
Newton series, coinductively

Henning Basold1, Helle Hansen2, Jean-Éric Pin3 and Jan Rutten4,1

1 Radboud University Nijmegen, 2TUD, 3LIAFA and CNRS, 4 CWI

Abstract. We present a comparative study of four product operators
on weighted languages: (i) the convolution, (ii) the shuffle, (iii) the infil-
tration, and (iv) the Hadamard product. Exploiting the fact that the set
of weighted languages is a final coalgebra, we use coinduction to prove
that a classical operator from difference calculus in mathematics: the
Newton transform, generalises (from infinite sequences) to weighted lan-
guages. We show that the Newton transform is an isomorphism of rings
that transforms the Hadamard product of two weighted languages into
an infiltration product, and we develop various representations for the
Newton transform of a language, together with concrete calculation rules
for computing them.

1 Introduction

Formal languages [8] are a well-established formalism for the modelling of the
behaviour of systems, typically represented by automata. Weighted languages
– aka formal power series [3] – are a common generalisation of both formal
languages (sets of words) and streams (infinite sequences). Formally, a weighted
language is an assignment from words over an alphabet A to values in a set k
of weights. Such weights can represent various things such as the multiplicity of
the occurrence of a word, or its duration, or probability etc. In order to be able
to add and multiply, and even subtract such weights, k is typically assumed to
be a semi-ring (e.g., the Booleans) or ring (e.g., the integers).

We present a comparative study of four product operators on weighted lan-
guages, which give us four different ways of composing the behaviour of sys-
tems. The operators under study are (i) the convolution, (ii) the shuffle, (iii) the
infiltration, and (iv) the Hadamard product, representing, respectively: (i) the
concatenation or sequential composition, (ii) the interleaving without synchroni-
sation, (iii) the interleaving with synchronisation, and (iv) the fully synchronised
interleaving, of systems. The set of weighted languages, together with the oper-
ation of sum and combined with any of these four product operators, is a ring
itself, assuming that k is a ring. This means that in all four cases, we have a
well-behaved calculus of behaviours.

Main contributions: (1) We show that a classical operator from difference
calculus in mathematics: the Newton transform, generalises (from infinite se-
quences) to weighted languages, and we characterise it in terms of the shuffle
product. (2) Next we show that the Newton transform is an isomorphism of

2 Henning Basold1, Helle Hansen2, Jean-Éric Pin3 and Jan Rutten4,1

rings that transforms the Hadamard product of two weighted languages into an
infiltration product. This allows us to switch back and forth between a fully syn-
chronised composition of behaviours, and a shuffled, partially synchronised one.
(3) We develop various representations for the Newton transform of a language,
together with concrete calculation rules for computing them.

Approach: We exploit the fact the set of weighted languages is a final coalgebra
[18]. This allows us to use coinduction as the guiding methodology for both our
definitions and proofs. More specifically, we define our operators in terms of
behavioural differential equations, giving us, for instance, a uniform and thereby
easily comparable presentation of all four product operators. And we construct
bisimulation relations in order to prove our various identities.

As the set of weighted languages over a one-letter alphabet is isomorphic to
the set of streams, it turns out to be convenient to prove our results first for the
special case of streams and then to generalise them to weighted languages.

Related work: The present paper fits in the coalgebraic outlook on systems
behaviour, as in, for instance, [1] and [18]. The definition of Newton series for
weighted languages was introduced in [15], where Mahler’s theorem (which is a p-
adic version of the classical Stone-Weierstrass theorem) is generalised to weighted
languages. The Newton transform for streams already occurs in [13] (where it
is called the discrete Taylor transform), but not its characterisation using the
shuffle product, which for streams goes back to [20], and which for weighted
languages is new. Related to that, we present elimination rules for (certain uses
of) the shuffle product, which were known for streams [20] and are new for
languages. The proof that the Newton transform for weighted languages is a ring
isomorphism that exchanges the Hadamard product into the infiltration product,
is new. In [11, Chapter 6], an operation was defined that does the reverse; it
follows from our work that this operation is the inverse of the Newton transform.
The infiltration product was introduced in [6]; as we already mentioned, [11,
Chapter 6] studies some of its properties, using a notion of binomial coefficients
for words that generalises the classical notions for numbers. The present paper
introduces a new notion of binomial coefficients for words, which refines the
definition of [11, Chapter 6].

2 Preliminaries: stream calculus

We present the basic facts from coinductive stream calculus [20]. Let k be a ring
or semiring and let the set of streams over k be given by kω = {σ | σ : N→ k }.
We define the initial value of a stream σ by σ(0) and its stream derivative by
σ′ = (σ(1), σ(2), σ(3), . . .). In order to conclude that two streams σ and τ are
equal, it suffices to prove σ(n) = τ(n), for all n ≥ 0. Sometimes this can be
proved by induction on the natural number n but, more often than not, we will
not have a succinct description or formula for σ(n) and τ(n), and induction will
be of no help. Instead, we take here a coalgebraic perspective on kω, and most
of our proofs will use the proof principle of coinduction, which is based on the
following notion from the world of universal coalgebra [17].

Newton series, coinductively 3

Theorem 1 (bisimulation, coinduction). A relation R ⊆ kω × kω is a
(stream) bisimulation if for all (σ, τ) ∈ R: (1) σ(0) = τ(0) and (2) (σ′, τ ′) ∈ R.
We write σ ∼ τ if there exists a bisimulation relation containing (σ, τ). We have
the following coinduction proof principle: if σ ∼ τ then σ = τ .

Coinductive definitions are phrased in terms of stream derivatives and initial
values, and are called stream differential equations; cf. [18,20,10] for examples
and details.

Definition 2 (basic operators). The following system of stream differential
equations defines our first set of constants and operators:

Derivative Initial value Name
[r]′ = [0] [r](0) = r r ∈ k
X ′ = [1] X(0) = 0
(σ + τ)′ = σ′ + τ ′ (σ + τ)(0) = σ(0) + τ(0) sum
(Σσi)

′ = Σσ′i (Σσi)(0) = Σσi(0) infinite sum
(−σ)′ = −(σ′) (−σ)(0) = −σ(0) minus
(σ × τ)′ = (σ′ × τ) + ([σ(0)]× τ ′) (σ × τ)(0) = σ(0)τ(0) convolution product
(σ−1)′ = −[σ(0)−1]× σ′ × σ−1 (σ−1)(0) = σ(0)−1 convolution inverse

The unique existence of constants and operators satisfying the equations
above is ultimately due to the fact that kω, together with the operations of
initial value and stream derivative, is a final coalgebra.

For r ∈ k, we have the constant stream [r] = (r, 0, 0, 0, . . .) which we often
denote again by r. Then we have the constant stream X = (0, 1, 0, 0, 0, . . .).
We define X0 = [0] and Xi+1 = X ×Xi. The infinite sum Σσi is defined only
when the collection of σi’s is summable: Σσi(n) <∞, for all n ≥ 0. Note that
(τi ×Xi)i is summable for any sequence of streams (τi)i. Minus is defined only
if k is a ring. In spite of its non-symmetrical definition, convolution product on
streams is commutative (assuming that k is); cf. the corresponding remark in
the Appendix. Convolution inverse is defined for those streams σ for which the
initial value σ(0) is invertible. We will often write rσ for [r]×σ, and 1/σ for σ−1

and τ/σ for τ × (1/σ), which – for streams – is equal to (1/σ)× τ .
The following theorem, which is analogous to the fundamental theorem from

analysis, tells us how to compute a stream σ from its initial value σ(0) and
derivative σ′.

Theorem 3. We have σ = σ(0) + (X × σ′), for every σ ∈ kω. ut

There is also the following strengthening of coinduction [20,16].

Theorem 4 (bisimulation-up-to, coinduction-up-to). A relation R ⊆ kω×
kω is a (stream) bisimulation-up-to if, for all (σ, τ) ∈ R: (1) σ(0) = τ(0), and
(2) (σ′, τ ′) ∈ R̄, where R̄ ⊆ kω × kω is the smallest relation such that:

(a) R ⊆ R̄;
(b) { (σ, σ) | σ ∈ kω } ⊆ R̄; and

4 Henning Basold1, Helle Hansen2, Jean-Éric Pin3 and Jan Rutten4,1

(c) R̄ is closed under the (element-wise application of the) operators in Def-
inition 2. For instance, if (α, β), (γ, δ) ∈ R̄ then (α+ γ, β + δ) ∈ R̄, etc.

We have the following proof principle, called coinduction-up-to: if (σ, τ) ∈ R,
for some bisimulation-up-to, then σ = τ .

Proof. If R is a bisimulation-up-to then R̄ can be shown to be a bisimulation
relation, by structural induction on its definition. The theorem follows by (1).

Using coinduction (up-to), one can easily prove the following.

Proposition 5 (ring of streams (with convolution product)). If k is a
ring then the set of streams with sum and convolution product forms a ring as
well: (kω, +, [0], ×, [1]). If k is commutative then so is kω. ut

Polynomial and rational streams are defined as usual.

Definition 6 (polynomial, rational streams). We call a stream σ ∈ kω

polynomial if it is of the form σ = a0 + a1X + a2X
2 + · · · + anX

n, for n ≥ 0
and ai ∈ k. We call σ rational if it is of the form

σ =
a0 + a1X + a2X

2 + · · ·+ anX
n

b0 + b1X + b2X2 + · · ·+ bmXm

for n,m ≥ 0, ai, bj ∈ k with b0 6= 0.

Example 7 Here are a few concrete examples of streams (over the natural num-
bers): 1 + 2X + 3X2 = (1, 2, 3, 0, 0, 0, . . .), 1

1−2X = (20, 21, 22, . . .), 1
(1−X)2 =

(1, 2, 3, . . .), X
1−X−X2 = (0, 1, 1, 2, 3, 5, 8, . . .). We note that convolution prod-

uct behaves naturally, as in the following example: (1 + 2X2) × (3 − X) =
3 − X + 6X2 − 2X3. Cf. the Appendix for some simple calculation rules for
computing derivatives. ut

We shall be using yet another operation on streams.

Definition 8 (stream composition). We define the composition of streams
by the following stream differential equation:

Derivative Initial value Name
(σ ◦ τ)′ = τ ′ × (σ′ ◦ τ) (σ ◦ τ)(0) = σ(0) stream composition

We will consider the composition of streams σ with τ only in case τ(0) = 0.
Then composition is well-behaved, as follows.

Proposition 9 (properties of composition). For all ρ, σ, τ with τ(0) = 0,
we have [r] ◦ τ = [r], X ◦ τ = τ , and

(ρ+σ)◦τ = (ρ◦τ)+(σ ◦τ), (ρ×σ)◦τ = (ρ◦τ)×(σ ◦τ), σ−1 ◦τ = (σ ◦τ)−1

and similarly for infinite sum.

Newton series, coinductively 5

Example 10 As a consequence, the composition σ ◦ τ amounts to replacing

every X in σ by τ . For instance, X
1−X−X2 ◦ X

1+X = X(1+X)
1+X−X2 . ut

Defining σ(0) = σ and σ(n+1) = (σ(n))′, for any stream σ ∈ kω, we have
σ(n)(0) = σ(n). Thus σ = (σ(0), σ(1), σ(2), . . .) = (σ(0)(0), σ(1)(0), σ(2)(0), . . .).
And so every stream is equal to the stream of its Taylor coefficients (with respect
to stream derivation). There is also the corresponding Taylor series representa-
tion for streams.

Theorem 11 (Taylor series). For every σ ∈ kω,

σ =

∞∑
i=0

[σ(i)(0)] × Xi =

∞∑
i=0

[σ(i)] × Xi

For some of the operations on streams, we have explicit formulae for the n-th
Taylor coefficient, that is, for their value in n.

Proposition 12. For all σ, τ ∈ kω, for all n ≥ 0,

(σ+τ)(n) = σ(n)+τ(n), (−σ)(n) = −σ(n), (σ×τ)(n) =

n∑
k=0

σ(k)τ(n−k)

3 Four product operators

In addition to convolution product, we shall discuss also the following product
operators (repeating below the definitions of convolution product and inverse).

Definition 13 (product operators). We define four product operators by the
following system of stream differential equations:

Derivative Initial value Name
(σ × τ)′ = (σ′ × τ) + ([σ(0)]× τ ′) (σ × τ)(0) = σ(0)τ(0) convolution
(σ ⊗ τ)′ = (σ′ ⊗ τ) + (σ ⊗ τ ′) (σ ⊗ τ)(0) = σ(0)τ(0) shuffle
(σ � τ)′ = σ′ � τ ′ (σ � τ)(0) = σ(0)τ(0) Hadamard
(σ ↑ τ)′ = (σ′ ↑ τ) + (σ ↑ τ ′) + (σ′ ↑ τ ′) (σ ↑ τ)(0) = σ(0)τ(0) infiltration

For streams σ with invertible initial value σ(0), we can define both convolution
and shuffle inverse, as follows:

Derivative Initial value Name
(σ−1)′ = −[σ(0)−1]× σ′ × σ−1 (σ−1)(0) = σ(0)−1 convolution inverse
(σ−1)′ = −σ′ ⊗ σ−1 ⊗ σ−1 (σ−1)(0) = σ(0)−1 shuffle inverse

(We shall not be needing the inverse of the other two products.) Convolution and
Hadamard product are standard operators in mathematics. Shuffle and infiltra-
tion product are – for streams – less well-known, and can be better explained and
understood when generalised to weighted languages, which we shall do in Sec-
tion 7. In the present section and the next, we shall relate convolution product
and Hadamard product to, respectively, shuffle product and infiltration product,
using the so-called Laplace and the Newton transforms.

6 Henning Basold1, Helle Hansen2, Jean-Éric Pin3 and Jan Rutten4,1

Example 14 Here are a few simple examples of streams (over the natural num-
bers), illustrating the differences between these four products.

1

1−X
× 1

1−X
=

1

(1−X)2
= (1, 2, 3, . . .)

1

1−X
⊗ 1

1−X
=

1

1− 2X
= (20, 21, 22, . . .)

1

1−X
� 1

1−X
=

1

1−X
1

1−X
↑ 1

1−X
=

1

1− 3X
= (30, 31, 32, . . .)

(1−X)−1 = (0!, 1!, 2!, . . .) (1)

We have the following closed formulae for three of our product operators.

Proposition 15.

(σ × τ)(n) =

n∑
i=0

σ(i)τ(n− i)

(σ ⊗ τ)(n) =

n∑
i=0

(
n

i

)
σ(i)τ(n− i) (2)

(σ � τ)(n) = σ(n)τ(n) (3)

Later, we shall derive a closed formula for the infiltration product as well. ut

Next we consider the set of streams kω together with sum and, respectively,
each of the four product operators.

Proposition 16 (four rings of streams). If k is a ring then each of the four
product operators defines a corresponding ring structure on kω, as follows:

Rc = (kω, +, [0], ×, [1]), Rs = (kω, +, [0], ⊗, [1])

RH = (kω, +, [0], �, ones), Ri = (kω, +, [0], ↑, [1])

where ones denotes (1, 1, 1, . . .). ut

We recall from [13] and [20, Theorem 10.1] the following ring isomorphism
between Rc and Rs.

Theorem 17 (Laplace for streams, [13,20]). Let the Laplace transform Λ :
kω → kω be given by the following stream differential equation:

Derivative Initial value Name
(Λ(σ))′ = Λ(d/dX(σ)) Λ(σ)(0) = σ(0) Laplace

where d/dX(σ) = (X ⊗ σ′)′ = (σ(1), 2σ(2), 3σ(3), . . .). Then Λ : Rc → Rs is
an isomorphism of rings; notably, for all σ, τ ∈ kω, Λ(σ× τ) = Λ(σ)⊗Λ(τ). ut

Newton series, coinductively 7

(The Laplace transform is also known as the Laplace-Carson transform.)
One readily shows that Λ(σ) = (0!σ(0), 1!σ(1), 2!σ(2), . . .), from which it fol-
lows that Λ is bijective. Coalgebraically, Λ arises as the unique final coalgebra
homomorphism between two different coalgebra structures on kω:

kω

〈(−)(0), d/dX〉

��

Λ // kω

〈(−)(0), (−)′〉

��
k × kω 1×Λ // k × kω

On the right, we have the standard (final) coalgebra structure on streams, given
by: σ 7→ (σ(0), σ′), whereas on the left, the operator d/dX is used instead of
stream derivative: σ 7→ (σ(0), d/dX(σ)). The commutativity of the diagram
above is precisely expressed by the stream differential equation defining Λ above.
And it is this definition, in terms of stream derivatives, that enables us to give
an easy proof of Theorem 17, by coinduction-up-to.

As we shall see, there exists also a ring isomorphism between RH and Ri. It
will be given by the Newton transform, which we will consider next.

4 Newton transform

Assuming that k is a ring, let the difference operator on a stream σ ∈ kω be
defined by ∆σ = σ′ − σ = (σ(1)− σ(0), σ(2)− σ(1), σ(3)− σ(2), . . .).

Definition 18 (Newton transform). We define the Newton transform N :
kω → kω by the following stream differential equation:

Derivative Initial value Name
(N (σ))′ = N (∆σ) N (σ)(0) = σ(0) Newton transform

It follows that N (σ) = ((∆0σ)(0), (∆1σ)(0), (∆2σ)(0), . . .), where ∆0σ =
σ and ∆n+1σ = ∆(∆nσ). We call N (σ) the stream of the Newton coefficients of
σ. Coalgebraically, N arises as the unique mediating homomorphism – in fact,
as we shall see below, an isomorphism – between the following two coalgebras:

kω

〈(−)(0), ∆〉

��

N // kω

〈(−)(0), (−)′〉

��
k × kω 1×N // k × kω

On the right, we have as before the standard (final) coalgebra structure on
streams, whereas on the left, the difference operator is used instead: σ 7→
(σ(0), ∆σ). We note that the term Newton transform is used in mathematical
analysis [5] for an operational method for the transformation of differentiable

8 Henning Basold1, Helle Hansen2, Jean-Éric Pin3 and Jan Rutten4,1

functions. In [13], where the diagram above is discussed, our present Newton
transform N is called the discrete Taylor transformation.

The fact that N is bijective follows from Theorem 20 below, which charac-
terises N in terms of the shuffle product. Its proof will use the following lemma.

Lemma 19. 1
1−X ⊗

1
1+X = 1

Note that this formula combines the convolution inverse with the shuffle product.
The function N , and its inverse, can be characterised by the following formulae.

Theorem 20 ([20]). The function N is bijective and satisfies, for all σ ∈ kω,

N (σ) =
1

1 +X
⊗ σ, N−1(σ) =

1

1−X
⊗ σ

At this point, we observe the following structural parallel between the Laplace
transform from Theorem 17 and the Newton transform: for all σ ∈ kω,

Λ(σ) = (1−X)−1 � σ (4)

N (σ) = (1 +X)−1 ⊗ σ (5)

The first equality is immediate from the observation that (1−X)−1 = (0!, 1!, 2!, . . .).
The second equality is Theorem 20.

The Newton transform is also an isomorphism of rings, as follows.

Theorem 21 (Newton transform as ring isomorphism). We have that
N : RH → Ri is an isomorphism of rings; notably, N (σ � τ) = N (σ) ↑ N (τ),
for all σ, τ ∈ kω.

Expanding the definition of the shuffle product in Theorem 20, we obtain the
following closed formulae.

Proposition 22. For all σ ∈ kω and n ≥ 0,

N (σ)(n) =

n∑
i=0

(
n

i

)
(−1)n−iσ(i), N−1(σ)(n) =

n∑
i=0

(
n

i

)
σ(i)

From these, we can derive the following closed formula for the infiltration
product, which we announced in Proposition 15.

Proposition 23. For all σ, τ ∈ kω,

(σ ↑ τ)(n) =

n∑
i=0

(
n

i

)
(−1)n−i

 i∑
j=0

(
i

j

)
σ(j)

 (
i∑
l=0

(
i

l

)
τ(l)

)

Newton series, coinductively 9

5 Calculating Newton coefficients

The Newton coefficients of a stream can be computed using the following theorem
[20, Thm. 10.2(68)]. Note that the righthand side of (6) below no longer contains
the shuffle product.

Theorem 24 (shuffle product elimination). For all σ ∈ kω, r ∈ k,

1

1− rX
⊗ σ =

1

1− rX
×
(
σ ◦ X

1− rX

)
(6)

Example 25 For the Fibonacci numbers, we have

N ((0, 1, 1, 2, 3, 5, 8, . . .)) = N
(

X

1−X −X2

)
=

X

1 +X −X2

(For details and more examples, see the Appendix.)

It is immediate by Theorems 20 and 24 that the Newton transform preserves
rationality.

Corollary 26. A stream σ ∈ kω is rational iff its Newton transform N (σ) is
rational. ut

6 Newton series

Theorem 20 tells us how to compute for a given stream σ the stream of its
Newton coefficients N (σ), using the shuffle product. Conversely, there is the
following Newton series representation, which tells us how to express a stream
σ in terms of its Newton coefficients.

Theorem 27 (Newton series for streams, 1st). For all σ ∈ kω, n ≥ 0,

σ(n) =

n∑
i=0

(∆iσ)(0)

(
n

i

)

Using
(
n
i

)
= n!/i!(n − i)! and writing ni = n(n − 1)(n − 2) · · · (n − i + 1)

(not to be confused with our notation for the shuffle inverse), Newton series are
sometimes (cf. [9, Eqn.(5.45)]) also denoted as

σ(n) =

n∑
i=0

(∆iσ)(0)

i!
ni

thus emphasizing the structural analogy with Taylor series.
Combining Theorem 20 with Theorem 24 leads to yet another, and less fami-

lar expansion theorem (see [21] for a finitary version thereof).

10 Henning Basold1, Helle Hansen2, Jean-Éric Pin3 and Jan Rutten4,1

Theorem 28 (Newton series for streams, 2nd; Euler expansion). For
all σ ∈ kω,

σ =

∞∑
i=0

(∆iσ)(0)× Xi

(1−X)i+1

Example 29 Theorem 28 leads, for instance, to an easy derivation of a rational
expression for the stream of cubes, namely

(13, 23, 33, . . .) =
1 + 4X +X2

(1−X)4

See the Appendix for details. ut

7 Weighted languages

Let k again be a ring or semiring and let A be a set. We consider the elements of
A as letters and call A the alphabet. Let A∗ denote the set of all finite sequences
or words over A. We define the set of languages over A with weights in k by

kA
∗

= {σ | σ : A∗ → k }

Weighted languages are also known as formal power series (over A with coeffi-
cients in k), cf. [3]. If k is the Boolean semiring {0, 1}, then weighted languages
are just sets of words. If k is arbitrary again, but we restrict our alphabet to a
singleton set A = {X}, then kA

∗ ∼= kω, the set of streams with values in k. In
other words, by moving from a one-letter alphabet to an arbitrary one, streams
generalise to weighted languages.

From a coalgebraic perspective, much about streams holds for weighted lan-
guages as well, and typically with an almost identical formulation. This struc-
tural similarity between streams and weighted languages is due to the fact that
weighted languages carry a final coalgebra structure that is very similar to that
of streams, as follows. We define the initial value of a (weighted) language σ by
σ(ε), that is, σ applied to the empty word ε. Next we define, for every a ∈ A,
the a-derivative of σ by σa(w) = σ(a · w), for every w ∈ A∗. Initial value and
derivatives together define a final coalgebra structure on weighted languages,
given by

kA
∗
→ k × (kA

∗
)A σ 7→ (σ(ε), λa ∈ A. σa)

(where (kA
∗
)A = {f | f : A→ kA

∗}). For the case that A = {X}, the coalgebra
structure on the set of streams is a special case of the one above, since under
the isomorphism kA

∗ ∼= kω, we have that σ(ε) corresponds to σ(0), and σX
corresponds to σ′.

We can now summarize the remainder of this paper, roughly and succinctly,
as follows: if we replace in the previous sections σ(0) by σ(ε), and σ′ by σa
(for a ∈ A), everywhere, then most of the previous definitions and properties
for streams generalise to weighted languages. Notably, we will again have a set

Newton series, coinductively 11

of basic operators for weighted languages, four different product operators, four
corresponding ring stuctures, and the Newton transform between the rings of
Hadamard and infiltration product. (An exception to this optimistic program of
translation sketched above, however, is the Laplace transform: there does not
seem to exist an obvious generalisation of the Laplace transform for streams –
transforming the convolution product into the shuffle product – to the corre-
sponding rings of weighted languages.)

Let us now be more precise and discuss all of this in some detail. For a start,
there is again the proof principle of coinduction, now for weighted languages.

Theorem 30 (bisimulation and coinduction, for languages). A relation
R ⊆ kA∗ ×kA∗ is a (language) bisimulation if for all (σ, τ) ∈ R: (1) σ(ε) = τ(ε)
and (2) (σa, τa) ∈ R, for all a ∈ A. We write σ ∼ τ if there exists a bisimulation
relation containing (σ, τ). We have the following coinduction proof principle: if
σ ∼ τ then σ = τ .

Coinductive definitions are given again by differential equations, now called
behavioural differential equations [18,20].

Definition 31 (basic operators for languages). The following system of
behavioural differential equations defines the basic constants and operators for
languages:

Derivative Initial value Name
[r]a = [0] [r](ε) = r r ∈ k
ba = [0] b(ε) = 0 b ∈ A, b 6= a
ba = [1] b(ε) = 0 b ∈ A, b = a
(σ + τ)a = (σa + τa) (σ + τ)(ε) = σ(ε) + τ(ε) sum
(Σσi)a = Σ(σi)a (Σσi)(ε) = Σσi(ε) infinite sum
(−σ)a = −(σa) (−σ)(ε) = −σ(ε) minus
(σ × τ)a = (σa × τ) + ([σ(ε)]× τa) (σ × τ)(ε) = σ(ε)τ(ε) convolution product
(σ−1)a = −[σ(ε)−1]× σa × σ−1 (σ−1)(ε) = σ(ε)−1 convolution inverse

We will write a both for an element of A and for the corresponding constant
weighted language. We shall often use shorthands like ab = a × b = {a × b},
where the context will determine whether a word or a language is intended.
Also, we will sometimes write A for

∑
a∈A a. The convolution inverse is again

defined only for σ with σ(ε) 6= 0. The infinite sum Σσi is defined only when
the σi’s are summable: for all w ∈ A∗, Σσi(w) <∞. As before, we shall often
write 1/σ for σ−1. Note that convolution product is weighted concatenation and
is no longer commutative. As a consequence, τ/σ is now generally ambiguous
as it could mean either τ × σ−1 or σ−1 × τ . Only when the latter are equal, we
shall sometimes write τ/σ. An example is A/(1−A), which is A+, the set of all
non-empty words.

Theorem 32 (fundamental theorem, for languages). For every σ ∈ kA∗ ,
σ = σ(ε) +

∑
a∈A a× σa (cf. [7,18]). ut

12 Henning Basold1, Helle Hansen2, Jean-Éric Pin3 and Jan Rutten4,1

Theorem 33 (coinduction-up-to for languages). A relation R ⊆ kA∗×kA∗

is a (weighted language) bisimulation-up-to if for all (σ, τ) ∈ R: (1) σ(ε) = τ(ε),
and (2) for all a ∈ A: (σa, τa) ∈ R̄, where R̄ ⊆ kA∗ ×kA∗ is the smallest relation
such that

(a) R ⊆ R̄;
(b) { (σ, σ) | σ ∈ kA∗ } ⊆ R̄;
(c) R̄ is closed under the (element-wise application of the) operators in Def-

inition 31. For instance, if (α, β), (γ, δ) ∈ R̄ then (α+ γ, β + δ) ∈ R̄, etc.
If (σ, τ) ∈ R, for some bisimulation-up-to, then σ = τ . ut

Definition 34. Composition of languages is defined by the following differential
equation:

Derivative Initial value Name
(σ ◦ τ)a = τa × (σa ◦ τ) (σ ◦ τ)(ε) = σ(ε) composition

Language composition σ ◦ τ is well-behaved for all σ and τ such that τ(ε) = 0.

Proposition 35 (composition of languages). For τ ∈ kA∗ with τ(ε) = 0,

[r] ◦ τ = [r], a ◦ τ = a× τa, A ◦ τ = τ, σ−1 ◦ τ = (σ ◦ τ)−1

(ρ+ σ) ◦ τ = (ρ ◦ τ) + (σ ◦ τ), (ρ× σ) ◦ τ = (ρ ◦ τ)× (σ ◦ τ)

As a consequence, σ ◦ τ is obtained by replacing every occurrence of a in σ
by a× τa, for every a ∈ A.

Definition 36 (polynomial, rational languages). We call σ ∈ kA
∗

poly-
nomial if it can be constructed using constants (r ∈ k and a ∈ A) and the
operations of finite sum and convolution product. We call σ ∈ kA∗ rational if it
can be constructed using constants and the operations of finite sum, convolution
product and convolution inverse. ut

Defining σε = σ and σw·a = (σw)a, for any language σ ∈ kA
∗
, we have

σw(ε) = σ(w). This leads to a Taylor series representation for languages.

Theorem 37 (Taylor series, for languages). For every σ ∈ kA∗ ,

σ =
∑
w∈A∗

σw(ε)× w =
∑
w∈A∗

σ(w)× w

Example 38 Here are a few concrete examples of weighted languages:

1

1−A
=

∑
w∈A∗

w = A∗

1

1 +A
=
∑
w∈A∗

(−1)|w| × w, 1

1− 2ab
=
∑
i≥0

2i × (ab)i

Newton series, coinductively 13

8 Four rings of weighted languages

The definitions of the four product operators for streams generalise straightfor-
wardly to languages, giving rise to four different ring structures on languages.

Definition 39 (product operators for languages). We define four product
operators by the following system of behavioural differential equations:

Derivative Initial value Name
(σ × τ)a = (σa × τ) + ([σ(ε)]× τa) (σ × τ)(ε) = σ(ε)τ(ε) convolution
(σ ⊗ τ)a = (σa ⊗ τ) + (σ ⊗ τa) (σ ⊗ τ)(ε) = σ(ε)τ(ε) shuffle
(σ � τ)a = σa � τa (σ � τ)(ε) = σ(ε)τ(ε) Hadamard
(σ ↑ τ)a = (σa ↑ τ) + (σ ↑ τa) + (σa ↑ τa) (σ ↑ τ)(ε) = σ(ε)τ(ε) infiltration

For languages σ with invertible initial value σ(ε), we can define both convolution
and shuffle inverse, as follows:

Derivative Initial value Name
(σ−1)a = −[σ(0)−1]× σa × σ−1 (σ−1)(0) = σ(0)−1 convolution inverse
(σ−1)a = −σa ⊗ σ−1 ⊗ σ−1 (σ−1)(0) = σ(0)−1 shuffle inverse

Convolution product is concatenation of (weighted) languages and Hadamard
product is the fully synchronised product, which corresponds to the intersection
of weighted languages. The shuffle product generalises the definition of the shuffle
operator on classical languages (over the Boolean semiring), and can be, equiv-
alently, defined by induction. The following definition is from [11, p.126] (where
shuffle product is denoted by the symbol ◦): for all v, w ∈ A∗, σ, τ ∈ kA∗ ,

v ⊗ ε = ε⊗ v = v

va⊗ wb = (v ⊗ wb)a+ (va⊗ w)b (7)

σ ⊗ τ =
∑

v,w∈A∗
σ(v)× τ(w)× (v ⊗ w) (8)

The infiltration product, originally introduced in [6], can be considered as
a variation on the shuffle product that not only interleaves words but als syn-
chronizes them on identical letters. In the differential equation for the infiltration
product above, this is apparent from the presence of the additional term σa ↑ τa.
There is also an inductive definition of the infiltration product, in [11, p.128]. It
is a variant of (7) above that for the case that a = b looks like

va ↑ wa = (v ↑ wa)a+ (va ↑ w)a+ (v ↑ w)a

However, we shall be using the coinductive definitions, as these allow us to give
proofs by coinduction.

Example 40 Here are a few simple examples of weighted languages, illustrating
the differences between these four products. Recall that 1/1 − A = A∗, that is,

14 Henning Basold1, Helle Hansen2, Jean-Éric Pin3 and Jan Rutten4,1

(1/1 − A)(w) = 1, for all w ∈ A∗. Indicating the length of a word w ∈ A∗ by
|w|, we have the following identities:(

1

1−A
× 1

1−A

)
(w) = |w|+ 1,

(
1

1−A
⊗ 1

1−A

)
(w) = 2|w|

1

1−A
� 1

1−A
=

1

1−A
,

(
1

1−A
↑ 1

1−A

)
(w) = 3|w|

(
(1−A)−1

)
(w) = |w|! (9)

If we restrict the above identities to streams, that is, if the alphabet A = {X},
then we obtain the identities on streams from Example 14. ut

Next we consider the set of weighted languages together with sum and each
of the four product operators.

Proposition 41 (four rings of weighted languages). If k is a ring then
each of the four product operators defines a corresponding ring structure on kA

∗
,

as follows:

Lc = (kA
∗
, +, [0], ×, [1]), Ls = (kA

∗
, +, [0], ⊗, [1])

LH = (kA
∗
, +, [0], �, 1

1−A
), Li = (kA

∗
, +, [0], ↑, [1])

Proof. A proof is again straightforward by coinduction-up-to, once we have
adapted Theorem 33 by requiring R̄ to be also closed under the element-wise
application of all four product operators above.

We conclude the present section with closed formulae for the Taylor co-
efficients of the above product operators, thus generalising Proposition 15 to
languages. We first introduce the following notion.

Definition 42 (binomial coefficients on words). For all u, v, w ∈ A∗, we
define

(
w
u|v
)

as the number of different ways in which u can be taken out of w

as a subword, leaving v; or equivalently – and more formally – as the number of
ways in which w can be obtained by shuffling u and v; that is,(

w

u | v

)
= (u⊗ v)(w) (10)

The above definition generalises the notion of binomial coefficient for words
from [11, p.121], where one defines

(
w
u

)
as the number of ways in which u can be

taken as a subword of w. The two notions of binomial coefficient are related by
the following formula: (

w

u

)
=

∑
v∈A∗

(
w

u | v

)
(11)

As an immediate consequence of the defining equation (10), we find the following
recurrence.

Newton series, coinductively 15

Proposition 43. For all a ∈ A and u, v, w ∈ A∗,(
aw

u | v

)
=

(
w

ua | v

)
+

(
w

u | va

)
(12)

Note that for the case of streams, (12) gives us Pascal’s formula for classical
binomial coefficients (by taking a = X, w = Xn, u = Xk and v = Xn+1−k):(

n+ 1

k

)
=

(
n

k − 1

)
+

(
n

k

)
Proposition 44 gives another property, the easy proof of which (in the Ap-

pendix) illustrates the convenience of the new definition of binomial coeficient.
(It is also given in [11, Prop. 6.3.13], where 1/1−A is written as A∗ and convo-
lution product as ◦.)

Proposition 44. For all u,w ∈ A∗,
(
u⊗ 1

1−A

)
(w) =

(
w
u

)
.

Example 45
(
abab
ab

)
=
(
abab
ab|ab

)
+
(
abab
ab|ba

)
= 2 + 1 = 3 ut

We have the following closed formulae for three of our product operators.

Proposition 46. For all σ, τ ∈ kA∗ , w ∈ A∗,

(σ × τ)(w) =
∑

u,v∈A∗ s.t. u·v=w

σ(u)τ(v)

(σ ⊗ τ)(w) =
∑

u,v∈A∗

(
w

u | v

)
σ(u)τ(v) (13)

(σ � τ)(w) = σ(w)τ(w) (14)

A closed formula for the infiltration product can be derived later, once we have
introduced the Newton transform for weighted languages. ut

9 Newton transform for languages

Assuming again that k is a ring, we define the difference operator (with respect
to a ∈ A) by ∆aσ(w) = σa(w)− σ(w) = σ(a · w)− σ(w), for σ ∈ kA∗ .

Definition 47 (Newton transform for languages). We define the Newton
transform N : kA

∗ → kA
∗

by the following behavioural differential equation:

Derivative Initial value Name
(N (σ))a = N (∆aσ) N (σ)(ε) = σ(ε) Newton transform

(using again the symbol N , now for weighted languages instead of streams). ut

16 Henning Basold1, Helle Hansen2, Jean-Éric Pin3 and Jan Rutten4,1

It follows that N (σ)(w) = (∆wσ) (ε), for all w ∈ A∗, where ∆εσ = σ and
∆w·aσ = ∆a(∆wσ). Coalgebraically, N arises again as a unique mediating iso-
morphism between two final coalgebras:

kA
∗

〈(−)(ε), λa.∆a〉

��

N // kA
∗

〈(−)(ε), λa.(−)a〉

��
k × (kA

∗
)A

1×N // k × (kA
∗
)A

On the right, we have the standard (final) coalgebra structure on weighted lan-
guages, given by: σ 7→ (σ(ε), λa ∈ A. σa), whereas on the left, the difference
operator is used instead of the stream derivative: σ 7→ (σ(ε), λa ∈ A.∆aσ).

Theorem 48. The function N is bijective and satisfies, for all σ ∈ kA∗ ,

N (σ) =
1

1 +A
⊗ σ, N−1(σ) =

1

1−A
⊗ σ

(Note again that these formulae combine the convolution inverse with the shuffle
product.) The Newton transform is again an isomorphism of rings.

Theorem 49 (Newton transform as ring isomorphism for languages).
The Newton transform N : LH → Li is an isomorphism of rings; notably,
N (σ � τ) = N (σ) ↑ N (τ), for all σ, τ ∈ kω.

Noting that N (1
1−A) = [1], a proof of the theorem by coinduction-up to is

straightforward. Part of this theorem is already known in the literature: [11,
Theorem 6.3.18] expresses (for the case that k = Z) that 1

1−A ⊗ (−) transforms
the infiltration product of two words into a Hadamard product.

Propositions 22 and 23 for streams straightforwardly generalise to weighted
languages. Also Theorem 24 generalises to weighted languages, as follows.

Theorem 50 (shuffle product elimination for languages). For all σ ∈
kA
∗
, r ∈ k,

1

1− (r ×A)
⊗ σ =

1

1− (r ×A)
×
(
σ ◦ A

1− (r ×A)

)
(15)

Corollary 51. For all σ ∈ kA∗ , σ is rational iff N (σ) is rational. For all σ, τ ∈
kA
∗
, if both N (σ) and N (τ) are polynomial resp. rational, then so is N (σ � τ).

Example 52 We illustrate the use of Theorem 50 in the calculation of the
Newton transform with an example, stemming from [15, Example 2.1]. Let
A = {0̂, 1̂}, where we use the little festive hats to distinguish these alphabet
symbols from 0, 1 ∈ k. We define β ∈ kA∗ by the following behavioural differ-
ential equation: β0̂ = 2 × β, β1̂ = (2 × β) + 1

1−A , β(ε) = 0. Using Theorem

Newton series, coinductively 17

32, we can solve the differential equation above, and obtain the following ex-
pression: β = 1

1−2A × 1̂× 1
1−A . We have, for instance, that β(0̂1̂1̂) = β0̂1̂1̂(ε) =(

(8× β) + 6
1−A

)
(ε) = 6. More generally, β assigns to each word in A∗ its value

as a binary number (least significant digit first). By an easy computation (see
the Appendix), we find: N (β) = 1

1−A × 1̂; in other words, N (β)(w) = 1, for all

w ending in 1̂. ut

10 Newton series for languages

Theorem 27 generalises to weighted languages as follows.

Theorem 53 (Newton series for languages, 1st). For all σ ∈ kA∗ , w ∈ A∗,

σ(w) =
∑
u

(
w

u

)
(∆uσ)(ε)

Also Theorem 28 generalises to weighted languages.

Theorem 54 (Newton series for languages, 2nd; Euler expansion). For
all σ ∈ kA∗ ,

σ =
∑

a1···an∈A∗
(∆a1···anσ)(ε)× 1

1−A
× a1 ×

1

1−A
× · · · × an ×

1

1−A

where we understand this sum to include σ(ε)× 1
1−A , corresponding to ε ∈ A∗.

11 Discussion

All our definitions are coinductive, given by behavioural differential equations,
allowing all our proofs to be coinductive as well, consisting of the construction
of bisimulation (up-to) relations. This makes all proofs uniform and transparent.
Moreover, coinductive proofs can be easily automated and often lead to efficient
algorithms, for instance, as in [4]. There are several topics for further research:
(i) Theorems 53 and 54 are pretty but are they also useful? We should like
to investigate possible applications. (ii) The infiltration product deserves further
study (including its restriction to streams, which seems to be new). It is reminis-
cent of certain versions of synchronised merge in process algebra (cf. [2]), but it
does not seem to have ever been studied there. (iii) Theorem 48 characterises the
Newton transform in terms of the shuffle product, from which many subsequent
results follow. Recently [14], Newton series have been defined for functions from
words to words. We are interested to see whether our present approach could
be extended to those as well. (iv) Behavioural differential equations give rise to
weighted automata (by what could be called the ‘splitting’ of derivatives into
their summands, cf. [10]). We should like to investigate whether our representa-
tion results for Newton series could be made relevant for weighted automata as
well. (v) Our new Definition 42 of binomial coefficients for words, which seems
to offer a precise generalisation of the standard notion for numbers and, e.g.,
Pascal’s formula, deserves further study.

18 Henning Basold1, Helle Hansen2, Jean-Éric Pin3 and Jan Rutten4,1

References

1. Barbosa, L.: Components as Coalgebras. Ph.D. thesis, Universidade do Minho,
Braga, Portugal (2001)

2. Bergstra, J., Klop, J.W.: Process algebra for synchronous communication. Infor-
mation and control 60(1), 109–137 (1984)

3. Berstel, J., Reutenauer, C.: Rational series and their languages, EATCS Mono-
graphs on Theoretical Computer Science, vol. 12. Springer-Verlag (1988)

4. Bonchi, F., Pous, D.: Hacking nondeterminism with induction and coinduction.
Commun. ACM 58(2), 87–95 (2015)

5. Burns, S.A., Palmore, J.I.: The newton transform: An operational method for
constructing integral of dynamical systems. Physica D: Nonlinear Phenomena
37(13), 83 – 90 (1989), http://www.sciencedirect.com/science/article/pii/
0167278989901188

6. Chen, K., Fox, R., Lyndon, R.: Free differential calculus, IV - The quotient groups
of the lower series. Annals of Mathemathics. Second series 68(1), 81–95 (1958)

7. Conway, J.: Regular algebra and finite machines. Chapman and Hall (1971)
8. Eilenberg, S.: Automata, languages and machines (Vol. A). Pure and applied math-

ematics, Academic Press (1974)
9. Graham, R., Knuth, D., Patashnik, O.: Concrete mathematics (second edition).

Addison-Wesley (1994)
10. Hansen, H., Kupke, C., Rutten, J.: Stream differential equations: specification

formats and solution methods. Report FM-1404, CWI (2014), available at URL:
www.cwi.nl.

11. Lothaire, M.: Combinatorics on words. Cambridge Mathematical Library, Cam-
bridge University Press (1997)

12. Niqui, M., Rutten, J.: A proof of Moessner’s theorem by coinduction. Higher-Order
and Symbolic Computation 24(3), 191–206 (2011)

13. Pavlović, D., Escardó, M.: Calculus in coinductive form. In: Proceedings of the
13th Annual IEEE Symposium on Logic in Computer Science. pp. 408–417. IEEE
Computer Society Press (1998)

14. Pin, J.: Newton’s forward difference equation for functions from words to words,
to appear in Springer’s LNCS, 2015.

15. Pin, J., Silva, P.: A noncommutative extension of Mahler’s theorem on interpolation
series. European Journal of Combinatorics 36, 564–578 (2014)

16. Rot, J., Bonsangue, M., Rutten, J.: Coalgebraic bisimulation-up-to. In: SOFSEM.
LNCS, vol. 7741, pp. 369–381. Springer (2013)

17. Rutten, J.: Universal coalgebra: a theory of systems. Theoretical Computer Science
249(1), 3–80 (2000), fundamental Study.

18. Rutten, J.: Behavioural differential equations: a coinductive calculus of streams,
automata, and power series. Theoretical Computer Science 308(1), 1–53 (2003),
fundamental Study.

19. Rutten, J.: Coinductive counting with weighted automata. Journal of Automata,
Languages and Combinatorics 8(2), 319–352 (2003)

20. Rutten, J.: A coinductive calculus of streams. Mathematical Structures in Com-
puter Science 15, 93–147 (2005)

21. Scheid, F.: Theory and problems of numerical analysis (Schaum’s outline series).
McGraw-Hill (1968)

22. Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences. A000166, sub-
factorial or rencontres numbers, or derangements: number of permutations of n
elements with no fixed points.

http://www.sciencedirect.com/science/article/pii/0167278989901188
http://www.sciencedirect.com/science/article/pii/0167278989901188
http://oeis.org/A000166

Newton series, coinductively 19

12 Appendix: additional remarks, proofs and examples

Remark on Definition 2: Convolution product on streams is commutative,
which is not immediate from its defining stream differential equation:

(σ × τ)′ = (σ′ × τ) + (σ[0]× τ ′), (σ × τ)(0) = σ(0)τ(0)

The shape of this equation is motivated by the fact that it generalises straight-
forwardly to a definition of the convolution product on weighted languages, in
Definition 31, which is not commutative. Using Theorem 3, convolution product
for streams can alternatively be defined by the following equation:

(σ × τ)′ = (σ′ × τ) + (σ × τ ′)− (X × σ′ × τ ′), (σ × τ)(0) = σ(0)τ(0)

Using this equation, the commutativity of the convolution product can be easily
proved by coinduction up-to. ut

Example 7, continued: Here are some basic identities for the computation of
derivatives:

(Xn+1)′ = Xn, (X × σ)′ = σ

The following rule, which is immediate by Theorem 3, is (surprisingly) helpful
when computing derivatives of fractions: for all σ ∈ kω,

σ′ = (σ − σ(0))′

For instance, (
1

1−X −X2

)′
=

(
1

1−X −X2
− 1

)′
=

(
1

1−X −X2
− 1−X −X2

1−X −X2

)′
=

(
X +X2

1−X −X2

)′
=

(
X × 1 +X

1−X −X2

)′
=

1 +X

1−X −X2

Proposition 9 (properties of composition). For all ρ, σ, τ with τ(0) = 0,
we have [r] ◦ τ = [r], X ◦ τ = τ , and

(ρ+ σ) ◦ τ = (ρ ◦ τ) + (σ ◦ τ)

(ρ× σ) ◦ τ = (ρ ◦ τ)× (σ ◦ τ)

σ−1 ◦ τ = (σ ◦ τ)−1

and similarly for infinite sum.

20 Henning Basold1, Helle Hansen2, Jean-Éric Pin3 and Jan Rutten4,1

Proof. The first equality follows by coinduction-up-to (4) from the fact that

{ ((ρ+ σ) ◦ τ, (ρ ◦ τ) + (σ ◦ τ)) | ρ, σ, τ ∈ kω, τ(0) 6= 0 }

is a bisimulation-up-to. Similarly for the other equalities. ut

Proposition 16 (four rings of streams). If k is a ring then each of the four
product operators defines a corresponding ring structure on kω, as follows:

Rc = (kω, +, [0], ×, [1])

Rs = (kω, +, [0], ⊗, [1])

RH = (kω, +, [0], �, ones)
Ri = (kω, +, [0], ↑, [1])

where ones = (1, 1, 1, . . .).

Proof. A proof is easy by coinduction-up-to, once we have adapted Theorem 4
by requiring R̄ to be also closed under the element-wise application of all four
product operators above. ut

Lemma 19: 1
1−X ⊗

1
1+X = 1

Proof. Noting that 1
1−X = (1, 1, 1, . . .) and 1

1+X = (1,−1, 1,−1, 1,−1, . . .),
the lemma is immediate by (2). Alternatively, a proof by coinduction-up-to is
straightforward. And last, the lemma is a special instance of Theorem 24. ut

Theorem 20 ([20]). The function N is bijective and satisfies, for all σ ∈ kω,

N (σ) =
1

1 +X
⊗ σ, N−1(σ) =

1

1−X
⊗ σ

Proof. We show that

{ (N (σ),
1

1 +X
⊗ σ) | σ ∈ kω }

is a bisimulation, from which the first equality then follows by coinduction. For
any σ, the initial values of the streams on the left and right are equal. Then
(N (σ))′ = N (∆σ) and

(
1

1 +X
⊗ σ)′ = (− 1

1 +X
⊗ σ) + (

1

1 +X
⊗ σ′)

=
1

1 +X
⊗ (σ′ − σ)

=
1

1 +X
⊗∆σ

which proves that the relation above is a bisimulation. The rest of the theorem
follows from Lemma 19. ut

Newton series, coinductively 21

Theorem 21 (Newton transform as ring isomorphism). For all σ, τ ∈ kω,

N (σ � τ) = N (σ) ↑ N (τ),

and N : RH → Ri is an isomorphism of rings.

Proof. We have that N ([0]) = [0] and that N (ones) = [1]. Using the ring prop-
erties and the fact that ∆(σ + τ) = ∆σ +∆τ , one easily proves that

{(N (σ + τ), N (σ) +N (τ)) | σ, τ ∈ k} ∪ {(N (σ � τ), N (σ) ↑ N (τ)) | σ, τ ∈ k}

is a bisimulation-up-to, from which the theorem then follows by coinduction-up-
to. ut

Proposition 23. For all σ, τ ∈ kω,

(σ ↑ τ)(n) =

n∑
i=0

(
n

i

)
(−1)n−i

 i∑
j=0

(
i

j

)
σ(j)

 (
i∑
l=0

(
i

l

)
τ(l)

)

Proof. By Theorems 20 and 21, we have

σ ↑ τ = N (N−1(σ ↑ τ)) = N (N−1(σ)�N−1(τ))

The equality follows using (3) and the two identities from Proposition 22. ut

Examples 25 (continued). For the Fibonacci numbers

X

1−X −X2
= (0, 1, 1, 2, 3, 5, 8, . . .)

we have

N
(

X

1−X −X2

)
Thm. 20

=
1

1 +X
⊗ X

1−X −X2

Thm. 24
=

1

1 +X
×
(

X

1−X −X2
◦ X

1 +X

)
=

1

1 +X
×

(
X

1+X

1− X
1+X − (X

1+X)2

)

=
X

1 +X −X2

22 Henning Basold1, Helle Hansen2, Jean-Éric Pin3 and Jan Rutten4,1

For r ∈ k, we have

N (1, r, r2, . . .) = N
(

1

1− rX

)
Thm. 20

=
1

1 +X
⊗ 1

1− rX
Thm. 24

=
1

1 +X
×
(

1

1− rX
◦ X

1 +X

)
=

1

1− (r − 1)X

= (1, (r − 1), (r − 1)2, . . .)

Similarly,

N (0, 1, 0, 1, 0, 1, . . .) = N
(

X

1−X2

)
Thm. 20

=
1

1 +X
⊗ X

1−X2

Thm. 24
=

1

1 +X
×
(

X

1−X2
◦ X

1 +X

)
=

X

1 + 2X

= (0,−2, 22,−23, . . .)

There are also non-rational streams to which we can apply the method above.
The stream φ = (0!, 1!, 2!, . . .) of the factorial numbers can be expressed as
φ = (1 − X)−1. It can also be written as a continued fraction (all in stream
calculus, cf. [19]):

φ =
1

1−X −
12X2

1− 3X −
22X2

1− 5X −
32X2

. . .

Newton series, coinductively 23

Calculating with infinite patience, we find

N (0!, 1!, 2!, . . .) = N (φ)

Thm. 20
=

1

1 +X
⊗ φ

Thm. 24
=

1

1 +X
× (φ ◦ X

1 +X
)

=
1

1 +X
×

1

1− X
1+X −

12
(

X
1+X

)2
1− 3

(
X

1+X

)
−

22
(

X
1+X

)2
1− 5

(
X

1+X

)
−

32
(

X
1+X

)2
. . .

=
1

1−
12X2

1− 2X −
22X2

1− 4X −
32X2

. . .

= (1, 0, 1, 2, 9, 44, 265, 1854, . . .)

The value of N (φ)(k) is the number of derangements (cf. [22]). As an aside, let
us remark that the above computation can also be nicely described in terms of a
simple transformation on infinite weighted stream automata (again, in the style
of [19]).

There is also the following closed formula for the stream of derangements:

N (0!, 1!, 2!, . . .) = N (φ)

Ex. 7
= N ((1−X)−1)

Thm. 20
=

1

1 +X
⊗ (1−X)−1

Thm. 24
=

1

1 +X
× ((1−X)−1 ◦ X

1 +X
)

=
1

1 +X
×
(

1

1 +X

)−1
Note that the latter expression combines convolution inverse, convolution prod-
uct, and shuffle inverse. ut

Theorem 27 (Newton series for streams, 1st). For all σ ∈ kω, n ≥ 0,

σ(n) =

n∑
i=0

(∆iσ)(0)

(
n

i

)

24 Henning Basold1, Helle Hansen2, Jean-Éric Pin3 and Jan Rutten4,1

Proof.

σ(n) = (1⊗ σ)(n)

Lemma 19
=

(
1

1−X
⊗ 1

1 +X
⊗ σ

)
(n)

Thm. 20
=

(
1

1−X
⊗N (σ)

)
(n)

Prop. 12, (2)
=

n∑
i=0

(∆iσ)(0)

(
n

i

)
ut

Theorem 28 (Newton series for streams, 2nd; Euler expansion). For all
σ ∈ kω,

σ =

∞∑
i=0

(∆iσ)(0)× Xi

(1−X)i+1

Proof. The proof below is a minor variation of that of [20, Thm.11.1]:

σ = 1⊗ σ
Lemma 19

=
1

1−X
⊗ 1

1 +X
⊗ σ

Thm. 20
=

1

1−X
⊗N (σ)

Thm. 11
=

1

1−X
⊗

(∞∑
i=0

(∆iσ)(0)×Xi

)

=

∞∑
i=0

(∆iσ)(0)×
(

1

1−X
⊗Xi

)
Thm. 24

=

∞∑
i=0

(∆iσ)(0)× Xi

(1−X)i+1

where in the last but one equality, we use the fact that r × τ = r ⊗ τ , for all
r ∈ k and τ ∈ kω, together with the ring properties of Rs. ut

Examples 29. Theorem 28 leads, for instance, to an easy derivation of a rational
expression for the stream of cubes, namely

(13, 23, 33, . . .) =
1 + 4X +X2

(1−X)4

Newton series, coinductively 25

To this end, let ones = (1, 1, 1, . . .) and nat = (1, 2, 3, . . .). We shall write
σ〈0〉 = ones and σ〈n+1〉 = σ〈n〉 � σ. First we note that nat′ = nat + ones. Using
this together with the ring properties of RH , we can next easily compute the
respective values of ∆n(nat〈3〉):

∆0(nat〈3〉) = nat〈3〉

∆1(nat〈3〉) = 3nat〈2〉 + 3nat + ones

∆2(nat〈3〉) = 6nat + 6ones

∆3(nat〈3〉) = 6ones

∆4+i(nat〈3〉) = 0

By Theorem 28, we obtain the following rational expression:

nat〈3〉 =
1

1−X
+

7X

(1−X)2
+

12X2

(1−X)3
+

6X3

(1−X)4

=
1 + 4X +X2

(1−X)4

More generally, one can easily prove by induction that, for all n ≥ 1 and for all
i > n,

∆i(nat〈n〉) = 0

and that

nat〈n〉 =

∑n−1
m=0A(n,m)×Xm

1−Xn+1

(cf. [12]). Here A(n,m) are the so-called Eulerian numbers, which are defined,
for every n ≥ 0 and 0 ≤ m ≤ n− 1, by the following recurrence relation:

A(n,m) = (n−m)A(n− 1,m− 1) + (m+ 1)A(n− 1,m)

ut

Proposition 43. For all a ∈ A and u, v, w ∈ A∗,(
aw

u | v

)
=

(
w

ua | v

)
+

(
w

u | va

)
(16)

Proof. (
aw

u | v

)
= (u⊗ v)(aw)

= (u⊗ v)a(w)

Def. 39
= (ua ⊗ v)(w) + (u⊗ va)(w)

(10)
=

(
w

ua | v

)
+

(
w

u | va

)
ut

26 Henning Basold1, Helle Hansen2, Jean-Éric Pin3 and Jan Rutten4,1

Proposition 44. For all u,w ∈ A∗,(
u⊗ 1

1−A

)
(w) =

(
w

u

)

Proof. (
u⊗ 1

1−A

)
(w) =

(
u⊗

∑
v∈A∗

v

)
(w)

=
∑
v∈A∗

(u⊗ v) (w)

=
∑
v∈A∗

(
w

u | v

)
=

(
w

u

)
ut

Theorem 48. The function N is bijective and satisfies, for all σ ∈ kA∗ ,

N (σ) =
1

1 +A
⊗ σ, N−1(σ) =

1

1−A
⊗ σ

Proof. By coinduction-up-to for languages – Theorem 33 – and the fact that

1

1−A
⊗ 1

1 +A
= 1

This equality is easily proved by coinduction (it is also an instance of Theorem
50 below). ut

Theorem 50 (shuffle product elimination for languages). For all σ ∈ kA∗ ,
r ∈ k,

1

1− (r ×A)
⊗ σ =

1

1− (r ×A)
×
(
σ ◦ A

1− (r ×A)

)

Proof. One readily shows that the relation

{
〈

1

1− (r ×A)
⊗ σ , 1

1− (r ×A)
×
(
σ ◦ A

1− (r ×A)

)〉
| r ∈ k, σ ∈ kA

∗
}

is a bisimulation-up-to. The theorem then follows by Theorem 33. ut

Newton series, coinductively 27

Example 52. For

β =
1

1− 2A
× 1̂× 1

1−A
we compute:

N (β)
Thm. 48

=
1

1 +A
⊗ β

Thm. 50
=

1

1 +A
× (β ◦ A

1 +A
)

=
1

1 +A
×
((

1

1− 2A
× 1̂× 1

1−A

)
◦ A

1 +A

)
Prop. 35

=
1

1 +A
×
(

1

1− 2A
◦ A

1 +A

)
×
(

1̂ ◦ A

1 +A

)
×
(

1

1−A
◦ A

1 +A

)
Prop. 35

=
1

1 +A
×

(
1

1− 2 A
1+A

)
×
(

1̂× 1

1 +A

)
×

(
1

1− A
1+A

)

=
1

1−A
× 1̂

We see that N (β)(w) = 1, for all w ending in 1̂. ut

Theorem 53 (Newton series for languages, 1st). For all σ ∈ kA∗ , w ∈ A∗,

σ(w) =
∑
u

(
w

u

)
(∆uσ)(ε)

Proof.

σ(w) = (1⊗ σ)(w)

=

(
1

1−A
⊗ 1

1 +A
⊗ σ

)
(w)

=

(
1

1−A
⊗N (σ)

)
(w)

(13)
=
∑
u,v

(
w

u | v

) (
1

1−A

)
(v) N (σ)(u)

=
∑
u,v

(
w

u | v

)
(∆uσ)(ε)

(11)
=
∑
u

(
w

u

)
(∆uσ)(ε)

ut

28 Henning Basold1, Helle Hansen2, Jean-Éric Pin3 and Jan Rutten4,1

Theorem 54 (Newton series for languages, 2nd; Euler expansion). For
all σ ∈ kA∗ ,

σ =
∑

a1···an∈A∗
(∆a1···anσ)(ε)× 1

1−A
× a1 ×

1

1−A
× · · · × an ×

1

1−A

(where we understand this sum to include σ(ε)× 1
1−A ,corresponding to ε ∈ A∗).

Proof.

σ = 1⊗ σ

=
1

1−A
⊗ 1

1 +A
⊗ σ

Thm. 48
=

1

1−A
⊗N (σ)

Thm. 32
=

1

1−A
⊗

(∑
w∈A∗

N (σ)w(ε)× w

)
definition N

=
1

1−A
⊗

(∑
w∈A∗

(∆wσ)(ε)× w

)

=
∑
w∈A∗

(∆wσ)(ε)×
(

1

1−A
⊗ w

)
Thm. 50

=
∑
w∈A∗

(∆wσ)(ε)× 1

1−A
×
(
w ◦ A

1−A

)
Proposition 35

=
∑

a1···an∈A∗
(∆a1···anσ)(ε)× 1

1−A
× a1 ×

1

1−A
× · · · × an ×

1

1−A

ut

	 Newton series, coinductively

