Skip to main content

Incremental Generalized Canonical Correlation Analysis

  • Conference paper
  • First Online:

Abstract

Generalized canonical correlation analysis (GCANO) is a versatile technique that allows the joint analysis of several sets of data matrices through data reduction. The method embraces a number of representative techniques of multivariate data analysis as special cases. The GCANO solution can be obtained noniteratively through an eigenequation and distributional assumptions are not required. The high computational and memory requirements of ordinary eigendecomposition makes its application impractical on massive or sequential data sets. The aim of the present contribution is twofold: (a) to extend the family of GCANO techniques to a split-apply-combine framework, that leads to an exact implementation; (b) to allow for incremental updates of existing solutions, which lead to approximate yet highly accurate solutions. For this purpose, an incremental SVD approach with desirable properties is revised and embedded in the context of GCANO, and extends its applicability to modern big data problems and data streams.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Baglama, J., & Reichel, L. (2007). Augmented implicitly restarted Lanczos bidiagonalization methods. SIAM Journal on Scientific Computing, 27, 19–42.

    Article  MathSciNet  MATH  Google Scholar 

  • Baker, C., Gallivan, K., & Van Dooren, P. (2012). Low-rank incremental methods for computing dominant singular subspaces. Linear Algebra and its Applications 436(8), 2866–2888.

    Article  MathSciNet  MATH  Google Scholar 

  • Bijmolt, T. H., & Van de Velden, M. (2012). Multiattribute perceptual mapping with idiosyncratic brand and attribute sets. Marketing Letters, 23(3), 585–601.

    Article  Google Scholar 

  • Carroll, J. D. (1968). A generalization of canonical correlation analysis to three or more sets of variables. In Proceedings of the 76th Annual Convention of the American Psychological Association (pp. 227–228).

    Google Scholar 

  • Correa, N. M., Eichele, T., Adali, T., Li, Y., & Calhoun, V. D. (2010). Multi-set canonical correlation analysis for the fusion of concurrent single trial ERP and functional MRI. Neuroimage, 50, 1438–1445.

    Article  Google Scholar 

  • Gentry, J. (2011). twitteR: R based twitter client, http://cran.r-project.org/web/packages/twitteR/

    Google Scholar 

  • Gifi, A. (1990). Nonlinear multivariate analysis. New York: Wiley.

    MATH  Google Scholar 

  • Golub, G., & Van Loan, A. (1996). Matrix computations. Baltimore: John Hopkins University Press.

    MATH  Google Scholar 

  • Herbster, M., & Warmuth, M. K. (2001). Tracking the best linear predictor. Journal of Machine Learning Research, 1, 281–309.

    MathSciNet  MATH  Google Scholar 

  • Iodice D’ enza, A., & Markos, A. (2015). Low-dimensional tracking of association structures in categorical data. Statistics and Computing, 25(5), 1009–1022.

    Google Scholar 

  • Kroonenberg, P. M. (2008). Applied multiway data analysis. New York: Wiley.

    Book  MATH  Google Scholar 

  • Ross, D., Lim, J., Lin, R. S., & Yang, M. H. (2008). Incremental learning for robust visual tracking. International Journal of Computer Vision, 77, 125–141.

    Article  Google Scholar 

  • Takane, Y., Hwang, H., & Abdi, H. (2008). Regularized multiple-set canonical correlation analysis. Psychometrika, 73(4), 753–775.

    Article  MathSciNet  MATH  Google Scholar 

  • Tipping, M. E., & Bishop, C. M. (1999). Probabilistic principal component analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61(3), 611–622.

    Article  MathSciNet  MATH  Google Scholar 

  • Van de Velden, M., & Takane, Y. (2012). Generalized canonical correlation analysis with missing values. Computational Statistics, 27(3), 551–571.

    Article  MathSciNet  MATH  Google Scholar 

  • Van der Burg, E. (1988). Nonlinear canonical correlation and some related techniques. Leiden: DSWO Press.

    Google Scholar 

  • Wickam, H. (2011). A split-apply-combine strategy for data analysis. Journal of Statistical Software 11(1), 1–29.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelos Markos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Markos, A., D’Enza, A.I. (2016). Incremental Generalized Canonical Correlation Analysis. In: Wilhelm, A., Kestler, H. (eds) Analysis of Large and Complex Data. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Cham. https://doi.org/10.1007/978-3-319-25226-1_16

Download citation

Publish with us

Policies and ethics