlight and evaluate the characteristics and features of the RSP engines
which are most relevant to the smart city applications requirements. Benchmark
queries designed to cover query specific features of the RSP engines can be
found in the state of the art [6,13,18]. In what follows we identify three smart
city applications from the CityPulse scenarios® and generate queries which are
relevant for applications deployed around these scenarios.

Multi-modal Context-Aware Travel Planner: This application relies on
modules that can provide one or more alternative paths for users to reach a
particular location. On top of these modules, the application aims at dynamically
optimising users’ path based on their preferences on route type, health and
travel cost. In addition to that, the application continuously monitors factors
and events that can impact this optimisation (including traffic, weather, parking
availability and so on) to promptly adapt to provide the best up-to-date option.
Relevant queries for this application scenario are listed below.

Q1: What is the traffic congestion level on each road of my planned journey?

This query monitors the traffic congestion from all traffic sensors located on the
roads which are part of the planned journey.

Q2: What is the traffic congestion level and weather conditions on each road
of my planned journey?

@2 is similar to ()1 with an additional type of input streams containing weather
observations for each road at the planned journey of the user.

Q3: What is the average congestion level and estimated travel time to my
destination?

This query includes the use of aggregate functions and evaluates the average
congestion level on all the roads of the planned journey to calculate the estimated
travel time.

Q4: Which cultural event happenig now is closest to my current location?

@4 consumes user location data streams and integrates it with background
knowledge on the list of cultural events to find out the closest cultural event
happening near his current location.

Q5: What is traffic congestion level on the road where a given cultural event X
18 happening? Notification for congestion level should be generated every minute
starting from 10 minutes before the event X is planned to end, till 10 minutes
after.

@5 is a conditional query which should be deployed at the occurrence of an
event and have predefined execution duration.

8 http://www.ict-citypulse.eu/scenarios/

http://www.ict-citypulse.eu/scenarios/

382 M.I. Ali et al.

Parking Space Finder Application: This application is designed to facilitate
car drivers in finding a parking spot combining parking data streams and pre-
dicted parking availability based on historical patterns. Additional sources such
as timed no parking zones, congested hot spots and walking time from parking
to a point of interest, the user can reduce circulation time and optimise parking
management in the city. Queries related to this application are listed below.

Q6: What are the current parking conditions within range of 1 km from my
current location?

This query represents a most common query issued by users of a parking appli-
cation to easily find a nearby parking place.

Q7: Notify me whenever a parking place near to my destination is full.

Q@7 is a combination of travel planner and parking application, where a user
wants to be notified about parking situation close to the destination.

Q8: Which parking places are available nearby library event X?

This query combines parking data streams with the static information about the
library events to locate parking spaces nearby the library.

Q9: What is the parking availability status nearby the city event with the
cheapest tickets price?

Similarly to @8, this query monitors parking availability near a city event which
has the cheapest ticket price.

Smart City Administration Console: This application facilitates city
administrators by notifying them on the occurrence of specific events of interest.
The dashboard relies on data analytics and visualisation to support early detec-
tion of any unexpected situation within the city and takes immediate actions,
but it can also be used as a city observatory for analysing trends and behaviours
as they happen. Queries related to this application are listed below.

Q10: Notify me every 10 minutes, about the most polluted area in the city.

@10 is an analytical query executed over the pollution data streams to find out
which area in the city in most polluted and how this information evolves.

Q11: Notify me whenever no observation from weather sensors have been
generated in the last 10 minutes.

This query helps to detect any faulty sensors which are not generating observa-
tions or networking issues.

Q12: Notify me whenever the congestion level on a given road goes beyond a
predefined threshold more than 8 times within the last 20 minutes.

This query helps in early detection of areas where traffic conditions are becoming
problematic.

CityBench: A Configurable Benchmark to Evaluate RSP 383

Q13: Increase the observation monitoring rate of traffic congestion if it sur-
passes a pre-specified threshold.

This query provides a more frequent status update on congestion levels in critical
conditions such as traffic jams or accidents.

CityBench provides all 13 queries ready to execute over CQELS and C-
SPARQL, which can be downloaded from CityBench website®.

4 Experimental Evaluation and Empirical Analysis

In order to showcase the feasibility of CityBench and highlight the importance
of configuration parameters, we conducted our experimental evaluation over
CQELS and C-SPARQL engines using CityBench Benchmarking Suite. We set
up a testbed with multiple configuration of CTI performance metrics'®>'t. We
evaluated the two RSP engines with respect to (i) Latency, (ii) Memory Con-
sumption, and (iii) Completeness. The experiments in this paper covers require-
ments R1 to R4 (see Section 2). However there is no existing RSP engines which
can meet R5 to R7. It is worth mentioning that the overhead caused by the
benchmark is insignificant and does not pose threats the validity of the results,
i.e., for latency it costs several milliseconds to annotate a CSV row as a RDF
graph, for memory consumption the benchmark uses up to 10 MB for track-
ing the results produced, for completeness the benchmark do not introduce any
overhead.

4.1 Latency

Latency refers to the time consumed by the RSP engine between the input arrival
and output generation. We evaluate the latency of RSP engines by increasing
the number of input streams within a query and by increasing the number of
concurrent queries executed.

Increasing the Number of Input Streams. We designed three variations of
query Q10'? to generate an immediate notification about polluted areas in the
city with three configurations for number of input data streams (2, 5 and 8).
Results shown in Figure 3 depict that the overhead for C-SPARQL was mini-
mal with increasing number of streams, however CQELS suffer from abnormal
behaviour for query with 5 input streams (secondary y-axis in Figure 3) and was
unable to process 8 input streams within a single query.

9 https://github.com/CityBench/Benchmark/

10 Experiments are reproducible using CTI over CityBench Datasets, details are avail-
able at: https://github.com/CityBench/Benchmark/

' All experiments are carried out on a Macbook Pro with a 2.53 GHz duo core cpu
and 4 GB 1067 MHz memory.

12 We selected different queries for each experiment based on their suitability for
the corresponding configuration metric. A comprehensive report containing com-
plete results for all queries is available at CityBench website: https://github.com/
CityBench/Benchmark/tree/master /result_log/samples

https://github.com/CityBench/Benchmark/
https://github.com/CityBench/Benchmark/
https://github.com/CityBench/Benchmark/tree/master/result_log/samples
https://github.com/CityBench/Benchmark/tree/master/result_log/samples

384

M.I. Ali et al.

latency (ms)

1200

1000

800

600

400

200

—#— Q10_8-csparg|

7 ,u' ‘ Q10_2-csparql |
H . e Q10_2-cqels
{ \ Q10_5-csparql
]) I
! ! ==»%--Q10_5-cqels
! '\ V i Y
P
" el N/
»{-ﬁ'-" -Y.“, =& -
'
. A e e
g B ar DL L L D

12 3 4 5 6 7 8 9 10 11 12 13 14 15
experiment time (minutes)

[6000

5000

4000

3000

Fig. 3. Latency over Increasing Numer of Data
Streams

Increasing the Number of
Concurrent Queries. We per-
formed our scalability test by
executing @1, @5 and @8 over
both engines. Queries are exe-
cuted with three different config-
uration (1, 10, and 20) for num-
ber of concurrent queries. Figure 4
and Figure 5 show the effect over
latency with increasing number of
concurrent queries for CQELS. A
closer look at the results reveals
that CQELS has a substantial
delay, when the number of con-
current queries is increased from

0 to 10 for all three queries. However, CQELS performance is not much effected
over subsequent increase from 10 to 20. As depicted in Figure 6 and Figure 7, C-
SPARQL seems to have a constant size of overhead for delay with the increasing
number of concurrent queries in contrast to CQELS.

latency (ms)

7000

6000

5000

4000

3000 |

2000 -

1000 -

0

—Q1
=i=Q1-10
Q1-20

/\x_xj/\y/\Y/\&/\ﬁ
N

12 3 4 5 6 7 8 9 10 11 12 13 14 15
experiment time (minute)

Fig. 4. Latency over Increasing Number
of Concurrent Queries (Q1 over CQELS)

4.2

Memory Consumption

latency (ms)
00

500
400
300 -
200 -

100

0

— 5
Q5-20
=< Q8-10

e Q5-10
== Q8-20
Q8

f-rk,a-’-a-a-.—nsr.‘

! /
I—=~¢
L

#

gl = U

p o N R

12 3 4 5 6 7 8 9 10 11 12 13 14 15
experiment time (minute)

Fig.5. Latency over Increasing Number
of Concurrent Queries (Q5 and Q8 over

CQELS)

We evaluated the two RSP engines by observing the usage of system memory
during the concurrent execution of an increasing number of queries and increas-
ing size of background data.

Increasing the Number of Concurrent Queries. We used query @1 and Q5
and measure memory consumption during 15 minutes execution for each query.

CityBench: A Configurable Benchmark to Evaluate RSP

latency (ms)
3500 1

3000 1
2500 -
2000 -
1500 -

1000 -

500 -

0 T T T T T T T T T T T T T T d

12 3 4 5 6 7 8 9 10 11 12 13 14 15
experiment time (minute)

Fig.6. Latency over Increasing Num-

ber of Concurrent Queries (QI1 over C-

SPARQL)

385

latency (ms)
2500

2000 - -
1500
1000

500 -

0
12 3 4 5 6 7 8 9 10 11 12 13 14 15

experiment time (minute)

Fig. 7. Latency over Increasing Number
of Concurrent Queries (Q5 and Q8 over
C-SPARQL)

memory

) (MB)
80 1 o 1 600
eeeeQ120 ™
160 1 Qs-1 v 500 { W
. " —(Q1
o &% ©(Q5-20 oy
14071 -° 400 = Q1-20
o g as
120 - o 300
o == 5-20
F
100 - " 200
Lo
w0 | -
, - T
P o Rpenpenpeny=ay——y oy
60 o

12 3 4 5 6 7 8 9 10 11 12 13 14 15
experiment time (minute)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
experiment time (minute)

Fig. 9. Memory Consumption for Increas-
ing Number of Concurrent Queries

(CQELS)

Fig. 8. Memory Consumption for Increas-
ing Number of Concurrent Queries (C-
SPARQL)

As shown in Figure 8, with an increasing number of concurrent queries, C-
SPARQL has a minimal impact on memory consumption for both queries. How-
ever, with increasing duration for query execution, there is a constant increase
in memory consumption for @5, rate of increase in memory is similar for both
single query execution and 20 concurrent queries execution. In contrast, CQELS
seems to have increasing memory consumption issue for 1, there is also a sub-
stantial increase in memory consumption for Q1 after an increase in the number
of concurrent queries from 1 to 20. As depicted in Figure 9, CQELS has bet-
ter performance regarding the stability of the engine over the time period of 15
minutes execution of @5. Also, it is noticeable that the memory consumption of
@5 increases linearly and it would eventually reach the memory limit and crash
the engine. The reason of the abnormal behaviour is perhaps the cross-product
join on the static data in Q5 creates a lot (millions) of intermediate results and
are not cleared from the cache properly in both engines.

Increasing the Size of Background Data. We analysed memory consump-
tion while increasing the size of background data. We generated three versions of

386 M.I. Ali et al.

background data required for the execution of query ()5, increasing the size from
3MB to 20MB and 30 MB. Figure 10 shows that CQELS seems to be better at
memory management with background data of increasing size.

