Quotienting the Delay Monad
by Weak Bisimilarity

James Chapman, Tarmo Uustalu, and Niccolo Veltri

Institute of Cybernetics, Tallinn University of Technology
Akadeemia tee 21, 12618 Tallinn, Estonia,
{james,tarmo,niccolo}@cs.ioc.ee

Abstract. The delay datatype was introduced by Capretta [3] as a
means to deal with partial functions (as in computability theory) in
Martin-Lof type theory. It is a monad and it constitutes a constructive
alternative to the maybe monad. It is often desirable to consider two de-
layed computations equal, if they terminate with equal values, whenever
one of them terminates. The equivalence relation underlying this identifi-
cation is called weak bisimilarity. In type theory, one commonly replaces
quotients with setoids. In this approach, the delay monad quotiented by
weak bisimilarity is still a monad. In this paper, we consider Hofmann’s
alternative approach [6] of extending type theory with inductive-like quo-
tient types. In this setting, it is difficult to define the intended monad
multiplication for the quotiented datatype. We give a solution where we
postulate some principles, crucially proposition extensionality and the
(semi-classical) axiom of countable choice. We have fully formalized our
results in the Agda dependently typed programming language.

1 Introduction

The delay datatype was introduced by Capretta [3] as a means to deal with par-
tial functions (as in computability theory) in Martin-Lof type theory. It is used
in this setting to cope with possible non-termination of computations (as, e.g.,
in the unbounded search of minimalization). Inhabitants of the delay datatype
are delayed values, that we call computations throughout this paper. Crucially
computations can be non-terminating and not return a value at all. The de-
lay datatype constitutes a (strong) monad, which makes it possible to deal with
possibly non-terminating computations just like any other flavor of effectful com-
putations following Moggi’s general monad-based method [12]. Often, one is only
interested in termination of computations and not the exact computation time.
Identifying computations that only differ by finite amounts of delay corresponds
to quotienting the delay datatype by weak bisimilarity. The quotient datatype
is used as a constructive alternative to the maybe datatype (see, e.g., [2]) and
should also be a (strong) monad.

Martin-Lof type theory does not have built-in quotient types. The most com-
mon approach to compensate for this is to mimic them by working with setoids.

But this approach has some obvious shortcomings as well, for example, the con-
cept of a function type is changed (every function has to come with a com-
patibility proof) etc. An alternative approach, which we pursue here, consists
in extending the theory by postulating the existence of inductive-like quotient
types & la Hofmann [6]. These quotient types are ordinary types rather than
setoids.

In this paper, we ask the question: is the monad structure of the delay
datatype preserved under quotienting by weak bisimilarity? Morally, this ought
to be the case. In the setoid approach, this works out unproblematically indeed.
But with inductive-like quotient types, one meets a difficulty when attempting
to reproduce the monad structure on the quotiented datatype. Specifically, one
cannot define the multiplication. The difficulty has to do with the interplay of the
coinductive nature of the delay datatype, or more precisely the infinity involved,
and quotient types. We discuss the general phenomenon behind this issue and
provide a solution where we postulate some principles, the crucial ones being
proposition extensionality (accepted in particular in homotopy type theory) and
the (semi-classical) axiom of countable choice. It is very important here to be
careful and not postulate too much: in the presence of proposition extensionality,
the full axiom of choice implies the law of excluded middle.

As an aside, we also look at the (strong) arrow structure (in the sense of
Hughes [7]) on the Kleisli function type for the delay datatype and ask whether
this survives quotienting by pointwise weak bisimilarity. Curiously, here the an-
swer is unconditionally positive also for inductive-like quotient types.

This paper is organized as follows. In Section 2, we give an overview of the
type theory we are working in. In Section 3, we introduce the delay datatype
and weak bisimilarity. In Section 4, we extend type theory with quotients a
la Hofmann. In Section 5, we analyze why a multiplication for the quotiented
delay type is impossible to define. We notice that the problem is of a more
general nature, and a larger class of types, namely non-wellfounded and non-
finitely branching trees, suffer from it. In Section 6, we introduce the axiom
of countable choice and derive some important consequences from postulating
it. In Section 7, using the results of Section 6, we define multiplication for the
delay type quotiented by weak bisimilarity (we omit the proof of the monad laws,
which is the easy part—essentially the proofs for the unquotiented delay datatype
carry over). In Section 8, we quotient the arrow corresponding to the monad by
pointwise weak bisimilarity. Finally, in Section 9, we draw some conclusions and
discuss future work.

We have fully formalized the results of this paper in the dependently typed
programming language Agda [13]. The formalization is available at http://cs.
ioc.ee/~niccolo/delay/.

2 The Type Theory under Consideration

We consider Martin-Lof type theory with inductive and coinductive types and a
cumulative hierarchy of universes Uy. To define functions from inductive types or

to coinductive types, we use guarded (co)recursion. The first universe is simply
denoted U and when we write statements like “X is a type”, we mean X : U
unless otherwise specified. We allow dependent functions to have implicit ar-
guments and indicated implicit argument positions with curly brackets (as in
Agda). We write = for propositional equality (identity types) and = for jude-
mental (definitional) equality. Reflexivity, transitivity and substitutivity of =
are named refl, trans and subst, respectively.

We assume the principle of function extensionality, expressing that pointwise
equal functions are equal, i.e., the inhabitedness of

FunExt = H H (H f1x5f2x> - fi=fo

{X,Y:U} {f1,f2: X—=>Y} \z:X

Likewise we will assume analogous extensionality principles stating that strongly
bisimilar coinductive data and proofs are equal for the relevant coinductive types
and predicates, namely, the delay datatype and weak bisimilarity (check DExt,
~Ext below in Sections 3 and 4).

We also assume uniqueness of identity proofs for all types,® i.e., an inhabitant

for
up=TT I I rn=r

{X:U} {z1,22: X} P1,p2:T1=T2

A type X is said to be a proposition, if it has at most one inhabitant, i.e., if
the type
isProp X = H T1 = 2o
z1,22: X
is inhabited.
For propositions, we postulate a further and less standard principle of propo-
sition extensionality, stating that logically equivalent propositions are equal:?

PropExt = H isProp X — isPropY - X &Y - X =Y
{X,Y:U}

Here X Y = (X - Y)x (Y = X).

3 Delay Monad

For a given type X, each element of D X is a possibly infinite computation that
returns a value of X, if it terminates. We define D X as a coinductive type by

the rules
c:DX

nowz : DX laterc: DX

! Working in homotopy type theory [15], we would assume this principle only for
0-types, i.e., sets, and that would also be enough for our purposes.

2 Propositions are (-1)-types and proposition extensionality is univalence for (-1)-
types.

Let R be an equivalence relation on a type X. The relation lifts to an equiv-
alence relation ~p on DX that we call strong R-bisimilarity. The relation is
coinductively defined by the rules

p:riRxo p:ici~RC2
NOW., P : NOW T1 ~ R NOW T3 later. p : latercy ~p latercs

We alternatively denote the relation ~g with D R, since strong R-bisimilarity
is the functorial lifting of the relation R to D X. Strong =-bisimilarity is simply
called strong bisimilarity and denoted ~. While it ought to be the case morally,
one cannot prove that strongly bisimilar computations are equal in Martin-Lof
type theory. Therefore we postulate an inhabitant for

DExt = H H c1~Cy—>Cl=Co

{X:U} {c1,c2:D X}

We take into account another equivalence relation ~r on D X called weak
R-bisimilarity, which is in turn defined in terms of convergence. The latter is a
binary relation between D X and X relating terminating computations to their
values. It is inductively defined by the rules

pixy = X p:clx
now,p:nowzy L xo later p:latercx

Two computations are considered weakly R-bisimilar, if they differ by a finite
number of applications of the constructor later (from where it follows classically
that they either converge to R-related values or diverge). Weak R-bisimilarity is
defined coinductively by the rules

pr:cilrt pr:ixiRx p3:icalas D:cC1 RRC
laD1P2p3:c1L =R C2 later p : later c; =g laterco

Weak =-bisimilarity is called just weak bisimilarity and denoted ~. In this case,
we modify the first constructor for simplicity:

pr:alxr priealw
daPip2ic1 R

The delay datatype D is a (strong) monad. The unit 7 is the constructor now
while the multiplication p is “concatenation” of laters:

w:D(DX)—-DX
w(nowe) =c¢
u (later ¢) = later (uuc)
In the quotients-as-setoids approach, it is trivial to define the corresponding

(strong) monad structure on the quotient of D by =. The role of the quotiented
datatype is played by the setoid functor D, defined by D (X, R) = (D X, =~Rg).

The unit 77 and multiplication ji are just 7 and p together with proofs of that the
appropriate equivalences are preserved. The unit 7 is a setoid morphism from
(X, R) to (D X,~p), as 1 Rx2 — nowzy ~p now zy by definition of ~g. The
multiplication i is a setoid morphism from (D (D X),~.) to (D X,~p), since
€1 Rnp Co — ey g peg for all ¢p,co : D (D X). The monad laws hold up to
AR, since they hold up to ~g.

In this paper, our goal is to establish that the delay datatype quotiented by
weak bisimilarity is a monad also in Hofmann’s setting [6], where the quotient
type of a given type has its propositional equality given by the equivalence
relation. We discuss such quotient types in the next section.

4 Inductive-Like Quotients

In this section, we describe quotient types as particular inductive-like types
introduced by M. Hofmann in his PhD thesis [6]. Let X be a type and R an
equivalence relation on X. For any type Y and function f : X — Y, we say that
f is R-compatible (or simply compatible, when the intended equivalence relation
is clear from the context), if the type

compat f = H r1Rry — fx1 = fxo
{z1,22: X}

is inhabited. The quotient of X by the relation R is described by the following
data:

(i) a carrier type X/R;
(ii) a constructor [] : X — X/R together with a proof sound : compat [];
(iii) a dependent eliminator: for every family of types Y : X/R — U}, and function
f:1L.x Y [z] with p : dcompat f, there exists a function lift f p : Hq:X/R Ygq
together with a computation rule

liftg fpz:lift fplx] = fx
for all x: X.

The predicate dcompat is compatibility for dependent functions f: [],. Y [z]:

dcompat f = H H substY (soundr) (fx1) = f xa.

{z1,22:X} 771 Rxa

We postulate the existence of data (i)—(iii) for all types X and equivalence rela-
tions R on X. Notice that the predicate dcompat depends of the availability of
sound. Also notice that, in (iii), we allow elimination on every universe Uy. In
our development, we actually eliminate only on U/ and once on U; (Proposition
2).

The propositional truncation (or squash) || X|| of a type X is the quotient of
X by the total relation A 21 x2. T. We write |_| instead of [] for the constructor of

IX |- The non-dependent version of the elimination principle of || X || is employed
several times in this paper, so we spell it out: in order to construct a function
of type || X|| — Y, one has to construct a constant function of type X — Y.
Informally an inhabitant of || X|| corresponds to an “uninformative” proof of
inhabitedness of X . For example, an inhabitant of ||} . P || can be thought of
as a proof of there existing an element of X that satisfies P that has forgotten the
information of which element satisfies the predicate P. Propositional truncation
and other notions of weak or anonymous existence have been thoroughly studied
in type theory [9].

We call a function f: X — Y surjective, if the type [[,. [[>2,.x fz =yl is
inhabited, and a split epimorphism, if the type | >, v .y [L,.v f(9y) =yl is
inhabited. We say that f is a retraction, if the type ing%X ﬁy:y flgy) =yis
inhabited. Every retraction is a split epimorphism, and every split epimorphism
is surjective.

Proposition 1. The constructor [] is surjective for all quotients.
Proof. Given a type X and an equivalence relation R on X, we define:

sui: T Sl =4

¢:X/R llz: X

[Jsurj = lift (A z. |z, refl|) p

The compatibility proof p is trivial, since |xy,refl] = |z, refl| for all z1, 2o :
X. O

A quotient X/R is said to be effective, if the type [[, ,..x[v1] = [z2] —
x1 Rxo is inhabited. In general, effectiveness does not hold for all quotients. But
we can prove that all quotients satisfy a weaker property. We say that a quotient
X/ R is weakly effective, if the type [, .. x [¥1] = [x2] — [|z1 Rz2[| is inhabited.

Proposition 2. All quotients are weakly effective.

Proof. Let X be a type, R an equivalence relation on X and x : X. Consider the
function ||z R || : X = U, ||z R _|| = A2’. ||]x R 2'||. We show that ||z R _|| is R-
compatible. Let x1, x5 : X with z; Rxo. We have x Rz, <> x R x5 and therefore
lx R z1|| < || R 22||. Since propositional truncations are propositions, using
proposition extensionality, we conclude ||zRx1|| = ||z Rxz||. We have constructed
a term p, : compat ||z R _||, and therefore a function lift ||z R _||p, : X/R — U
(large elimination is fundamental in order to apply lift, since ||z R _|| : X — U
and X — U : Uy). Moreover, lift ||z R_|| px [y] = ||z Ryl by its computation rule.
Let [z1] = [z2] for some x1, x5 : X. We have:

|21 Ras| = lift |21 R || pay [x2] = lift [lz1 R - || pay [21] = |21 R |

and x; R z; holds, since R is reflexive. O

Notice that the constructor [] is not a split epimorphism for all quotients.
The existence of a choice of representative for each equivalence class is a non-
constructive principle, since it implies the law of excluded middle, i.e., the in-
habitedness of the following type:

LEM =] isPropX — X +-X
{X:U}

where - X =X — 1.

Proposition 3. Suppose that [] is a split epimorphism for all quotients. Then
LEM s inhabited.

Proof. Let X be a type together with a proof of isProp X. We consider the
equivalence relation R on Bool, 1 Rzs = x1 = 22 + X. By hypothesis we
obtain || 3= ep.g001/ R—Bool 11g:8001/r [rePd] = || Using the elimination principle
of propositional truncation, it is sufficient to construct a constant function of
type:

Z H [repgl=q - X +-X

rep:Bool/ R—Bool ¢:Bool/R

Let rep : Bool/R — Bool with [rep g] = ¢ for all g : Bool/R. We have [rep [z]] =
[x] for all x : Bool, which by Proposition 2 implies ||rep [z] R z||.

Note now that the following implication (a particular form of axiom of choice
on Bool) holds:

acBool : H lrep [z] R x| —

z:Bool

acBool r = lifty (A7 r2. |dr1 r2|) p (r true) (r false)

H rep[z] Rx

z:Bool

where dryrotrue = 71 and dry ro false = 79, and lifts is the two-argument ver-
sion of lift. The compatibility proof p is immediate, since the return type is a
proposition.

We now construct a function of type ||[],.goo rep (] Rz|| = X +-X. It is
sufficient to define a function [],.g.., rep [z] Rz — X 4+ =X (it will be constant,
since the type X + =X is a proposition, if X is a proposition), so we suppose
rep[z] R z for all x : Bool. We analyze the (decidable) equality rep [true] =
rep [false] on Bool. If it holds, then we have true R false and therefore an inhabitant
of X. If it does not hold, we have an inhabitant of =X: let x : X, therefore
true R false, and this implies rep [true] = rep [false] holds, which contradicts the
hypothesis. O

We already noted that not all quotients are effective. In fact, postulating
effectiveness for all quotients implies LEM [10]. But the quotient we are consid-
ering in this paper, namely D X/~ for a type X, is indeed effective. Notice that,
by Proposition 2, it suffices to prove that ||¢; = ca|| = ¢1 & ¢g for all ¢1,¢2 : D X.

Lemma 1. For all types X and c1,co : D X, there exists a constant endofunction
on ¢y & cy. Therefore, the type ||c1 = co|| — ¢1 & ¢y is inhabited.

Proof. Let X be a type and c1,cs : D X. We consider the following function.

Canona? : ¢ & ¢y — Ca A Co

~(la (n°W¢p1)p2) =l (nOWu?l)pQ

canon~ (|, (later) p1) (now| pa)) = | (latery p1) (now ps)
~(
~(

1~ (later) p1) (later) p2)) = latery (canon= (| - p1 p2))
latern, p) = latern, (canon= p)

The function canona canonizes a given weak bisimilarity proof by maximizing
the number of applications of the constructor latery,. This function is indeed
constant, i.e., one can prove thm:q%@ p1 = po for all ¢q,co : DX, where the
relation = is strong bisimilarity on proofs of ¢; /= c¢o, coinductively defined by
the rules: N

P1 = D2

lapip2a = lapip2 laterx p1 = latery po

Similarly to extensionality of delayed computations, we assume that strongly
bisimilar weak bisimilarity proofs are equal, i.e., that we have an inhabitant for

H H H p1 = p2 = p1=Dp2

{X:U} {c1,c2:D X} p1,p2:c1=c2

5 Multiplication: What Goes Wrong?

Consider now the type functor D, defined by D X = D X/~. Let us try to equip
it with a monad structure. Let X be a type. As the unit 7 : X — D X/~, we can
take [-]onow. But when we try to construct a multiplication i : D (D X/~)/~ —
D X /=, we get stuck immediately. Indeed, i must be of the form lift @’ p for
some i’ : D(DX/~) — D X/~ with p : compat i/, but we cannot define such
i’ and p. The problem lies in the coinductive nature of the delay datatype. A
function of type D (D X/~) — D X/~ should send a converging computation to
its converging value and a non-terminating one to the equivalence class of non-
termination. This discontinuity makes constructing such a function problematic.
Moreover, one can show that a right inverse of [] : DX — DX/~, ie., a
canonical choice of representative for each equivalence class in D X/~, is not
definable. Therefore, we cannot even construct i’ as a composition [_] o i” with
g’ : D(DX/~) — DX, since we do not know how to define i”(nowgq) for
q:DX/=.

A function i’ would be constructable, if the type D (D X /) were a quotient
of D(D X) by the equivalence relation D~ (remember that D~ is a synonym
of ~4, the functorial lifting of ~ from D X to D (D X)). In fact, the function

[Jop:D(DX) — DX/~ is Da-compatible, since z1(D~)xy = pa1 = paa,
and therefore the elimination principle would do the job. But how “different” are
D (D X /=) and the quotient D (D X)/D ~? More generally, how “different” are
D (X/R) and the quotient D X/D R, for a given type X and equivalence relation
Ron X7

A function #° : D X/DR — D (X/R) always exists, ° = lift (D[]) p. The
compatibility proof p follows directly from ¢;(D R)co — D[]¢; ~ D[] ce. But an
inverse function ¢ : D (X/R) — D X/D R is not definable. This phenomenon
can be spotted more generally in non-wellfounded trees, i.e., the canonical func-
tion 87 : TX/T R — T (X/R) does not have an inverse, if T X is coinduc-
tively defined, where T'R is the functorial lifting of R to 7' X. On the other
hand, a large class of purely inductive types, namely, the datatypes of well-
founded trees where branching is finite, is free of this problem. As an exam-
ple, for binary trees the inverse)BT : BTree (X/R) — BTree X/BTree R of
6BTree . BTree X/BTree R — BTree (X/R) is defined as follows:

BT . BTree (X/R) — BTree X/BTree R
wBTree (Ieaf q) = |ift ()\ xT. [Ieaf $]) Pleaf q
T (node ty ta) = lifty (A 51 s5. [node 51 52]) Pode (VBT 11) (15T t5)

where lifts is the two-argument version of lift. The simple compatibility proofs
Dleaf and Ppode are omitted. Wellfounded non-finitely branching trees are affected
by the same issues that non-wellfounded trees have. And in general, for a W-type
T, the function 67 : T X/T R — T (X/R) is not invertible, since for function
spaces the function 7 : (Y — X)/(Y — R) — (Y — X/R) is not invertible.
Invertibility of the function 67 : (Y — X)/(Y - R) —» (Y — X/R), for all
types Y, X and equivalence relation R on X, has been analyzed in the Calculus
of Inductive Constructions [4]. It turns out that surjectivity of 67 is logically
equivalent to the full axiom of choice (AC)? | i.e., the following type is inhabited:

AC = H H H ZPmy — Z HPx(fx)

{X,Y:U} P:X=Y—=U z: X ||y:Y [X=Y x: X

Together with weak effectiveness (Proposition 2), AC not only implies surjectivity
of 67, but also the existence of an inverse 7 : (Y — X/R) —» (Y — X)/(Y —
R). We refrain from proving these facts, but we prove Lemma 2 and Proposition
5, which are weaker statements, but have analogous proofs.

The existence of an inverse ¢~ of 6~ would immediately allow us to define
the bind operation for D. Let us consider the case where X is D X and R is weak

3 Notice that AC is fundamentally different from the type-theoretic axiom of choice:
01 (OXra) X e
{X,Y:U} P:X=Y—=U \z:X y:Y [X—>Y X

which is provable in type theory.

bisimilarity, so 7 : (Y - DX/~) - (Y - DX)/(Y — =). We define

bind: (Y > DX/~) - DY/~ — DX/~
bind f g = liftz (A gec. [bindge])p (¥ f)q

where bind is the bind operation of the unquotiented delay monad. The compat-
ibility proof p is obtained from the fact that bind g; ¢; ~ bind gs ¢5 if ¢; &~ ¢5 and
gly~goyforally:Y.

AC is a controversial semi-classical axiom, generally not accepted in construc-
tive systems [11]. We reject it too, since in our system the axiom of choice implies
the law of excluded middle.

Proposition 4. AC implies LEM.

Proof. Assume AC. With a proof analogous to Lemma 2, we can prove that the
function A f.[Jo f: (X = Y) = (X — Y/R) is surjective, for any types X, Y
and equivalence relation R on Y. In particular, given a type X and an equivalence
relation R on X, we have that the type [[,.x,r_x/r HZ]@:X/R%X [Jof= gH
is inhabited. Instantiating g with the identity function on X/R, we obtain
’Zf:X/R%X Hq:X/R [fad=q
for all quotients X/R. By Proposition 3, this implies LEM. O

, i.e., the constructor [] is a split epimorphism

In the following sections, we show that the weaker axiom of countable choice
is already enough for constructing a multiplication for D. Countable choice does
not imply excluded middle and constructive mathematicians like it more [14,
Ch. 4].

6 Axiom of Countable Choice and Streams of Quotients

The axiom of countable choice (ACw) is a specific instance of AC where the
binary predicate P has its first argument in N:

o= T 11 (T

{X:U} PNoX—U \n:N

Z Pnzx

x: X

) = > [[Pnirn

f:N—=X n:N

We also introduce a logically equivalent formulation of ACw that will be used in

Proposition 5:
ACwy =] (H ||Pn||> —

P:N—U n:N

H Pn
n:N

Let X be a type and R an equivalence relation on it. We show that ACw
implies the surjectivity of the function [V : (N = X) — (N — X/R), [f]"n =
[fn]. This in turn implies the definability of a function ¥ : (N — X/R) —

(N = X)/(N = R) that is inverse of the canonical function O~ = lift []" sound",
where
sound" : compat [N

sound" 7 = funext (An. sound (7 n)).

using funext : FunExt.

N

Lemma 2. Assume acw : ACw. Then []V is surjective.

Proof. Given any g : N — X /R, we construct a term e, : Hz‘f:NﬁX [N = gH
Since we are assuming the principle of function extensionality, it is sufficient
to find a term e : HZf:N%X IL.xf 7] EgnH. Define P : N - X — U by

Pnx = [z] = gn. We take e = acw P (An.[]surj(gn)), with []surj introduced
in Proposition 1. O

Proposition 5. Assume ACw. Then 6" : (N — X)/(N = R) — (N — X/R) is
invertible.

Proof. We construct a term
r > I[[¢"wig=y
YN:(N—-X/R)—»(N—X)/(N—R) ¢:N—-X/R

Given any ¢ : N — X/R, we define:

e X t=g) - Y #a=y

fN—=X ¢:(N—=X)/(N—=R)

y (£.p) = (1], trans (iifes [1" sound™) p)

The function hj is constant. Indeed, let f1, fo : N — X with p; : [f1]N = g and
p2 : [f2]N = g. By uniqueness of identity proofs, it is sufficient to show [f1] = [fa].
By symmetry and transitivity, we get [f1]Y = [f2]". We construct the following
series of implications:

AT =) =[] LAn] = [f2n]

n:N

— H |(fin) R(fan)]| (by weak effectiveness)
n:N

= [T (fin) R(f2n)|| (by ACw and ACw — ACw,)

n:N
=i (N=R) f
= [f1] = [f2]

The last implication is given by the elimination principle of propositional trun-
cation applied to sound, which is a constant function by uniqueness of identity
proofs. Therefore h’g is constant and we obtain a function

he:|| Y N =g||— > MNg=g

fiN—=X ¢:(N—=X)/(N—=R)

We get hg ey : Zq:(N_)X)/(N_)R) N g = ¢, with eg constructed in Lemma 2. We
take 7 = (Ag. fst (hy €4), Ag.snd (hg ey)) and YN = fstr.

We now prove that ™ (0% q) = g for all ¢ : (N — X)/(N — R). It is sufficient
to prove this equality for ¢ = [f] with f : N — X. By the computation rule of
quotients, we have to show " [f]N = [f]. This is true, since

PN = fst (hypy egppe) = fot (hygpe |, refl]) = fst (B (f, refl)) = [£]
O

Corollary 1. Assume ACw. The type N — X/R is the carrier of a quotient
of N = X by the equivalence relation N — R. The constructor is [N and
we have the following dependent eliminator and computation rule: for every
family of types Y : (N — X/R) — Uy and function h : Hf:N%XY[f]N with
p: dcompatN h, there exists a function liftY hp: Hg:NﬁX/RYg with the property
that lift" hp [f]N = h f for all f : N — X, where

dcompat’ h = H H substY (soundN r)(h f1)=hfo
{f1,f2:N=>X} r:fi (N=R) f2

7 Multiplication: A Solution Using ACw

We can now build the desired monad structure on D using the results proved in
Section 6. In particular, we can define i : D (D X/~)/~ — D X/~. We rely on
ACw.

7.1 Delayed Computations as Streams

In order to use the results of Section 6, we think of possibly non-terminating
computations as streams. More precisely, let X be a type and ¢ : D X. Now ¢
can be thought of as a stream ec: N — X + 1 with at most one value element
in the left summand X.

e:DX—->N—->X+1

e (now) zero = inlx

e (later ¢) zero = inrx

e (now) (sucn) = inrx

e ()

laterc) (sucn) =ecn

Conversely, from a stream f : N — X 4 1, one can construct a computation
7w f : DX. This computation corresponds to the “truncation” of the stream to
its first value in X.

7T:(N=>X+1)—-DX
7w f = case f zero of
inlz — now x

inrx — later (7 (f o suc))

We see that D X is a subset of N — X + 1 in the sense that, for all ¢ : D X,
7 (e ¢) ~ ¢, and therefore (e ¢) = ¢ by delayed computation extensionality.

Now let R be an equivalence relation on X. The canonical function ! :
(X +1)/(R+1) — X/R+1 has an inverse ¢»*! whose construction is similar
to the construction of BT for binary trees in Section 5. Therefore, for all
q:D(X/R), we have 7 (071 o (Tl ocq)) =¢q.

We define [J° : DX — D (X/R) by [J° = D[]. This function is compatible
with the relation D R, i.e., there exists a term sound® : compat []°.

Theorem 1. The type D (X/R) is the carrier of a quotient of D X by the equiv-
alence relation D R. The constructor is []° and we have the following dependent
eliminator and computation rule: for every family of types Y : D(X/R) — Uy
and function h : [[.px Y [P with p : dcompat® h, there exists a function
ift° hp Hq:D(X/R) Y q such that ift° hp[c]® = he for all ¢ : D X, where

dcompat® h = H H subst Y (sound® 7) (hey) = hey
{c1,c2:D X} rici(DR)ca

Proof. We only define the dependent eliminator. Let h : [[,px Y [#]° with
p : dcompat® h, and ¢ : D(X/R). Let g:N— (X +1)/(R+1),g=vToeqgso
T (0t og) =q.

We prove Y (r (Tt og)). By Corollary 1, it suffices to construct a function b’ :
Hinoxe Y (0 1o[f]N)) together with a proof r : dcompat™ A’. One can easily
construct a proof s : [1 f]° =7 (07 o [f]V), so we take b/ f = substY s (h (7 f)).
A proof r : dcompat’ i/ can be constructed by observing that, for all fi, fo :
N — X + 1 satistying f; (N — R+ 1) fo, one can prove 7 f1 (D R) 7 fo. O

7.2 Construction of

Using the elimination rule of the quotient D (X/R) defined in Theorem 1, we
can finally define the multiplication i of D.

DX

D (D X)

£t ([Jou) p

DX/~

a=lift (Iift° ([J o p) p) p’

D(DX/~)/~

The above diagram makes sense only, if one constructs two compatibility proofs
p : compatP ([] o) and p’ : compat(liftD ([J o) p), where compatP is the
non-dependent version of dcompat®.

The first proof is easy, since ¢;(D&)ca — pey = peg for all ¢1,¢o : D (D X).

It is more complicated to prove compatibility of the second function. Let
q1,¢2 : D(D X/~). We have to show ¢1 ~ ¢o — lift° ([] o p)pq = lift° ([o
1) pqz. By the elimination principle of the quotient D (D X/a), described in
Theorem 1, it is sufficient to prove [z1]° ~ [z2]? — lift° ([] o p)p[a)? =
lift® ([] o p)plea]? for some ¢y, ¢y : D (D X). Applying the computation rule of
the quotient D (D X/a) and spelling out the definition of the constructor []P
it remains to show D[]c1 ~ D[]ca — [uec1] = [wee], which holds, if one can
prove D[]e1 = D[] ca — per = preo. This is provable thanks to Lemma 1. It is
easy to see why Lemma 1 is important for completing the compatibility proof of
lift® ([] o p)p. The difficult case in the proof of D[]e1 ~ D[] ey — pey = pey
is the case where ¢; = nowy; and co = now ys, so we are given an assumption
of type [y1] = [y2]. From this, by Lemma 1, we obtain u(nowy;) = y1 ~ y2 =

p (now yz).

)

8 A Monad or An Arrow?

Hughes [7] has proposed arrows as a generalization of monads. Jacobs et al. [8]
have sorted out their mathematical theory.

We have seen that it takes a semi-classical principle to show that quotienting
the functor D by weak bisimilarity preserves its monad structure. In contrast,
quotienting the corresponding profunctor KD, defined by KDXY = X — DY,
by pointwise weak bisimilarity can easily be shown to preserve its (strong) arrow

structure (whose Freyd category is isomorphic to the Kleisli category of the
monad) without invoking such principles.

Indeed, the arrow structure on KD is given by pure : (X - Y) - KDXY,
pure f=nofand <: KDY Z - KDXY - KDX Z, { << k = bind{ o k.

Now, define the quotiented profunctor by KDXY = (X = DY)/(X — =).
We can define pure : (X — Y) — KD X Y straightforwardly by pure f = [puref].
But we can also construct &< : KDY Z — KDXY — KDX Z as { K k =
lifte (<&) p £k, where p is an easy proof of £1 (Y — =) o — k1 (X — =) ky —
(01 << k1) (X — =) (by < k).

This works entirely painlessly, as there is no need in this construction for
a coercion (X — Y/=) - (X — Y)/(X — =) (cf. the discussion above in
Section 5). From the beginning, we quotient the relevant function types here
rather than their codomains.

There are some further indications that quotienting the arrow may be a
righter thing to do than quotienting the monad. In particular, the work by
Cockett et al. [5] suggests that working with finer quotients of the arrow consid-
ered here may yield a setting for dealing with computational complexity rather
computability constructively.

9 Conclusions

In this paper, studied the question of whether the delay datatype quotiented by
weak bisimilarity is still a monad? As we saw, different approaches to quotients
in type theory result in different answers. In the quotients-as-setoids, the answer
is immediately positive. We focussed on the more interesting and (as it turned
out) more difficult case of the quotient types a la Hofmann. The main issue in
this case, highlighted in Section 5, is that quotient types interact badly with in-
finite datatypes, such as datatypes of non-wellfounded or non-finitely branching
trees; such datatypes do not commute with quotienting. For the delay datatype,
and more generally for types that can be injectively embedded into streams or
countably branching trees, a solution is possible assuming the axiom of countable
choice.

In the type theory that we are considering, the employment of semi-classical
principles, such as countable choice, is unavoidable. In homotopy type theory
with higher inductive types [15, Ch. 6], the problem may have a different solu-
tion. One might be able to implement the delay type quotiented by weak bisim-
ilarity as an higher inductive type, proceeding similarly to the construction of
Cauchy reals in [15, Sec. 11.3], mutually defining the type and the equivalence
relation, and adding a 1-constructor stating that the equivalence has to be read
as equality. Note that this technique is not immediately applicable, since the de-
lay datatype is coinductive and weak bisimilarity is mixed inductive-coinductive.
One would have to come up with a different construction. We think that the idea
should be to construct the intended monad as a datatype delivering free com-
pletely Elgot algebras [1]. Notice that this would be analogous to the already

mentioned implementation of Cauchy reals, which are constructed as the free
completion of the rational numbers.

Acknowledgement We thank Thorsten Altenkirch, Andrej Bauer, Bas Spitters
and our anonymous referees for comments.

This research was supported by the ERDF funded Estonian CoE project
EXCS and ICT national programme project “Coinduction”, the Estonian Science
Foundation grants No. 9219 and 9475 and the Estonian Ministry of Education
and Research institutional research grant IUT33-13.

References

1. Adamek, J., Milius, S., Velebil, J.: Elgot algebras. Log. Methods in Comput. Sci.,
2(5:4) (2006)

2. Benton, N., Kennedy, A., Varming, C.: Some domain theory and denotational
semantics in Coq. In Berghofer, S., Nipkow, T. Urban, C., Wenzel, M. (eds.)
TPHOLSs 2009. LNCS, vol. 5674, pp. 115-130. Springer, Heidelberg (2009)

3. Capretta, V.: General recursion via coinductive types. Log. Methods in Comput.
Sci., 1(2:1) (2005)

4. Chicli, L., Pottier, L., Simpson, C.: Mathematical quotients and quotient types in
Coq. In: Geuvers, H., Wiedijk, F. (eds.) TYPES 2002, LNCS, vol. 2646, pp. 95-107.
Springer, Heidelberg (2003)

5. Cockett, R., Diaz-Boils, J., Gallagher, J., Hrubes, P.: Timed sets, complexity,
and computability. In: Berger, U., Mislove, M. (eds.) Proc. of 28th Conf. on the
Mathematical Foundations of Program Semantics, MFPS XXVIII, Electron. Notes
in Theor. Comput. Sci., vol. 286, pp. 117-137. Elsevier, Amsterdam (2012)

6. Hofmann, M.: Extensional Constructs in Intensional Type Theory. CPHS/BCS
Distinguished Dissertations. Springer, London (1997)

7. Hughes, J.: Generalising monads to arrows. Sci. of Comput. Program., 37(1-3),
67-111 (2000)

8. Jacobs, B., Heunen, C., Hasuo, I.: Categorical semantics for arrows. J. of Funct.
Program., 19(3-4), 403—438 (2009)

9. Kraus, N., Escard6, M., Coquand, T., Altenkirch, T.: Notions of anonymous exis-
tence in Martin-Lof type theory. Manuscript (2014)

10. Maietti, M. E.: About effective quotients in constructive type theory. In: Al-
tenkirch, T., Naraschewski, W., Reus, B. (eds.) TYPES 1998. LNCS, vol. 1657,
pp. 166-178. Springer, Heidelberg (1999)

11. Martin-Lof, P.: 100 years of Zermelo’s axiom of choice: what was the problem with
it? Comput. J., 49(3), 345-350 (2006)

12. Moggi, E.: Notions of computation and monads. Inf. and Comput., 93(1), 55-92

1991

13. 1(\Iorell), U.: Dependently typed programming in Agda. In: Koopman, P., Plasmeijer,
R., Swierstra, S. D. (eds.) AFP 2008. LNCS, vol. 5832, pp. 230-266. Springer,
Heidelberg (2009)

14. Troelstra, A. S., Van Dalen, D.: Constructivism in Mathematics: An Introduction,
v. I. Studies in Logic and the Foundations of Mathematics, vol. 121. North-Holland,
Amsterdam (1988)

15. The Univalent Foundations Program: Homotopy Type Theory: Univalent Foun-
dations of Mathematics. Institute for Advanced Study, Princeton, NY (2013)
http://homotopytypetheory.org/book

