Skip to main content

Ensemble Learning in Non-Gaussian Data Assimilation

  • Conference paper
  • First Online:
Dynamic Data-Driven Environmental Systems Science (DyDESS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8964))

Abstract

The demand for tractable non-Gaussian Bayesian estimation has increased the popularity of kernel and mixture density representations. Here, using Gaussian Mixture Models (GMM), we posit that the reduction of total variance also remains an important objective in non-linear filtering, particularly in the presence of bias. We propose multi-objective estimation as an essential ingredient in data assimilation.

Using Ensemble Learning, two relatively weak estimators, namely the EnKF and Mixture Ensemble Filter (MEnF), are combined to produce a strong one. The Boosted-MEnF (B-MEnF) stacks MEnF and EnKF to mitigate bias and uses cascade generalization to reduce variance. In the Lorenz-63 model, it lowers mixture complexity without resampling and reduces posterior variance without increasing estimation error.

Our MEnF is a purely ensemble-based GMM filter with a reduced dimensionality burden and without ad-hoc ensemble-mixture member associations. It is expressed as a compact ensemble transform which enables efficient fixed-interval and fixed-lag smoothers (MEnS) as well as the B-MEnF/S.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    MAP problem can also be solved.

  2. 2.

    Note that this problem is not the same as a Wiener filtering problem.

References

  1. Alspach, D.L., Sorenson, H.W.: Nonlinear bayesian estimation using Gaussian sum approximations. IEEE Trans. Autom. Control. 17, 439–448 (1972)

    Article  MATH  Google Scholar 

  2. Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-Gaussian bayesian tracking. IEEE Trans. Signal Proc. 50(2), 174–188 (2002)

    Article  Google Scholar 

  3. Bengtsson, T., Snyder, C., Nychka, D.: Toward a nonlinear ensemble filter for high-dimensional systems. J. Geophys. Res. 108, 8775 (2003)

    Article  Google Scholar 

  4. Choi, S.C., Wette, R.: Maximum likelihood estimation of the parameters of the gamma distribution and their bias. Technometrics 11, 683–690 (1969)

    Article  MATH  Google Scholar 

  5. Dovera, L., Rossa, E.D.: Multimodal ensemble kalman filtering using Gaussian mixture models. Comput. Geosci. 15, 307–323 (2011)

    Article  MATH  Google Scholar 

  6. Dzeroski, S., Zenko, B.: Is combining classifiers better than selecting the best one? Mach. Learni. 54(3), 255–273 (2004). Morgan Kaufmann

    Article  MATH  Google Scholar 

  7. Evensen, G.: The ensemble kalman filter: theoretical formulation and practical implementation. Ocean Dyn. 53, 343–367 (2003)

    Article  Google Scholar 

  8. Frei, M., Kunsch, H.R.: Mixture ensemble kalman filters. Comput. Stat. Data Anal. 58, 127–138 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gama, J., Brazdil, P.: Cascade generalization. Mach. Learn. 41(3), 315–343 (2000)

    Article  MATH  Google Scholar 

  10. Gelb, A.: Applied Optimal Estimation. The MIT Press, Cambridge (1974)

    Google Scholar 

  11. Hoteit, I., Pham, D.T., Triantafyllou, G., Korres, G.: A new approximate solution of the optimal nonlinear filter for data assimilation in meteorology and oceanography. Mon. Wea. Rev. 136, 317–334 (2008)

    Article  Google Scholar 

  12. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  Google Scholar 

  13. McLachlan, G.J., Krishnan, T.: The EM Algorithm and Extensions. Wiley, Hoboken (2008)

    Book  MATH  Google Scholar 

  14. Tagade, P.M., Ravela, S.: A quadratic information measure for data assimilation. In: American Control Conference 2014, Portland, USA (2014)

    Google Scholar 

  15. Ravela, S., Emanuel, K., McLaughlin, D.: Data assimilation by field alignment. Phys. D 230, 127–145 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ravela, S., McLaughlin, D.: Fast ensemble smoothing. Ocean Dyn. 57, 123–134 (2007)

    Article  Google Scholar 

  17. Ravela, S.: Spatial inference for coherent geophysical fluids by appearance and geometry. In: Winter Conference on Applications of Computer Vision (2014)

    Google Scholar 

  18. Smith, K.W.: Cluster ensemble kalman filter. Tellus 59, 749–757 (2007)

    Article  Google Scholar 

  19. Sondergaard, T., Lermusiaux, P.F.J.: Data assimilation with Gaussian mixture models using dynamically orthogonal field equations. Part 1. Theory and scheme. Mon. Wea. Rev. 141, 1737–1760 (2013)

    Article  Google Scholar 

  20. Tagade, P., Seybold, H., Ravela, S.: Mixture ensembles for data assimilation in dynamic data-driven environmental systems. In: Proceedings of the International Conference on Computational Science, ICCS 2014, Cairns, Queensland, Australia, pp. 1266–1276, 10–12 June 2014

    Google Scholar 

  21. David, H.W.: Stacked generalization. Neural Netw. 5, 241–259 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hansjörg Seybold or Sai Ravela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Seybold, H., Ravela, S., Tagade, P. (2015). Ensemble Learning in Non-Gaussian Data Assimilation. In: Ravela, S., Sandu, A. (eds) Dynamic Data-Driven Environmental Systems Science. DyDESS 2014. Lecture Notes in Computer Science(), vol 8964. Springer, Cham. https://doi.org/10.1007/978-3-319-25138-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25138-7_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25137-0

  • Online ISBN: 978-3-319-25138-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics