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Abstract. This note presents a short review of the Schrödinger problem
and of the first steps that might lead to interesting consequences in terms
of geometry. We stress the analogies between this entropy minimization
problem and the renowned optimal transport problem, in search for a
theory of lower bounded curvature for metric spaces, including discrete
graphs.
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Introduction

This note presents a short review of the Schrödinger problem and of the first
steps that might lead to interesting consequences in terms of geometry. It doesn’t
contain any new result, but is aimed at introducing this entropy minimization
problem to the community of geometric sciences of information.

We briefly describe Schrödinger’s problem, see [12] for a recent review. It is
very similar to an optimal transport problem. Several analogies with the Lott-
Sturm-Villani theory about lower bounded curvature on geodesic spaces, which
has been thoroughly investigated recently with great success, will be emphasized.
The results are presented in the setting of a Riemannian manifold.

As a conclusion, some arguments are put forward that advocate for replacing
the optimal transport problem by the Schrödinger problem when seeking for a
theory of lower bounded curvature on discrete graphs.

For any measurable space Y, M(Y ) is the set of all positive measures and
P(Y ) is the subset of all probability measures on Y .

1 Optimal transport

Let X be some state space equipped with a σ-field so that we can consider
measures on X and X 2. The Monge problem amounts to find a mapping T :
X → X that solves the minimizing problem

∫

X

c(x, Tx)µ0(dx) → min; T : X → X such that T#µ0 = µ1, (1)
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where c : X 2 → [0,∞) is a given measurable function, µ0, µ1 ∈ P(X ) are pre-
scribed probability measures on X and T#µ0(dy) := µ0(T

−1(dy)) is the image
of µ0 by the measurable mapping T. One interprets c(x, y) as the cost for trans-
porting a unit mass from x ∈ X to y ∈ X . Hence the integral

∫

X
c(x, Tx)µ0(dx)

represents the global cost for transporting the mass profile µ0 ∈ P(X ) onto
T#µ0 ∈ P(X ) by means of the transport mapping T . A solution of the Monge
problem is a mapping T from X to X which transports the mass distribution µ0

onto the target mass distribution µ1 at a minimal cost.
The most efficient way to solve Monge’s problem is to consider the follow-

ing relaxed version which was introduced by Kantorovich during the 40’s. The
Monge-Kantorovich problem is

∫

X 2

c(x, y)π(dxdy) → min; π ∈ P(X 2) : π0 = µ0, π1 = µ1, (2)

where π0(dx) := π(dx × X ) and π1(dy) := π(X × dy) are the marginals of
the joint distribution π on the product space X 2. It consists of finding a cou-
pling π ∈ P(X 2) of the mass distributions µ0 and µ1 which minimizes the av-
erage cost

∫

X 2 c(x, y)π(dxdy). Considering the so-called deterministic coupling
πT (dxdy) := µ0(dx)δTx(dy) of µ0 and T#µ0 where δy stands for the Dirac mea-
sure at y, we see that (2) extends (1): if (2) admits πT as a solution, then T
solves (1). In contrast with the highly nonlinear problem (1), (2) enters the well-
understood class of convex minimization problems. The interest of the Monge-
Kantorovich problem goes over its tight relation with the Monge transport prob-
lem. It is a source of fertile connections. For instance, it leads to the definition
of many useful distances on the set P(X ) of probability measures. Other connec-
tions are sometimes more surprising at first sight. We shall invoke below a few
links with the geometric notion of curvature.
A key reference for the optimal transport theory is Villani’s textbook [19].

2 Schrödinger problem

In 1931, that is ten years before Kantorovich discovered (2), Schrödinger [16,17]
addressed a new statistical physics problem motivated by its amazing similarity
with several aspects of the time reversal symmetry in quantum mechanics. In
modern terms, the Schrödinger problem is expressed as follows

H(π|ρ) → min;π ∈ P(X 2) : π0 = µ0, π1 = µ1, (3)

where ρ ∈ M(X 2) is some reference positive measure on the product space X 2

and

H(p|r) :=

∫

Y

log(dp/dr) dp ∈ (−∞,∞], p, r ∈ P(Y )

denotes the relative entropy of the probability measure p on Y with respect to
the reference positive measure r on the same space Y and it is understood that
H(p|r) = ∞ when p is not absolutely continuous with respect to r. For a survey
of basic results about the Schrödinger problem, see [12].
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Schrödinger considers a large collection of N independent particles living in
a Riemannian manifold X (he takes X = R

n, but we need a manifold for further
developments) and moving according to a Brownian motion. It is supposed that
at time t = 0 they are spatially distributed according to a profile µ0 ∈ P(X ) and
that at time t = 1, we observe that they are distributed according to a profile
µ1 ∈ P(X ) which is far away from the expected configuration. One asks what
is the most likely behavior of the whole system of particles which performs this
very unlikely event. It is a large deviation problem which is solved by means of
Sanov’s theorem (see Föllmer’s lecture notes [7] for the first rigorous derivation
of Schrödinger’s problem) and leads to (3) with the reference measure

ρǫ(dxdy) = vol(dx) (2πǫ)−n/2 exp

(

−
d(x, y)2

2ǫ

)

vol(dy)

where d is the Riemannian distance. It is the joint law of the endpoint position
(X0, X1) of a Brownian motion (Xt)0≤t≤1 on the unit time interval [0, 1] with
variance ǫ which starts at time t = 0 uniformly at random according to the
volume measure on X (this process is reversible). For any probability π on X 2

with a finite entropy we easily see that

lim
ǫ→0+

ǫH(π|ρǫ) =

∫

X 2

d(x, y)2

2
π(dxdy)

which is an average cost as in (2) with respect to the so-called quadratic cost

c(x, y) = d(x, y)2/2. (4)

Therefore the Monge-Kantorovich problem with the quadratic cost
∫

X 2

d(x, y)2

2
π(dxdy) → min; π ∈ P(X 2) : π0 = µ0, π1 = µ1, (5)

appears as the limit as the fluctuation parameter ǫ tends to zero of a family of
Schrödinger problems associated with a Gaussian reference measure. This is a
specific instance of a general phenomenon that has been discovered by Mikami
[14] and explored in detail in [11].

3 Dynamical analogues

Many aspects of the static problems (2) and (3) are easier to clarify by means of
their dynamical analogues. To keep things easy, we stick to the quadratic cost
(4) on a Riemannian manifold.

Notation We introduce some useful notation. The path space on X is denoted
by Ω ⊂ X [0,1]. The canonical process (Xt)t∈[0,1] is defined for each t ∈ [0, 1]
and ω ∈ Ω by Xt(ω) = ωt ∈ X . For any Q ∈ M(Ω) and 0 ≤ t ≤ 1, we denote
Qt := (Xt)#Q := Q(Xt ∈ ·) ∈ M(X ) the law of Xt under Q. We denote the
endpoint distribution Q01(dxdy) := Q(X0 ∈ dx,X1 ∈ dy) ∈ M(X 2) and use the
probabilistic notation EP for

∫

Ω
dP.
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Displacement interpolations We introduce the dynamical analogue of (5).
It consists of minimizing the average kinetic action

EP

∫

[0,1]

|Ẋt|
2
Xt
/2 dt→ min; P ∈ P(Ω) : P0 = µ0, P1 = µ1 (6)

under the constraint that the initial and final marginals P0 and P1 of P are equal
to the prescribed probability measures µ0 and µ1 ∈ P(X ) on X .

Suppose for simplicity that there is a unique solution P to this problem.
Then P has the form P (·) =

∫

X 2 δγxy(·)π(dxdy) where δγxy is the Dirac mass
at γxy: the unique geodesic between x and y, and its endpoint projection P01 =
π ∈ P(X 2) is the unique solution of the optimal transport problem (5).

Definition 1. The displacement interpolation between µ0 and µ1 is the flow of
marginals [µ0, µ1] := (Pt)0≤t≤1 of the solution P of (6).

This notion has been introduced by McCann in his PhD Thesis [13]. It is the
basis of the development of the theory of lower bounds for the Ricci curvature
of geodesic spaces, see the textbooks [1,19].

Entropic interpolations Now, we introduce the dynamical analogue of (3). It
consists of minimizing the relative entropy

H(P |R) := EP log(dP/dR) → min; P ∈ P(Ω) : P0 = µ0, P1 = µ1 (7)

with respect to the reference path measure R ∈ M(Ω) under the same marginal
constraints as in (6). Following Schrödinger, if we choose R to be the law of the
reversible Brownian motion on X , we obtain with Girsanov’s theory that

H(P |R) = H(P0|vol) + EP

∫

[0,1]

|vPt (Xt)|
2
Xt
/2 dt

where vol denotes the volume measure and vPt is the Nelson forward velocity
field of the diffusion law P , [15]. When X = R

n, denoting EP [·|·] the conditional
expectation,

vPt (x) = lim
h→0,h>0

1

h
EP [Xt+h −Xt | Xt = x]. (8)

Definition 2. The entropic interpolation between µ0 and µ1 is the flow of
marginals [µ0, µ1]

R := (Pt)0≤t≤1 of the unique solution P of (7).

If P ∈ P(Ω) solves the dynamical problem (7), then P01 ∈ P(X 2) solves the
static problem

H(π|R01) → min;π ∈ P(X 2) : π0 = µ0, π1 = µ1, (9)

where the reference measure R01 ∈ M(X 2) is the endpoint projection of the
reference path measure R ∈ M(Ω).
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Slowing down As already seen in the static case, the analogy between (6) and
(7) is not only formal. Considering the slowed down process Rǫ = (Xǫ)#R which
is the law of Xǫ

t = Xǫt, 0 ≤ t ≤ 1, it is known that

ǫH(P |Rǫ) → min; P ∈ P(Ω) : P0 = µ0, P1 = µ1

Γ -converges to (6), see [11]. In particular, the entropic interpolation [µ0, µ1]
Rǫ

is a smooth approximation of the displacement interpolation [µ0, µ1].
This kind of convergence also holds for optimal L1-transport on graphs [9] and

Finsler manifolds (instead of optimal L2-transport on a Riemannian manifold)
where diffusion processes must be replaced by random processes with jumps
(work in progress).

4 Dynamics of the interpolations

Unlike entropic interpolations, displacement interpolations lack regularity. Al-
ready known results about the dynamics of the displacement interpolations in
the so-called RCD geodesic spaces with a Ricci curvature bounded from below
can be found in [8]. Understanding the dynamics of entropic interpolations could
be a first step (before letting ǫ tend to zero) to recover such results.

Dynamics of the displacement interpolations A formal representation of
the displacement interpolation is given by

Ẋt = ∇ψ(t,Xt), P -a.s.

where P is a solution of (6), ψ is the viscosity solution of the Hamilton-Jacobi
equation

{

∂tψ + |∇ψ|2/2 = 0
ψt=1 = ψ1

(10)

and ψ1 is in accordance with the endpoint data µ0 and µ1. Note that

Ẍt = ∇[∂tψ + |∇ψ|2/2](t,Xt) = 0, P -a.s. (11)

fitting the standard geodesic picture.

Dynamics of the entropic interpolations Similarly, a rigorous representa-
tion of the entropic interpolation is given by

vPt = ∇ψ(t,Xt), P -a.s.

where vP is defined at (8), P is the solution of (7) and ψ is the classical solution
of the Hamilton-Jacobi-Bellman equation

{

∂tψ +∆ψ/2 + |∇ψ|2/2 = 0,
ψt=1 = ψ1.

(12)
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Iterating time derivations in the spirit of (8) in both directions of time allows to
define a relevant notion of stochastic acceleration aP , see for instance [15,5]. We
obtain the following analogue of (11)

aPt =
1

2
∇[∂tψ+∆ψ/2+|∇ψ|2/2]+

1

2
∇[−∂tϕ+∆ϕ/2+|∇ϕ|2/2](t,Xt) = 0, P -a.s.

where ϕ solves some HJB equation

{

−∂tϕ+∆ϕ/2 + |∇ϕ|2/2 = 0
ϕt=0 = ϕ0

in the other

direction of time.

5 Interpolations are sensitive to Ricci curvature

On a Riemannian manifold X , one says that the Ricci curvature is bounded
below by some constant κ ∈ R, when

Ricx(v, v) ≥ κgx(v, v), ∀(x, v) ∈ TX

where Ric is the Ricci tensor and g is the Riemannian metric defined on the
tangent bundle TX .

Displacement interpolations Ten years ago, Sturm and von Renesse [18]
have discovered that this lower bound holds if and only if along any displacement
interpolation (µt)0≤t≤1, the entropy

t ∈ [0, 1] 7→ H(µt|vol) ∈ (−∞,∞]

is κ-convex with respect to W2, i.e.

H(µt|vol) ≤ (1− t)H(µ0|vol) + tH(µ1|vol)− κ
t(1− t)

2
W 2

2 (µ0, µ1), ∀t ∈ [0, 1].

(13)
The Wasserstein distance W2 of order 2 is defined by means of the quadratic
optimal transport problem by W 2

2 (µ0, µ1) := inf(5). It plays the role of a Rie-
mannian distance on the set P2(X ) :=

{

µ ∈ P(X );
∫

X
d(xo, x)

2 µ(dx) <∞
}

of
all probability measures on X with a finite second moment. Accordingly, the dis-
placement interpolations are similar to geodesics. Unfortunately (P2(X ),W2) is
not a Riemannian manifold and the displacement interpolations are not regular
enough to be differentiable in time. In particular, the expected equivalent local
statement

d2

dt2
H(µt|vol) ≥ κW 2

2 (µ0, µ1), ∀0 ≤ t ≤ 1 (14)

of the convex inequality (13) is meaningless.
However, this remarkable result of Sturm and von Renesse was the basic step

for developing the Lott-Sturm-Villani theory of lower bounded Ricci curvature
of geodesic spaces, see [19]. The program of this theory is to extend the notion
of lower bounded Ricci curvature from Riemannian manifolds to geodesic spaces



7

(a special class of metric spaces) by taking advantage of the almost Rieman-
nian structure of (P2(X ),W2) and in particular of the dynamical properties the
corresponding almost geodesics: the displacement interpolations. The heuristic
formula obtained with Otto’s heuristic calculus, see [19, Ch. 15], for the second
derivative of the entropy along a displacement interpolations (µt) is

d2

dt2
H(µt|vol) = Γ2(ψt), 0 ≤ t ≤ 1, (15)

where ψ solves the Hamilton-Jacobi equation (10). We see that it formally implies
(14) under the Γ2-criterion

Γ2(ψ) ≥ κg(∇ψ,∇ψ), ∀ψ

where the Bakry-Émery operator Γ2 is given by

Γ2(ψ) = Ric(∇ψ) +
∑

i,j

(∂i∂jψ)
2.

Entropic interpolations As an interesting consequence of the dynamical prop-
erties of the entropic interpolations, we obtain in [10] that along any entropic
interpolation (µt)0≤t≤1 on a Riemannian manifold, we have

d2

dt2
H(µt|vol) =

1

2
{Γ2(ϕt) + Γ2(ψt)}

where ϕ and ψ are the solutions of the above HJB equations (12) in both direc-
tions of time. This formula is a rigorous (in the sense that the second derivative
is well defined) analogue of the heuristic identity (15).

Conclusion

As a conclusion we sketch a research program and cite a few recent publications
related to the Schrödinger problem in the domains of numerical analysis and
engineering sciences.

A research program

In view of the analogies between the optimal transport problem and the Schrödinger
problem on a Riemannian manifold, one can hope that the program of the Lott-
Sturm-Villani theory can be transferred successfully from geodesic spaces to a
larger class of metric spaces. As a guideline, one should consider the Schrödinger
problem as the basic “geodesic” problem instead of the Monge-Kantorovich prob-
lem. We see several advantages to this strategy:

1. Unlike the displacement interpolations, the entropic interpolations are regu-
lar enough for their second derivative in time to be considered without any
trouble.
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2. Slowing down the reference process, which might be a diffusion process on a
RCD space (see [8]) or a random walk on a graph (see [9,10]), one retrieves
displacement interpolations as limits of entropic interpolations.

3. As shown in [9], the entropic interpolations are well defined on discrete
graphs. They also lead to natural displacement interpolations. Remark that
discrete graphs are not geodesic and as a consequence, are ruled out by the
Lott-Sturm-Villani approach.

This program remains to be investigated . . .

Recent literature

A recent resurgence of the use of the Schrödinger problem arises in applied and
numerical sciences. In [6], the Schrödinger problem is solved using the Sinkhorn
algorithm. This appears to be very competitive with respect to other optimal
transport solvers because of its simplicity, parallelism and convergence speed (at
the expense of an extra smoothing).

A notion of interpolation quite similar to the entropic interpolation might
be defined by means of entropic barycenters as introduced in [2]. It would be
interesting to investigate their curvature properties.

Motivated both by engineering problems and theoretical physics, in the spirit
of [14] the recent papers [3,4] look at the entropic interpolations with a stochastic
control viewpoint.
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