Skip to main content

Multiscale Method for Hazard Map Construction

  • Conference paper
  • First Online:
Dynamic Data-Driven Environmental Systems Science (DyDESS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8964))

  • 1085 Accesses

Abstract

This work describes a multiscale approach for creating a fast surrogate of physics based simulators, to improve the speed of applications that require large ensembles like hazard map creation. The novel framework is applied in determining the probability of the presence airborne ash at a specific height when an explosive volcanic eruption occurs. The procedure involves representing both the parameter space (sample points at which the numerical model is evaluated) and physical space (ash concentration at a certain height covered well delimited parcel) by a weighted graph. The combination of graph representation and low rank approximation gives a good approximation of the original graph (allows us to identify a well-conditioned basis of the adjacency matrix for its numerical range) that is less computationally intensive and more accurate when out-of-sample extension is performed at re-sample points as higher resolution parcels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Langmann, B., Folch, A., Hensch, M., Matthias, V.: Volcanic ash over Europe during the eruption of Eyjafjallajökull on iceland, April–May 2010. Atmos. Environ. 48, pp. 1–8 (2012)

    Google Scholar 

  2. Mastin, L., Guffanti, M., Servranckx, R., Webley, P., Barsotti, S., Dean, K., Durant, A., Ewert, J., Neri, A., Rose, W.: A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions. J. Volcanol. Geoth. Res. 186(1), 10–21 (2009)

    Article  Google Scholar 

  3. Dasgupta, S., Gupta, A.: An elementary proof of a theorem of Johnson and Lindenstrauss. Random Struct. Algorithm. 22(1), 60–65 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Halko, N., Martinsson, P.-G., Tropp, J.A.: Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev. 53(2), 217–288 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Searcy, C., Dean, K., Stringer, B.: PUFF: a high-resolution volcanic ash tracking model. J. Volcanol. Geoth. Res. 80, 1–16 (1998)

    Article  Google Scholar 

  6. Madankan, R., Pouget, S., Singla, P., Bursik, M., Dehn, J., Jones, M., Patra, A., Pavolonis, M., Pitman, E., Singh, T., et al.: Computation of probabilistic hazard maps and source parameter estimation for volcanic ash transport and dispersion. J. Comput. Phys. 271, 39–59 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Apte, A., Hairer, M., Stuart, A., Voss, J.: Sampling the posterior: an approach to non-Gaussian data simulation. Physica D 230, 50–64 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Doucet, A., de Freitas, N., Gordon, N.: Sequential Monte-Carlo Methods in Practice. Statistics for Engineering and Information Science. Springer, New York (2001)

    Book  MATH  Google Scholar 

  9. Iyengar, R.N., Dash, P.K.: Study of the random vibration of nonlinear systems by the Gaussian closure technique. J. Appl. Mech. 45, 393–399 (1978)

    Article  MATH  Google Scholar 

  10. Lefebvre, T., Bruyninckx, H., Schutter, J.D.: Kalman filters of non-linear systems: a comparison of performance. Int. J. Control 77(7), 639–653 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lefebvre, T., Bruyninckx, H., Schutter, J.D.: Comment on a new method for the nonlinear transformations of means and covariances in filters and estimators. IEEE Trans. Autom. Control 47(8), 1406–1409 (2002)

    Article  Google Scholar 

  12. Archambeau, C., Cornford, D., Opper, M., Shawe-Taylor, J.: Gaussian process approximations of stochastic differential equations. J. Mach. Learn. Res. Workshop Conf. Proc. 1, 1–16 (2007)

    Google Scholar 

  13. Scheidt, C., Caers, J.: Representing spatial uncertainty using distances and kernels. Math. Geosci. 41(4), 397–419 (2009)

    Article  MATH  Google Scholar 

  14. Stefanescu, E.: Multilevel-multiscale ensembles for uncertainty quantification with application to geophysical models. Ph.D. thesis, Mechanical and Aerospace Department, University at Buffalo (2014)

    Google Scholar 

  15. Hegde, C., Wakin, M., Baraniuk, R.: Random projections for manifold learning. In: Platt, J.C., Kolle, D., Singer, Y., Roweis, S.T. (eds.) Advances in Neural Information Processing Systems, vol. 20, pp. 641–648. MIT Press, Cambridge (2008)

    Google Scholar 

  16. Martinsson, P.-G., Rokhlin, V., Tygert, M.: A randomized algorithm for the decomposition of matrices. Appl. Comput. Harmon. Anal. 30(1), 47–68 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mahoney, M.: Randomized algorithms for matrices and data. Found. Trends Mach. Learn. 3(2), 123–224 (2011)

    MATH  Google Scholar 

  18. Coifman, R., Lafon, S.: Diffusion maps. Appl. Comput. Harmon. Anal. 21(1), 5–30 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bermanis, A., Wolf, G., Averbuch, A.: Cover-based bounds on the numerical rank of Gaussian kernels. Appl. Comput. Harmon. Anal. 36(2), 302–315 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Blum, A.: Random projection, margins, kernels, and feature-selection. In: Saunders, C., Grobelnik, M., Gunn, S., Shawe-Taylor, J. (eds.) SLSFS 2005. LNCS, vol. 3940, pp. 52–68. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. Bermanis, A., Averbuch, A., Coifman, R.: Multiscale data sampling and function extension. Appl. Comput. Harmon. Anal. 34(1), 15–29 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Williams, C.K.: Prediction with gaussian processes: from linear regression to linear prediction and beyond. In: Jordan, M.I. (ed.) Learning in Graphical Models. NATO ASI Series, pp. 599–621. Springer, Netherlands (1998)

    Chapter  Google Scholar 

  23. Bernardo, J., Berger, J., Dawid, A., Smith, A., et al.: Regression and classification using gaussian process priors. In: Bernardo, J.M., Berger, J.O., Dawid, A.P., Smith, A.F.M. (eds.) Bayesian Statistics 6: Proceedings of the Sixth Valencia International Meeting, vol. 6, p. 475. Oxford University Press, Oxford (1998)

    Google Scholar 

  24. Quiñonero-Candela, J., Rasmussen, C.E.: A unifying view of sparse approximate gaussian process regression. J. Mach. Learn. Res. 6, 1939–1959 (2005)

    MathSciNet  MATH  Google Scholar 

  25. Banerjee, S., Gelfand, A.E., Finley, A.O., Sang, H.: Gaussian predictive process models for large spatial data sets. J. Roy. Stat. Soc.: Ser. B (Stat. Methodol.) 70(4), 825–848 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Seeger, M., Williams, C., Lawrence, N.: Fast forward selection to speed up sparse gaussian process regression. In: Artificial Intelligence and Statistics 9, no. EPFL-CONF-161318 (2003)

    Google Scholar 

  27. Rasmussen, C.E.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  28. Nguyen-Tuong, D., Seeger, M., Peters, J.: Model learning with local gaussian process regression. Adv. Robot. 23(15), 2015–2034 (2009)

    Article  Google Scholar 

  29. Banerjee, A., Dunson, D.B., Tokdar, S.T.: Efficient gaussian process regression for large datasets. Biometrika, p. ass068 (2012)

    Google Scholar 

  30. Lázaro-Gredilla, M., Quiñonero-Candela, J., Rasmussen, C.E., Figueiras-Vidal, A.R.: Sparse spectrum gaussian process regression. J. Mach. Learn. Res. 11, 1865–1881 (2010)

    MathSciNet  MATH  Google Scholar 

  31. Maillard, O.-A., Munos, R.: Linear regression with random projections. J. Mach. Learn. Res. 13(1), 2735–2772 (2012)

    MathSciNet  MATH  Google Scholar 

  32. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theor. 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Candès, E.J.: Compressive sampling. In: Proceedings of the International Congress of Mathematicians, Madrid, Invited Lectures, pp. 1433–1452, 22–30 August 2006

    Google Scholar 

  34. Bursik, M., Jones, M., Carn, S., Dean, K., Patra, A., Pavolonis, M., Pitman, E., Singh, T., Singla, P., Webley, P.: Estimation and propagation of volcanic source parameter uncertainty in an ash transport and dispersal model: application to the Eyjafjallajokull plume of 14–16 April 2010. Bull. Volcanol. 74(10), 2321–2338 (2012)

    Article  Google Scholar 

  35. Dalbey, K., Patra, A., Pitman, E., Bursik, M., Sheridan, M.: Input uncertainty propagation methods and hazard mapping of geophysical mass flow. J. Geophys. Res. 113, 5203–5219 (2008). doi:10.1029/2006JB004471

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abani Patra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Stefanescu, E.R., Patra, A., Pitman, E.B., Bursik, M., Singla, P., Singh, T. (2015). Multiscale Method for Hazard Map Construction. In: Ravela, S., Sandu, A. (eds) Dynamic Data-Driven Environmental Systems Science. DyDESS 2014. Lecture Notes in Computer Science(), vol 8964. Springer, Cham. https://doi.org/10.1007/978-3-319-25138-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25138-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25137-0

  • Online ISBN: 978-3-319-25138-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics