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In this note, we will review and extend some results from our previous work [8] where we
introduced a novel approach to imperfectly transferable utility and unobserved heterogeneity in
tastes, based on a nonlinear generalization of the Bernstein-Schrödinger equation. We consider an
assignment problem where agents from two distinct populations may form pairs, which generates
utility to each agent. Utility may be transfered across partners, possibly with frictions. This general
framework hence encompasses both the classic Non-Tranferable Utility model (NTU) of Gale and
Shapley [6], sometimes called the “stable marriage problem”, where there exists no technology to
allow transfers between matched partners; and the Transferable Utility (TU) model of Becker [1]
and Shapley-Shubik [14], a.k.a. “optimal assignment problem,” where utility (money) is additively
transferable across partners.

If the NTU assumption seems natural for many markets (including school choices), TU models
are more appropriate in most settings where there can be bargaining (labour and marriage markets
for example). However, even in those markets, there can be transfer frictions. For example, in
marriage markets, the transfers between partners might take the form of favor exchange (rather
than cash), and the cost of a favor to one partner may not exactly equal the benefit to the other.

In [8], we thus developped a general Imperfectly Transferable Utility model with unobserved
heterogeneity, which includes as special cases the classic fully- and non-transferable utility models,
but also extends to collective models, and settings with taxes on transfers, deadweight losses, and
risk aversion. As we argue in the present note, the models we consider in [8] obey a particularly
simple system of equations we dubbed “Nonlinear Bernstein-Schrödinger equation”. The present
contribution present a general result for the latter equation, and also derives several consequences.
The main result is derived in Section 1. Section 2 and Section 3 consider equilibrium assignment
problems with and without heterogeneity. Finally, we provide a discussion of our results in Section
4.
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1 The main result

For x ∈ X and y ∈ Y, we consider a function Mxy : R2 → R, and Mx0 : R → R and M0y : R →
R. Let (nx)x∈X and (my)y∈Y be vectors of positive numbers. Consider the nonlinear Bernstein-

Schrödinger system, which consists in looking for two vectors u ∈ R
X and v ∈ R

Y such that

{

Mx0 (ux) +
∑

y∈Y Mxy (ux, vy) = nx

M0y (vy) +
∑

x∈X Mxy (ux, vy) = my
.

Theorem 1. Assume Mxy satisfies the following three conditions:
(i) Continuity. The maps Mxy : (ux, vy) 7−→ Mxy(ux, vy), Mx0 : (ux) 7−→ Mx0(ux) and M0y :

(vy) 7−→ M0y(vy) are continuous
(ii) Monotonicity. The map Mxy : (ux, vy) 7−→ Mxy(ux, vy) is monotonically decreasing, i.e if

ux ≤ u′x and uy ≤ u′y, then Mxy(ux, vy) ≥ M(u′x, v
′
y). The maps Mx0 : (ux) 7−→ Mx0(ux) and

M0y : (vy) 7−→ M0y(vy) are monotonically decreasing.
(iii) Limits. For each vy, limux→∞Mxy(ux, vy) = 0 and limux→−∞Mxy(ux, vy) = +∞, and for

each ux, limuy→∞Mxy(ux, vy) = 0 and limuy→−∞Mxy(ux, vy) = +∞. Additionally, limux→∞ Mx0(ux) =
0 and limuy→∞M0y(uy) = 0, and limux→−∞Mx0(ux) = +∞ and limuy→−∞M0y(uy) = +∞.

Then there exists a solution to the nonlinear Bernstein-Schrödinger system. Further, if the
maps M are C1, the solution is unique.

This theorem appears in [8] under a slightly different form. The proof is interesting as it
provides an algorithm of determination of u and v. It is an important generalization of the Iterated
Projection Fitting Procedure (see [5], [12], and [13]), which has been rediscovered and utilized many
times under different names for various applied purposes: “RAS algorithm” [10], “biproportional
fitting”, “Sinkhorn Scaling” [4], etc. However, all these techniques and their variants can be recast
as particular cases of the method described in the proof of Theorem 1. For convenience, we recall
the algorithm used to provide a constructive proof of existence.

Algorithm 1.

Step 0 Fix the initial value of vy at v0y = +∞.

Step 2t+ 1 Keep the values v2ty fixed. For each x ∈ X , solve for the value, u2t+1
x such

that equality
∑

y∈Y Mxy(ux, v
2t
y ) +Mx0(ux) = nx holds.

Step 2t+ 2 Keep the values u2t+1
x fixed. For each y ∈ Y, solve for which is the value,

v2t+2
y such that equality

∑

x∈X Mxy(u
2t+1
x , vy) +M0y(vy) = my holds.

Then

ut and vt converge monotonically to a solution of the Bernstein-Schrödinger system.

In practice a precision level ǫ > 0 will be chosen, and the algorithm will terminate when
supy |v

2t+2
y − v2ty | < ǫ.

Proof. (i) Existence. The proof of existence is an application of Tarski’s fixed point theorem and
relies on the previous Algorithm. We need to prove that the construction of u2t+1

x and v2t+2
y at

each step is well defined. Consider step 2t+ 1. For each x ∈ X , the equation to solve is

∑

y∈Y

Mxy(ux, vy) +Mx0(ux) = nx

but the right handside is a continuous and decreasing function of ux, tends to 0 when ux → +∞
and tends to +∞ when ux → −∞. Note that by letting vy → +∞, the terms in the sum tends
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to 0, providing a lower bound for ux. Hence u2t+1
x is well defined and belongs in

(

M−1
x0 (nx),+∞

)

,
and let us denote

u2t+1
x = Fx(v

2t
. )

and clearly, F is anti-isotone, meaning that v2ty ≤ ṽ2ty for all y ∈ Y implies Fx(ṽ
2t
. ) ≤ Fx(v

2t
. ) for

all x ∈ X . By the same token, at step 2t+ 2, v2t+2
y is well defined in

(

M−1
0y (my),+∞

)

, and let us

denote
v2t+2
y = Gy(u

2t+1
. )

where, similarly, G is anti-isotone. Thus

v2t+2
. = G ◦ F

(

v2t.
)

where G ◦ F is isotone. But v2y < ∞ = v0y implies that v2t+2
. ≤ G ◦ F

(

v2t.
)

. Hence
(

v2t+2
.

)

t∈N
is a

decreasing sequence, bounded from below by 0. As a result v2t+2
. converges. Letting v̄. its limit,

and letting ū = F (v̄), one can see that (ū, v̄) is a solution to the nonlinear Bernstein-Schrödinger
system. (ii) Unicity. Introduce map ζ defined by

ζ : (ux, vy) →

(

ζx =
∑

y∈Y Mxy (ux, vy) +Mx0(ux)

ζy =
∑

x∈X Mxy (ux, vy) +M0y(vy)

)

One has

Dζ (ux, vy) =

(

A B

C D

)

where:

• A = (∂ζx/∂ux′)xx′ =
∑

y′∈Y ∂ux
Mxy′

(

ux, vy′
)

+ 1 if x = x′, 0 otherwise.

• B = (∂ζx/∂vy)xy = ∂vyMxy (ux, vy)

• C = (∂ζy/∂ux)yx = ∂ux
Mxy (ux, vy)

• D =
(

∂ζy/∂vy′
)

yy′
=
∑

x′∈X ∂vyMx′y (ux′vy) + 1 if y = y′, 0 otherwise.

It is straightforward to show that the matrix Dζ is dominant diagonal. A result from [11] states
that a dominant diagonal matrix with positive diagonal entries is a P-matrix. Hence Dζ (ux, vy) is
a P-matrix. Applying Theorem 4 in [9] it follows that ζ is injective.

2 Equilibrium Assignment Problem

In this section, we consider the equilibrium assignment problem, which is a far-reaching generaliza-
tion of the optimal assignment problem. To describe this framework, consider two finite populations
I and J , and a two-sided matching framework (for simplicity, we will call “men” and “women”
the two sides of this market) with imperfect transfers and without heterogeneity. Agents i ∈ I and
j ∈ J get respectively utility ui and vj they get at equiliburium. If i or j remains unmatched, they
get utility 0; however, if they match together, they may get any respective utilities ui and vj such
that the feasibility constraint is imposed

Ψij (ui, vj) ≤ 0, (1)

where the transfer function Ψij is assumed to be continuous and isotone with respect to its ar-
guments. Note that at equilibrium, ui ≥ 0 and vj ≥ 0 as the agents always have the option to
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remain unassigned; by the same token, if for any pair i, j (matched or not), one cannot have a strict
inequality in (1), otherwise i and j would have an incentive to form a blocking pair, and achieve a
higher payoff than their equilibrium payoff. Thus the stability condition Ψij (ui, vj) ≥ 0, holds in
general. Let µij = 1 if i and j are matched, and 0 otherwise; we have therefore that µij > 0 implies
that Ψij (ui, vj) = 0. This allows us to define an equilibrium outcome.

Definition 1. The equilibrium assignment problem defined by Ψ has an equilibrium outcome
(µij , ui, vj) whenever the following conditions are met: (i) µij ≥ 0, ui ≥ 0 and vj ≥ 0 (ii)

∑

j µij ≤ 1
and

∑

i µij ≤ 1 (iii) Ψij (ui, vj) ≥ 0 (iv) µij > 0 implies Ψij (ui, vj) = 0.

Note that, by the Birkhoff-von Neumann theorem, the existence of an equilibrium in this
problem leads to the existence of an equilibrium satisfying the stronger integrality requirement
µij ∈ {0, 1}. This general framework allow us to express the optimal assignment problem (match-

ing with Transferable Utility), as the case where

Ψij (ui, vj) = ui + vj − Φij,

while in the NTU case
Ψij (ui, vj) = max(ui − αij , vj − γij).

Other interesting cases are considered in [8]. For instance, the Linearly Transferable Utility (LTU )
model, where

Ψij (ui, vj) = λij(ui − αij) + ζij(vj − γij)

with λij , ζij > 0, and the Exponentially Transferable Utility (ETU ) model, in which Ψij takes the
form

Ψij (ui, vj) = τ log

(

exp(ui/τ) + exp(vj/τ)

2

)

.

In the ETU model, the parameter τij is defined as the degree of transferability, since τ → +∞
recovers the TU case and τ → 0 recovers the NTU framework.

Theorem 2. Assume Ψ is such that: (a) For any x ∈ X and y ∈ Y, we have Ψxy (·, ·) continuous.
(b) For any x ∈ X , y ∈ Y, t ≤ t′ and r ≤ r′, we have Ψxy (t, r) ≤ Ψxy (t

′, r′); furthermore,
when t < t′ and r < r′, we have Ψxy (t, r) < Ψxy (t

′, r′). (c) For any sequence (tn, rn), if (rn) is
bounded and tn → +∞, then lim inf Ψxy (tn, rn) > 0. Analogously, if (tn) is bounded and rn → +∞,
then lim inf Ψxy (tn, rn) > 0. (d) For any sequence (tn, rn) such that if (tn − rn) is bounded and
tn → −∞ (or equivalently, rn → +∞), we have that lim supΨxy (tn, rn) < 0. Then the equilibrium
assignment problem defined by Ψij has an equilibrium outcome.

Proof. Consider T > 0 and let

Mij (ui, vj) = exp

(

−
Ψij (ui, vj)

T

)

Mi0 (ui) = exp
(

−
ui
T

)

M0j (vj) = exp
(

−
vj
T

)

and consider the Bernstein-Schrödinger system
{

Mi0 (ui) +
∑

j∈J Mij (ui, vj) = 1

M0j (vj) +
∑

i∈I Mij (ui, vj) = 1
.
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We need to show that Mxy(., .), Mx0(.) and M0y(.) satisfy the properties stated in Theorem 1. It is
straightforward to show that conditions (i) and (ii) in Theorem 1 follow directly from assumptions
(a) and (b) on Ψ. Moreover, letting T → 0+, assumptions (c) and (d) together imply that condition
(iii) is satisfied. Hence we can apply Theorem 1, and it follows that a solution uTi , v

T
j to the system

exists. Note that Mi0

(

uTi
)

≤ 1 and M0j

(

vTj

)

≤ 1 imply that uTi ≥ 0 and vTj ≥ 0. Now, consider

the sequence obtained by taking T = k, k ∈ N. Then, up to a subsequence extraction, we may

assume uki → ūi ∈ R
+ ∪ {+∞} and vkj → v̄j ∈ R

+ ∪ {+∞}. It follows that Ψij

(

uki , v
k
j

)

converges

in R
+∪{+∞}, hence µk

ij = Mij

(

uki , v
k
j

)

converges toward µ̄ij ∈ [0, 1]. Similarly, the limits µ̄i0 and

µ̄0j exist in [0, 1]. Hence (i) in Definition 1 is met. By continuity, µ̄ satisfies

{

µ̄i0 +
∑

j∈J µ̄ij = 1

µ̄0j +
∑

i∈I µ̄ij = 1
,

which established (ii). Let us show that (iii) holds, that is, that Ψij (ui, vj) ≥ 0 for any i and j.

Assume otherwise. Then there exists ǫ > 0 such that for k large enough, Ψij

(

uki , v
k
j

)

< −ǫ, so that

µk
ij > exp (ǫ/T ) → +∞, contradicting µ̄ij ≤ 1. Thus, we have established (iii). Finally, we show

that (iv) holds. Assume otherwise. Then there is i and j such that µ̄ij > 0 and Ψij (ūi, v̄j) > 0.

This implies that there exists ǫ > 0 such that for k large enough, µk
ij > ǫ, thus Ψij

(

uki , v
k
j

)

<

−T log ǫ → 0, hence Ψij (ūi, v̄j) ≤ 0, a contradiction. Hence (iv) holds; this completes the proof
and establishes that (µ̄, ū, v̄) is an equilibrium assignment.

3 ITU matching with heterogeneity

Following [8], we now assume that individuals may be gathered into groups of agents of similar
observable characteristics, or types, but heterogeneous tastes. We let X and Y be the sets of types
of men and women. An individual man i ∈ I has type xi ∈ X ; similarly, an individual woman
j ∈ J has type yj ∈ Y. We assume that there is a mass nx of men of type x and my of women of
type y, respectively. Assume further that

Ψij (ui, vj) = Ψxiyj (ui − Tεiy, vj − Tηxj) ,

where ǫ and η are i.i.d. random vectors drawn from a Gumbel distribution, and where T > 0 is
a temperature parameter. Unassigned agents get Tεi0 and Tη0j . For all i such that xi = x and
yj = y, the stability condition implies

Ψxiyj (ui − Tεiy, vj − Tηxj) ≥ 0.

Hence,
min
i:xi=x
j:yj=y

Ψxiyj (ui − Tεiy, vj − Tηxj) ≥ 0.

Thus, letting
Uxy = min

i:xi=x
{ui − Tεiy} and Vxy = min

j:yj=y
{vj − Tηxj} ,

we have Ψxy (Uxy, Vxy) ≥ 0, and with

µxy =
∑

i:xi=x
j:yj=y

µij
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we have that µxy > 0 implies Ψxy (Uxy, Vxy) = 0, and by a standard argument (the random vectors
ǫ and η are drawn from distributions with full support, hence there will be at least a man i of type
x and a woman j of type y such that i prefers type y and j prefers type x, that is, µxy > 0 for all
x and y)

Ψxy (Uxy, Vxy) = 0 ∀x ∈ X , y ∈ Y.

Note that this is an extension to the ITU case of the analysis in Galichon and Salanié [7], building
on Choo and Siow [3]. We have that

ui = max
y

{Uxy + Tεiy, T εi0} and vj = max
x

{Vxy + Tηxj, T η0j} ,

thus a standard result from Extreme Value Theory (see Choo and Siow [3] for a derivation) yields

Uxy = T log
µxy

µx0
and Vxy = T log

µxy

µ0y
,

so we see that µxy satisfies










µx0 +
∑

y∈Y µxy = nx

µ0y +
∑

x∈X µxy = my

Ψxy

(

T log
µxy

µx0
, T log

µxy

µ0y

)

= 0

. (2)

The various cases of interest discussed above, namely TU, NTU, LTU, and ETU cases yield, re-
spectively,

µxy = µ
1/2
x0 µ

1/2
0y exp

Φxy

2
(TU)

µxy = min (µx0e
αxy , µ0ye

γxy) (NTU)

µxy = e(λxyαxy+ζxyγxy)/(λxy+ζxy)µ
λxy/(λxy+ζxy)
x0 µ

ζxy/(λxy+ζxy)
0y (LTU)

µxy =

(

e−αxy/τxyµ
−1/τxy
x0 + e−γxy/τxyµ

−1/τxy
0y

2

)−τxy

(ETU),

(see [3]). To apply Theorem 1, we let Mxy (ux, vy) be the value m solution to (for a proof of
existence and uniqueness of such a solution, see Lemma 1 of [8])

Ψxy (T logm+ ux, T logm+ vy) = 0,

and let

Mx0 (ux) = exp

(

−ux
T

)

and M0y (vy) = exp

(

−vy
T

)

.

In [8], we rewrote system (2) as a nonlinear Bernstein-Schrödinger system, namely

{

Mx0 (ux) +
∑

y∈Y Mxy (ux, vy) = nx

M0y (vy) +
∑

x∈X Mxy (ux, vy) = my
.

Theorem 3. The nonlinear Bernstein-Schrödinger system in (2) has a unique solution

Proof. The proof follows directly from the application of Theorem 1. It is easy to check that the
conditions on Mx0(.) and M0y(.) required by Theorem 1 are met in this case. Lemma 1 in [8]
provides a proof that Mxy satisfies these conditions.
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4 Discussion

In this note, we have argued how matching problems may be formulated as a system of nonlinear
equations, also known as the Bernstein-Schrödinger equation or Schrödinger’s problem [15]. We
have shown existence and uniqueness of a solution under certain conditions, and have explicited
the link with various matching problems, with or without heterogeneity. Solving such a system
of equations requires an algorithm that we call the Iterative Projection Fitting Procedure (IPFP);
in practice, this algorithm converges very quickly. Our setting can be extended in several ways.
One of them is to consider the case with unassigned agents. In that case, we have the additional
constraint that

∑

x nx =
∑

y my, thus the nonlinear Bernstein-Schrödinger system, which in this
case writes as

{ ∑

y∈Y Mxy (ux, vy) = nx
∑

x∈X Mxy (ux, vy) = my

has a degree of freedom, as the sum over x ∈ X of the first set of equations coincides with the sum
over y ∈ Y of the second one. The one-dimensional manifold of solutions of this problem is studied
in [2].
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