Skip to main content

Proposal of Grid Area Search with UCB for Discrete Optimization Problem

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9376))

Abstract

In this paper, a novel method for the discrete optimization problem is proposed based on the UCB algorithm. Definition of the neighborhood in the search space of the problem easily affects the performance of the existing algorithms because they do not well take into account the dilemma of exploitation and exploration. To optimize the balance of exploitation and exploration, we divide the search space into several grids to reconsider the discrete optimization problem as a Multi-Armed Bandit Problem, and therefore the UCB algorithm is directly introduced for the balancing. We proposed a UCB-grid area search and conducted numerical experiments on the 0-1 Knapsack Problem. Our method showed stable results in different environments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1(1), 67–82 (1997)

    Article  Google Scholar 

  2. Cesa-Bianchi, N.: Prediction, learning, and games. Cambridge University Press (2006)

    Google Scholar 

  3. Davis, L.: Handbook of Genetic Algorithm. Van Nostrand Renhold (1990)

    Google Scholar 

  4. Kennedy, J., Eberhart, R.: Particle Swarm Optimization. IEEE Int. Conf. on Neural Networks 4, 1942–1948 (1995)

    Google Scholar 

  5. Voss, S., Osman, I.H., Roucairol, C.: Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization (1999)

    Google Scholar 

  6. Auer, P., Cesa-Bianchi, N., Fischer, P., Informatik, L.: Finite-time analysis of the multi-armed bandit problem. Machine Learning 47, 235–256 (2002)

    Article  MATH  Google Scholar 

  7. Audibert, J.Y., Munos, R., Szepesvari, C.: Exploration-exploitation trade-off using variance estimates in multi-armed bandits. Theoretical Computer Science 410, 1876–1902 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Audibert, J.Y., Bubeck, S.: Regret bounds and minimax policies under partial monitoring. Journal of Machine Learning Research 11, 2785–2836 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Kocsis, L., Szepesvari, C.: Discounted UCB. In: 2nd PASCAL Challenges Workshop (2006)

    Google Scholar 

  10. Radlinski, F., Kleinberg, R., Joachims, T.: Learning diverse rankings with multi-armed bandits. In: The 25th International Conference on Machine Learning, pp. 784–791 (2008)

    Google Scholar 

  11. Lai, T.L., Robbins, H.: Asymptotically efficient adaptive allocation rules. Advances in Applied Mathematics 6(1), 4–22 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  12. Agrawal, R.: Sample mean based index policies with o(log n) regret for the multiarmed bandit problem. Advances in Applied Mathematics 27, 1054–1078 (1995)

    MATH  Google Scholar 

  13. Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: Gambling in a rigged casino: the adversarial multi-armed bandit problem. In: Proc. of the 36th Annual Symposium on Foundations of Computer Science, pp. 322–331 (1995)

    Google Scholar 

  14. Sutton, R.S., Bart, A.G.: Generalization in Reinforcement Learning-An Introduction-. The MIT Press (1998)

    Google Scholar 

  15. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press (2004). https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf

  16. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Notsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Notsu, A., Saito, K., Nohara, Y., Ubukata, S., Honda, K. (2015). Proposal of Grid Area Search with UCB for Discrete Optimization Problem. In: Huynh, VN., Inuiguchi, M., Demoeux, T. (eds) Integrated Uncertainty in Knowledge Modelling and Decision Making. IUKM 2015. Lecture Notes in Computer Science(), vol 9376. Springer, Cham. https://doi.org/10.1007/978-3-319-25135-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25135-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25134-9

  • Online ISBN: 978-3-319-25135-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics