Skip to main content

Fault Localization of Energy Consumption Behavior Using Maximum Satisfiability

  • Conference paper
  • First Online:
Book cover Cyber Physical Systems. Design, Modeling, and Evaluation (CyPhy 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9361))

Abstract

In model-based analysis of energy consumption behavior, detecting energy bugs is formulated as a model checking problem. Model checkers can check the energy consumption behavior automatically, but significant manual effort is required to study the generated counter-example trace for finding the root causes of the failure. This effort can be reduced by using a formula-based automatic fault localization method. The present paper proposes a new trace formula, encoding all potential transition sequences, with modest assumptions on the failure. The paper also discusses the precision of the identified root causes and limitations of the adapted failure model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We can assume here the counter-example trace is free from the \(\delta \)-stuttering issue.

References

  1. Android. http://developer.android.com

  2. IEEE Standard 802.11, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications (1999)

    Google Scholar 

  3. Alur, R., Courcoubetis, C., Henzinger, T.A.: Computing accumulated delays in real-time systems. CAV 1993. LNCS, vol. 697, pp. 181–193. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  4. Alur, R., Dill, D.L.: A theory of timed automata. TCS 126, 183–235 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theoret. Comput. Sci 138, 3–24 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  7. Biere, A., Heule, M., Van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. IOS Press, Amsterdam (2009)

    MATH  Google Scholar 

  8. Brekling, A., Hansen, M.R., Madsen, J.: MoVES - a framework for modeling and verifying embedded systems. In: Proceedings of the ICM2009, pp. 149–152 (2009)

    Google Scholar 

  9. Christ, J., Ermis, E., Schäf, M., Wies, T.: Flow-sensitive fault localization. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 189–208. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  10. Dutertre, B., de Moura, L.: The Yices SMT Solver (2006). http://yices.csl.sri.com

  11. Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum satisfiability. In: Proceedings of the PLDI 2011, pp. 437–446 (2011)

    Google Scholar 

  12. Lamraoui, S.-M., Nakajima, S.: A formula-based approach for automatic fault localization of imperative programs. In: Merz, S., Pang, J. (eds.) ICFEM 2014. LNCS, vol. 8829, pp. 251–266. Springer, Heidelberg (2014)

    Google Scholar 

  13. Liffiton, M.H., Sakallah, K.A.: On finding all minimally unsatisfiable subformulas. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 173–186. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable subsets of constraints. J. Autom. Reasoning 40(1), 1–33 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liffiton, M.H., Malik, A.: Enumerating infeasibility: finding multiple MUSes quickly. In: Gomes, C., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 160–175. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Morgado, A., Liffiton, M., Marques-Silva, J.: MaxSAT-based MCS enumeration. In: Biere, A., Nahir, A., Vos, T. (eds.) HVC. LNCS, vol. 7857, pp. 86–101. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  17. Nakajima, S.: Model-based power consumption analysis of smartphone applications. In: Proceedings of the ACES-MB 2013, pp. 5:1–5:10 (2013)

    Google Scholar 

  18. Nakajima, S.: Everlasting challenges with the OBJ language family. In: Iida, S., Meseguer, J., Ogata, K. (eds.) Specification, Algebra, and Software. LNCS, vol. 8373, pp. 478–493. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  19. Nakajima, S.: Model checking of energy consumption behavior. In: Cardin, M.-A., Krob, D., Lui, P.C., Tan, Y.H., Wood, K. (eds.) Proceedings of the 1st CSDM Asia, pp. 3–14. Springer, Switzerland (2014)

    Google Scholar 

  20. Nakajima, S.: Using real-time maude to model check energy consumption behavior. In: Bjørner, N., de Boer, F. (eds.) FM 2015. LNCS, vol. 9109, pp. 378–394. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  21. Nakajima, S.: Formal analysis of android application behavior with real-time maude. In: Proceedings of the CPSNA 2015, pp. 7–12 (2015)

    Google Scholar 

  22. Pathak, A., Hu, Y.C., Zhang, M.: Bootstrapping energy debugging on smartphones: a first look at energy bugs in mobile devices. In: Proceedings of the Hotnets 2011, pp. 5:1–5:6 (2011)

    Google Scholar 

  23. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  24. Safarpour, S., Mangassarian, H., Veneris, A., Liffiton, M.H., Sakallah, K.A.: Improved design debugging using maximum satisfiability. In: Proceedings of the FMCAD 2007, pp. 13–19 (2007)

    Google Scholar 

  25. Sorea, M.: Bounded model checking for timed automata. ENTCS 68(5), 116–134 (2002)

    Google Scholar 

  26. Wotawa, F., Nica, M., Moraru, I.: Automated debugging based on a constraint model of the program and a test case. J. Logic Algebraic Program. 81(4), 390–407 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is partially supported by JSPS KAKENHI Grant Numbers 24300010 and 26330095, and the Kayamori Foundation of Informational Science Advancement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin Nakajima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Nakajima, S., Lamraoui, SM. (2015). Fault Localization of Energy Consumption Behavior Using Maximum Satisfiability. In: Mousavi, M., Berger, C. (eds) Cyber Physical Systems. Design, Modeling, and Evaluation. CyPhy 2015. Lecture Notes in Computer Science(), vol 9361. Springer, Cham. https://doi.org/10.1007/978-3-319-25141-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25141-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25140-0

  • Online ISBN: 978-3-319-25141-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics