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Abstract

We prove the equivalence of two online learning algorithmisfor descent and natural gradient de-
scent. Both mirror descent and natural gradient descergereralizations of online gradient descent
when the parameter of interest lies on a non-Euclidean mlaniNatural gradient descent selects the
steepest descent along a Riemannian manifold by multiplyia standard gradient by the inverse of the
metric tensor. Mirror descent induces non-Euclidean siiredyy solving iterative optimization problems
using different proximity functions. In this paper, we peahat mirror descent induced by a Bregman
divergence proximity functions is equivalent to th&tural gradient descent algorithm on theal Rie-
mannian manifold. We use use techniques from convex asaysi a connections between Riemannian
manifolds, Bregman divergences and convexity to prover#ssilt. This equivalence between natural
gradient descent and mirror descent, implies that (1) muescent is the steepest descent direction
along the Riemannian manifold corresponding to the chdi&egman divergence; (2) mirror descent
with log-likelihood loss applied to parameter estimatioekponential families asymptotically achieves
the classical Cramér-Rao lower bound, and (3) naturalignadescent for manifolds corresponding to
exponential families can be implemented as a first-ordehatethrough mirror descent.

1 Introduction

Recently there has been great interest in online learnitlyg inderms of algorithms as well as in terms of
convergence properties. Given a sequefiig;°, of convex differentiable cost functiong; : © — R,
with a parameters in a convex sét,c © C RP, an online learning algorithm predicts a sequence of
parametergd, }7°, which incur a lossf;(6,) at each iteraté. The goal in online learning is to construct a
sequence that minimizes thegretat a timeT", Zthl fe(0).

The most common approach to construct a sequééde®; is based on online or stochastic gradient
descent. The online gradient descent update is:

9t+1 =0y — atvft(gt)7 (1)

where(a;)2, denotes a sequence of step-sizes. Gradient descent isebgati of steepest descent if the
parameterg, belong to a Euclidean space. However in many applicaticasnpeters lie on non-Euclidean
manifolds (e.g. mean parameters for Poisson families, rpaammeters for Bernoulli families and other
exponential families). In such scenarios gradient desoeght ambient space is not the direction of steepest
descent, since the parameter is restricted to a manifolds€tently generalizations of gradient decent that
incorporate non-Euclidean structure have been developed.

1.1 Riemannian manifolds and natural gradient descent

One generalization of gradient descemasural gradient descertteveloped by Amaril]. Natural gradient
descent assumes the parameter of interest lies on a Rieamamainifold and selects the steepest descent
direction along that manifold. LetM,#) be ap-dimensional Riemannian manifold with metric tensor
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Family M Z(p)
N0, Ipxp) | R Tpxp
Bernoulli(p) | [0,1] | 54
Poissori\) | [0,00) | §

Table 1: Statistical manifold examples

H = (hjr) andM C RP. Awell-known statistical example of Riemannian manifadale manifolds induced
by the Fisher information of parametric families. In pastar given a parametric familyp(x; 1)} where
we M CRP let{Z(u)} for eachd € © denote the x p Fisher information matrices. TheuM, Z(u))
denotes a-dimensional Riemannian manifold. Table 1 provides exaspf statistical manifolds induced
by parametric families (see e.@, P, 13] for details).

WhenZ(6) = I,«,, the Riemannian manifold corresponds to standard Euclidpace. For a thorough
introduction to Riemannian manifolds, se€.[

Given a sequence of functior{gﬂ};’go on the Riemannian manifolfl : M — R, thenatural gradient
descent step is:

fri1 = pir — a1 () V Fe(pae), (2

where {1 is the inverse of the Riemannian metfit = (h;;;) and p is the parameter of interest. If
(M, H) = (RP,I,4,), the natural gradient step corresponds to the standardegtadescent step 1).
Theorem 1 in [] proves that the natural gradient algorithm steps in theatiion of steepest descent along
the Riemannian manifolM, ). Hence the name natural gradient descent.

1.2 Mirror descent with Bregman divergences

Another generalization of online gradient descent is mescent developed by Nemirovski and Yudif][
Mirror descent induces non-Euclidean geometry by re-mgithe gradient descent update as an iterdtive
penalized optimization problem and selecting a proximityction different from squared, error. Note
that the online gradient descent stépgan alternatively be expressed as:

. 1
busr = avgyin { (0.91:00) + 5110 -0 |

where® C RP. By re-expressing the stochastic gradient step in this Way] introduced a generalization
of gradient descent as follows: Denote fiveximity function ¥ : R? x R? — R™T, strictly convex in the
first argument, then define timairror descent step as:

bess = argin { 0.9 400 + 200000} ®

Setting¥(6,6') = %||9 — ¢'||3 yields the standard gradient descent update, heBges & generalization of
online gradient descent.

A standard choice for the proximity functiohis the so-calle@Bregman divergencsince it corresponds
to the Kullback-Leibler divergence for different exponahfamilies. In particular, letz : © — R denote a
strictly convex twice-differentiable function, the digence introduced by7] Bg : © x © — R™ is:

Be(0,0') = G(6) — G(8') — (VG(0'),0 — 0).
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Family G(6) Bg (0,6

N0, Ipxp) 219113 210 — 013

Poissorfe?) exp(h) exp(6) — exp(0') — (exp(0'),0 — 6")
Bernoulli(ﬁ) log(1 4 exp(6)) log<11:::, - <#Ze,, 6—6

Table 2: Bregman divergence examples

Bregman divergences are widely used in statistical inf@¥eaptimization, machine learning, and informa-
tion geometry (see e.g2[5]). Letting ¥(-, ) = Bg(+, ), the mirror descent step defined is:

Oy 11 = arg m@in {(9, V£i(0)) + O%B@(H,Ht)} ) 4)

There is a one-to-one correspondence between Bregmameiness and exponential familie$] which
we exploit later when we discuss estimation in exponenéalifies. Examples of7, exponential families
and the induced Bregman divergences are listed in Tabler2a Fmre extensive list, see e.g].[

1.3 Our contribution

In this paper, we prove that the mirror descent update wittgBran divergence stepd)(is equivalent to
the natural gradient steR)(along thedual Riemannian manifold which we introduce later. The proof of
equivalence uses concepts in convex analysis combinecdtwritiections between Bregman divergences and
Riemannian manifolds developed if].[ Using the equivalence of the two algorithms, we can exle
desireable properties of both algorithms. In particuldurad gradient descent is known to be the direction of
steepest descent along a Riemannian manifold and is Fiffivézrg for parameter estimation in exponential
families, neither of which are known for mirror descent. faran algorithmic perspective, mirror descent
is a first-order method whereas natural gradient descergeés@nd-order method so implementing natural
gradient descent using mirror descent has potential dtgoic advantages.

2 Equivalence through dual co-ordinates

In this section we prove the equivalence of natural gradiestent Z) and mirror descent4j. The key to
the proof involves concepts in convex analysis, in pardicthe convex conjugate function and connections
between Bregman divergences, convex functions and Rigaranmanifolds.

2.1 Bregman divergences and convex duality

The concept of convex conjugate functions is central to tagmmesult in the paper. The convex conjugate
function for an function’ is defined to be:

H(p) = Slelg{<97u> —G(0)}.

If G is lower semi-continuous;s is the convex conjugate df, implying a dual relationship betwee®
and H. Further, if we assumé/ is strictly convex and twice differentiable, then soHs Note also that



G(0) H (p) By (p, 1)
2119113 3 llull3 sl — 13
exp(0) (1, log 1) — p plog £

log(1 4+ exp(0)) | nlogp+ (1 —p)log(l —p) | (1= p) 10g<11__ﬁ/> + plog &7

Table 3: Dual Bregman divergence examples

if g = VG andh = VH, g = h~'. For additional properties and motivation for the converjaogate
function, see19].

Let n = g(0) € @ be the point at which the supremum for the dual function igiéd represent the
dual co-ordinate system t6. The dual Bregman divergendgy : ® x ® — R™ induced by the strictly
convex differentiable functio is:

Bp(p,p') = H(p) — H(y') = (VH(), p — ).

Using the dual co-ordinate relationship, it is straightfard to show thatBy (u, ') = Bg(h(i'), h(p))
and B;(0,6") = Bg(g(0'),9(0)). Dual functions and Bregman divergences for examples iteT2lare
presented in Table 3. For more examples sée [

2.2 Bregman divergences and Riemannian manifolds

Now we explain how every Bregman divergence and its dualdedia pair of Riemannian manifolds as
described in J]. For the Bregman divergencB; : © x © — R™T induced by the convex functio,
define the Riemannian metric @, G = V2G (i.e. the Hessian matrix). Sindg@ is a strictly convex
twice differentiable functionV2G(6) is a positive definite matrix for a# € ©. HenceBg(+,-) induces
the Riemannian manifold®, V2G). Now let @ be the image oB under the continuous map = VG.
By : ® x ® — R* induces a Riemannian manifol®, H), where{ = V2H. Let (0, V2G) denote the
primal Riemannian manifold an¢®, V2 H) denote thelual Riemannian manifold.

For example, for the Gaussian statistical family defined anld1,0 = & = R andV?3G = V?H =
I,x, (i.e. the primal and dual manifolds are the same). On ther dthed, for the Bernoulfp) family in
Table 1, the mean parameterzisvhereas the natural parametemis= log p — log(1 — p) andG(0) =
log(1 + €%). Consquently©, V2G) = (R, ﬁ) and(®,V2H) = ([0, 1], m) which is consistent
with Table 1.

2.3 Main Result

In this section we present our main result, the equivalericeimor descent and natural gradient descent.
We also discuss consequences and implications.

Theorem 1. The mirror descent stefdl) with Bregman divergence defined Gyapplied to the sequence of
functions(f;);2, in the spaced is equivalent to the natural gradient stef2) along the dual Riemannian
manifold (®, V2H).

The proof follows by stating mirror descent in the dual Rieman manifold and simple applications of
the chain rule.



Proof. Recall that the mirror descent update is:

. 1
011 = arg min {(9, Vfi(6)) + a—Bg(G,Ht)} )
t
Finding the minimum by differentiation yields the step:

9(0r+1) = 9(0r) — Vg fi(64),

whereg = VG. In terms of the dual variable = ¢(#) and noting that = h(p) = VH (u),

pir1 = pt — Vo fi(h(ue)).

Applying the chain rule t6v, f;(h(1)) = V k(1) Ve fi(h(ie)) implies that

Vo fu(h(pe)) = [V uh(ue)] = Vi fe(h(p)).

Therefore
frie1 = pe — [V H ()] 'V fe(h(e)),
which corresponds to the natural gadient descent step.cbhigletes the proof. O

3 Consequences

In this section, we discuss how this connection directlydgeptimal efficiency results for mirror descent
and discuss connections to other online algorithm on Riemammanifolds.

Firstly by Theorem 1 in AmariT], natural gradient descent along the Riemannian man{féldv? H )
follows the direction of steepest descent along that mihiths an immediate consequence, mirror descent
with Bregman divergence induced lgy follows the direction of steepest descent along the Riemiann
manifold (&, V2H) where H is the convex conjugate fak. As far as we are aware, an interpretation in
terms of Riemannian manifolds had not been provided forangtescent.

Secondly from an algorithmic perspective notice that redtgradient descent is a second-order method
since it requires computation of the metric ten§8tH whereas mirror descent is a first-order method since
it simply requires the derivative gf andG at each step. For many large-scale statistical infererm@gms
first-order methods are preferred since computation of ¢éhizative is significantly less intensive compared
to computation of the hessian. Hence using the equivalehcataral gradient and mirror descent, the
natural gradient descent can be implemented as a first-onddrod which has potential computational
benefits.

Next we explain how using existing theoretical results ingkinjl], we can prove that mirror descent
achieves Fisher efficiency.

3.1 Efficient parameter estimation in exponential families

In this section we exploit the connection between mirrorcdas and natural gradient descent to study the
efficiency of mirror descent from a statistical perspectivrior work on the statistical theory of mirror
descent has largely focussed on regret analysis and we aagvace of analysis of second-order properties
such as statistical efficiency. We will see that Fisher efficy [LO, 11, 14] which is an optimality criterion



on the covariance of a parameter estimate is an immediateqgarnce of the equivalence between mirror
descent and natural gradient descent.

The statistical problem we consider is parameter estimati@xponential families. Considematural
parameterexponential family with density:

p(y 1 0) = h(y)exp((0,y) — G(0)),

wheref € RP andG : RP — R is a strictly convex differentiable function. The probajidensity function
can be re-expressed in terms of the Bregman diverg&ade, -) as follows:

p(y | 9) = h(y) exp(—Ba(0, h(y))),

where recall thab = VH and H is the conjugate dual function 6f. The distribution can be expressed in
terms of themean parameter = ¢(¢) and the dual Bregman divergenBg; (-, -):

p(y | ) = h(y) exp(—Bu(y, ).

As mentioned earlier, there is a one-to-one correspondbrteeen exponential families and Bregman
divergence {4, 5].

Consider the mirror descent update for the natural parametéth proximty function B (-, -) when
the function to be minimized is the standard log loss:

fe(0;y:) = —logp(y: | 8) = Ba(8, hyy))-

Then the mirror descent step is:

0111 = arg mein{<9, VGBG(97 h(yt))’9=9t> + aitBG(Hﬁt»}- ©))

Now if we consider the natural gradient descent step for teemparameter, the function to be minimized
is again the standard log-loss in theo-ordinates:

felpsye) = —logp(ye | 1) = Ba(ye, ).
Using Theorend (or by showing it directly), the natrual gradient step is:

i1 =ty — o [V2H] ' By (yi, ) (6)

A parallel argument holds if the mirror descent step waseasged in terms of the mean parameter and the
natural gradient step in terms of the natural parameter.
Now we use Theorem 2 inl] to prove that mirror descent yields an asymptotically Ergfficient for.
The Cramér-Rao theorem states that any unbiased estitveged or?” independent samples, s, ..., y1
of 1, which we denote by satisfies the following lower bound:

El(fir — ) i — 1)"] = VH,

where>- refers to the standard matrix inequality. A sequence ofregbtrs(ji;)>°, is asymptotically Fisher
efficient if:
Jim TE[(ur — p)(fir — '] = V2H.

Now by using Theorem 2 in1] for natural gradient descent and the equivalence of niaguaaient descent
and mirror descent (Theoref, it follows that mirror descent is Fisher efficient.
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Corollary 1. The mirror descent step applied to the log I¢53 with step-sizesy; = % asymptotically
achieves the Craér-Rao lower bound.

For a more detailed discussion on the statistical promedfenatural gradient se€][ Here we have
illustrated how the equivalence between mirror descerh Bitegman divergences and natural gradient
descent gives second-order optimality properties of mitescent.

3.2 Connection to other online methods on Riemannian manifds

The point in using the natural gradient is to the parameténtefest in the direction of the gradient on the
manifold rather than the gradient in the ambient space. Noteever that any non-infinitesimal step in the
direction of the gradient of the manifold will move one ofetimanifold, for any curved manifold. This
observation has motivated algorithm&] in which the update step is constrained to remain on the foldni

In this section, we discuss the relation between naturaligma descent, mirror descent, and gradient
based methods that along a Riemannian maniféifl To define the online steepest descent step used in
[6], we need to define the exponential map and differentiatiocurved spaces.

Theexponential mapt a pointu € M is amapexp,, : 7, M — M whereT), M is the tangent space at
each poinfu € M (see e.g.q]). The idea of an exponential map is starting at a ppimtith tangent vector
v € T), if one starts at point: and “flows” along the manifold in direction for a fixed (unit) time interval
at coinstant velocity one reaches a new point on the manifald (v). This idea is usual stated in terms of
geodesic curves on the manifold, consider the geodesie gun0, 1] — M, with v(0) = p and(0) = v,
wherev € T),M thenexp,,(v) = v(1). Again, in wordsexp,,(-) is the end-point of a curve that lies along
the manifold M that begins at: with initial velocity v = 4(0) that travels one time unit.

Now we define differentiation along a manifold. Lgt: M — R be a differentiable function oM.
The gradient vector fieldy v f takes the formy v f (1) = . (f (exp,,(v)))[s=0 Noting thatf (exp,,(v)) is
a smooth function off}, M.

For the sequence of functiods;};°, where f, : M — R the online steepest descent step analyzed
in [6] is:

pe+1 = exp,,, (= Vo fe(pe))- (7)

The key reason why the update’) (s the standard gradient descent step instead of the hgna@dient
descent step introduced by Amari is that ; is always guaranteed to lie on the manifdid for (7), but not
for the natural gradient descent step. Unfortunately, ¥p@eential map is extremely difficult to evaluate in
general since it is the solution of a system of second-oriffarential equationsc].

Consequently a standard strategy is to use a computetbéetion 1z, : T, M — RP of the exponential
map which yields the approximate gradient descent step:

pe1 = Ry, (Vo fe(pe))- (8)

The retraction?,, (v) = pu+wv corresponds to the first-order Taylor approximation of tgo@ential map and
yields the natural gradient descent step if). Therefore as pointed out its], natural gradient descent can
be cast as an approximation to gradient descent for Riemammanifolds. Consequently mirror descent
can be viewed as an easily computable first-order approoma&b steepest descent for any Riemannian
manifold induced by a Bregman divergence.



4 Discussion

In this paper we prove that mirror descent with proximity dtion ¥ equal to a Bregman divergence is
equivalent to the natural gradint descent algorithm aldreggdual Riemannian manifold. Based on this
equivalence, we use results developedByd conclude that mirror descent is the direction of stetjpethe
corresponding Riemannian space and for parameter egiimatiexponential families with the associated
Bregman divergence, mirror descent achieves the Craméndver bound. Furthermore, this connection
proves that the natural gradient step can be implementediras-arder method using mirror descent which
has computational gains for larger datasets.

Following on from this connection, there are a number ofrggBng and open directions. Firstly, one of
the important issues for any online learning algorithm igich of step-size. Using the connection between
mirror descent and natural gradient, it would be intergstondetermine whether adaptive choices of step-
sizes proposed inl] that exploit the Riemannian structure can improve peréoroe of mirror descent.

It would also be useful to determine a precise charactéizaif the geometry of mirror descent for other
proximity functions such a&,-norms and explore links online algorithms such as progegtadient descent.
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