4.3 Completeness

We evaluated the completeness of results generated by RSP engines by executing
Query @1 with variable input rate of data streams. We allow each stream to
produce x observations and count y unique observation IDs in the results, hence
we have the completeness ¢ = y/x. Note that we don’t stop the streams imme-
diately when they finished sending triples but waited for a period of time until
no new results are generated, this ensured that the stream engines have enough
time for query processing. Figure 11, shows that CQELS completeness level has
been dropped up to 50%, while C-SPARQL continue to produce results with a
completeness ratio of above 95%. The most probable cause of the completeness
drop in CQELS is the complexity and concurrency of join over multiple streams.

Completeness “cqels ~ cspargl

W e T TR . . 0
250 1 @ 20MB-csparql 30MB-cspargl 90 95<// 8 % 7 ,/ z
2NV Y V¢ O
100 - 40 v \é %/ v Z

31101
1 ¥ % Y ¥

experiment time (minutes) stream input rate (triple/s)

Fig.10. Memory Consumption for Fig.11l. Completeness of Results with
Increasing Size of Background Data (Q5) Increasing Rate of Input Stream.eps

5 Related Work

With advances in the use of semantic technologies to process linked stream data,
tools and systems for RSP started to use SPARQL benchmarking systems to test
their applications. There are 3 main prominent efforts in this area [3,11,16]. The
Berlin SPARQL Benchmark is the most widely used RDF benchmarking system
which portrays a usecase scenario of e-commerce. Lehigh university benchmark
is designed to test OWL reasoning and inferencing capabilities over a univer-
sity domain ontology. SP? benchmark uses DBLP data!®. All of these SPARQL

'3 http://dblp.uni-trier.de/

http://dblp.uni-trier.de/

CityBench: A Configurable Benchmark to Evaluate RSP 387

benchmarks are inspired by traditional approaches for benchmarking relational
database management systems.

Understanding the different requirements and evaluation parameters needed
for RDF data, new benchmarks specifically targeting the evaluation of RSP
engines have been proposed. LS Bench and SR Bench are two well known
efforts for benchmarking RSP engines. SR Benchmark is defined on weather
sensors observations collected by Kno.e.sis'. The dataset is part of the Linked
Open Data Cloud and contains weather data collected since 2002'°. All sensor
observations are semantically annotated using the SSN ontology. Beside weather
streams, SR contains two static datasets (GeoNames'® and DBPedia 7) for inte-
gration of streaming data with background knowledge. The benchmark contains
verbal description of 17 queries covering stream flow, background integration
and reasoning features. However, due to the lack of a common RDF stream
query language, some of the queries are not supported by the existing engines
and therefore cannot be executed.

LS Benchmark is a synthetically generated dataset on linked social data
streams. The dataset contains 3 social data streams, namely (i) Location (GPS
coordinates) stream of a social media user, (ii) stream of micro posts generated
or liked by the user, and (iii) a stream of notification whenever a user uploads
an image. LS Bench also provides a data generator to synthesised datasets of
varying size. LS Bench contains 12 queries, covering processing of streaming data
as well as background data integration.

Both LS and SR benchmarks focus on evaluating RSP engines to demonstrate
their query language support, process query operators and performance in a pre-
configured static testbed. Best practices to design a benchmark are discussed
in [10,15]. Real-world environment for the applications using RSP is however
dynamic. In [7], authors have demonstrated that synthesised benchmark datasets
do not portray the actual dataset requirements and therefore might produce
unreliable results. CityBench extends the existing benchmarks and takes a new
perspective on the evaluation of RSP engine which relies on the applications
requirements and dynamicity of the environment to draw a picture that is closer
to reality.

6 Concluding Remarks and Future Directions

CityBench is a benchmark for the evaluation of RSP solutions in real dynamic
settings, with real city data. This work has been motivated by the need to bench-
mark RSP systems moving away from pre-configured static testbed towards a
dynamic and configurable infrastructure (CTT). This comprehensive benchmark-
ing suite includes not only streaming and static datasets but also semantic anno-
tation tools, stream simulation capabilities, and a set of parameters that best

' http://knoesis.wright.edu

5 http://wiki.knoesis.org/index.php/LinkedSensorData
16 http://datahub.io/dataset /geonames

7 http:/ /wiki.dbpedia.org/

http://knoesis.wright.edu
http://wiki.knoesis.org/index.php/LinkedSensorData
http://datahub.io/dataset/geonames
http://wiki.dbpedia.org/

388 M.I. Ali et al.

represent the set of data- and application- dependent characteristics and perfor-
mance metrics that are typical of smart city applications.

This work will serve as a baseline for the evaluation of RSP engines in real
application scenarios, and can be extended to accommodate additional features
and datasets. Our initial evaluation of CityBench suggests the requirements
identified to characterise smart city applications using streaming data provide
a richer set of dimensions to evaluate RSP engines. The ability to tune these
dimensions offers interesting insights on how application requirements play a
key role in comparing and choosing one RSP solution over another. There are
substantial differences not only in the language features but also in the windows
operator and processing implemented within existing RSP engines, which is also
reflected in how such engines perform on CityBench under different configura-
tions.

Motivated by the need for a better approach to RSP, standardisation activ-
ities within the W3C RSP WG '8 have identified the need to converge towards
a unified model for producing, transmitting and continuously querying RDF
Streams. We believe that requirements and results presented in this paper can
help guiding the roadmap towards better RSP solutions for smart cities and
beyond. We are currently actively engaging with the RSP community towards
this goal.

References

1. Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: EP-SPARQL: a unified language
for event processing and stream reasoning. In: Proc. of the WWW 2011. ACM
(2011)

2. Barbieri, D.F., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: C-SPARQL:
SPARQL for continuous querying. In: Proc. of WWW, pp. 1061-1062. ACM (2009)

3. Bizer, C., Schultz, A.: Benchmarking the performance of storage systems that
expose SPARQL endpoints. In: World Wide Web Internet And Web Information
Systems (2008)

4. Bolles, A., Grawunder, M., Jacobi, J.: Streaming SPARQL - extending SPARQL to
process data streams. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis,
M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 448-462. Springer, Heidelberg (2008)

5. Compton, M., Barnaghi, P., Bermudez, L., Garcia-Castro, R., Corcho, O., Cox,
S., Graybeal, J., Hauswirth, M., Henson, C., Herzog, A., Huang, V., Janowicz,
K., Kelsey, W.D., Phuoc, D.L., Lefort, L., Leggieri, M., Neuhaus, H., Nikolov, A.,
Page, K., Passant, A., Sheth, A., Taylor, K.: The ssn ontology of the w3c semantic
sensor network incubator group. Web Semantics: Science, Services and Agents on
the World Wide Web 17, 25-32 (2012)

6. Dell’Aglio, D., Calbimonte, J.-P., Balduini, M., Corcho, O., Della Valle, E.: On
correctness in RDF stream processor benchmarking. In: Alani, H., Kagal, L., Fok-
oue, A., Groth, P., Biemann, C., Parreira, J.X., Aroyo, L., Noy, N., Welty, C.,
Janowicz, K. (eds.) ISWC 2013, Part II. LNCS, vol. 8219, pp. 326-342. Springer,
Heidelberg (2013)

8 https://www.w3.org/community /rsp/

https://www.w3.org/community/rsp/

10.

11.

12.

13.

14.

15.

16.

17.

18.

CityBench: A Configurable Benchmark to Evaluate RSP 389

Duan, S., Kementsietsidis, A., Srinivas, K., Udrea, O.: Apples and oranges: a com-
parison of RDF benchmarks and real RDF datasets. In: Proc. of ACM SIGMOD
2011, pp. 145-156. ACM (2011)

Tonjes, R., et al.: Real time iot stream processing and large-scale data analytics
for smart city applications, 2014. In: Poster presented at European Conference on
Networks and Communications

Gao, F., Ali, M.I., Mileo, A.: Semantic discovery and integration of urban data
streams. In: Proc. of S4SC @ ISWC 2014, pp. 15-30 (2014)

Gray, J.: Benchmark handbook: for database and transaction processing systems.
Morgan Kaufmann Publishers Inc. (1992)

Guo, Y., Pan, Z., Heflin, J.: Lubm: A benchmark for owl knowledge base systems.
Web Semantics: Science, Services and Agents on the World Wide Web 3(2), 158—
182 (2005)

Komazec, S., Cerri, D., Fensel, D.: Sparkwave: continuous schema-enhanced pat-
tern matching over RDF data streams. In: Proc. of DEBS 2012, pp. 5868 (2012)
Le-Phuoc, D., Dao-Tran, M., Pham, M.-D., Boncz, P., Eiter, T., Fink, M.: Linked
stream data processing engines: facts and figures. In: Cudré-Mauroux, P., Heflin,
J., Sirin, E., Tudorache, T., Euzenat, J., Hauswirth, M., Parreira, J.X., Hendler,
J., Schreiber, G., Bernstein, A., Blomqvist, E. (eds.) ISWC 2012, Part II. LNCS,
vol. 7650, pp. 300-312. Springer, Heidelberg (2012)

Le-Phuoc, D., Dao-Tran, M., Xavier Parreira, J., Hauswirth, M.: A native and
adaptive approach for unified processing of linked streams and linked data. In:
Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N.,
Blomgqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 370-388. Springer,
Heidelberg (2011)

Scharrenbach, T., Urbani, J., Margara, A., Della Valle, E., Bernstein, A.: Seven
commandments for benchmarking semantic flow processing systems. In: Cimiano,
P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS,
vol. 7882, pp. 305-319. Springer, Heidelberg (2013)

Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: Sp*bench: a SPARQL perfor-
mance benchmark. In: IEEE 25th International Conference on Data Engineering,
ICDE 2009, pp. 222-233. IEEE (2009)

Nechifor, C.-S., Sheth, A., Mileo, A., Bischof, S., Karapantelakis, A., Barnaghi, P.:
Semantic modeling of smart city data. In: Proc. of the W3C Workshop on the Web
of Things: Enablers and Services for an Open Web of Devices, Berlin, Germany,
June 2014. W3C (2014)

Zhang, Y., Duc, P.M., Corcho, O., Calbimonte, J.-P.: SRBench: a streaming
RDF/SPARQL benchmark. In: Cudré-Mauroux, P., Heflin, J., Sirin, E., Tudo-
rache, T., Euzenat, J., Hauswirth, M., Parreira, J.X., Hendler, J., Schreiber, G.,
Bernstein, A., Blomqvist, E. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 641—
657. Springer, Heidelberg (2012)

	CityBench: A Configurable Benchmark to Evaluate RSP Engines Using Smart City Datasets
	1 Introduction
	2 Smart City Applications: Challenges and Requirements for RSP
	3 CityBench Benchmarking Suite
	3.1 Benchmark Datasets
	Vehicle Traffic Dataset.
	Parking Dataset.
	Weather Dataset.
	Pollution Dataset.
	Cultural Event Dataset.
	Library Events Data.
	User Location Stream.

	3.2 Configurable Testbed Infrastructure
	Changes in Input Streaming Rate:
	PlayBack Time:
	Variable Background Data Size:
	Number of Concurrent Queries:
	Increase in the Number of Sensor Streams within a Single Query:
	Selection of RSP Query Engines:

	3.3 Smart City Applications Queries over CityBench Datasets
	Multi-modal Context-Aware Travel Planner:
	Parking Space Finder Application:
	Smart City Administration Console:

	4 Experimental Evaluation and Empirical Analysis
	4.1 Latency
	4.2 Memory Consumption
	4.3 Completeness

	5 Related Work
	6 Concluding Remarks and Future Directions
	References

