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Abstract. Discovering a concise schema from given XML documents
is an important problem in XML applications. In this paper, we focus
on the problem of learning an unordered schema from a given set of
XML examples, which is actually a problem of learning a restricted regu-
lar expression with interleaving using positive example strings. Schemas
with interleaving could present meaningful knowledge that cannot be
disclosed by previous inference techniques. Moreover, inference of the
minimal schema with interleaving is challenging. The problem of find-
ing a minimal schema with interleaving is shown to be NP-hard. There-
fore, we develop an approximation algorithm and a heuristic solution
to tackle the problem using techniques different from known inference
algorithms. We do experiments on real-world data sets to demonstrate
the effectiveness of our approaches. Our heuristic algorithm is shown to
produce results that are very close to optimal.
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1 Introduction

When XML is used for data-centric applications such as integration, there may
be no order constraint among siblings [1]. Meanwhile, the relative order within
siblings may be still important. For example, consider a ticket system with two
ticket machines, where there are two bunches of tourists lining up waiting to
buy tickets. Each group has two tourists. We can then define the unordered
schema for the ticket system. The ordered groups preserve only the relative
order of their members. This not only allows individual tourists to insert them-
selves within a group, but also lets two groups interleave their members. The
exact XML Schema Definition (XSD) for the purchasing sequence can be essen-
tially represented as g1.m1∗g1.m2∗g2.m1∗g2.m2∗ |g2.m1∗g2.m2∗g1.m1∗g1.m2∗

|g1.m1∗g2.m1∗g1.m2∗g2.m2∗ |g1.m1∗g2.m1∗g2.m2∗g1.m2∗ |g2.m1∗g1.m1∗g2.m2∗

g1.m2∗ |g2.m1∗g1.m1∗g1.m2∗g2.m2∗, where gi.mj∗ means the jth member in
the ith group can buy zero or more tickets. It shows the length of the exact reg-
ular expression can be exponential when compared to the number of members
in sequences.
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Actually, (g1.m1|g1.m2|g2.m1|g2.m2)∗ is used in practice [3] instead of the
minimal ones, which may permit invalid XML documents (i.e., over-permissive).
For example, it may permit the second member in the sequence of the first
group to purchase tickets before the first member. There are many negative
consequences of over-permissive [3]. Thus it is necessary to study how to infer
an unordered minimal schema for this kind of XML documents.

Previous researches on XML Schema inference have been done mainly in the
context of ordered XML, which can be reduced to learn regular expressions.
Gold [9] showed the class of regular expressions is not identifiable in the limit.
Therefore numerous papers (e.g.[2, 5, 6, 12]) studied inference algorithms of re-
stricted classes of regular expressions. Most of them were based on properties
of automata. Bex et al. [2] proposed learning algorithms for single occurrence
regular expressions (SOREs) and chain regular expressions (CHAREs). Frey-
denberger and Kötzing [12] gave more efficient algorithms learning a minimal
generalization for the above classes. The approach is based on descriptive gen-
eralization [12] which is a natural extension of Gold-style learning.

However, there is no such kind of automata for regular expressions with
interleaving since they do not preserve the total order among symbols. Thus we
have to explore new techniques. While Ciucanu [13] proposed learning algorithms
for two unordered schema formalisms: disjunctive multiplicity schemas (DMS)
and its restriction, disjunction-free multiplicity schemas (MS), both of them
disallow concatenation within siblings. Thus they are less expressive than ours.
Moreover, the ordering information in our schema formalism can not be fully
captured by the three characterizing triples used to construct a DMS or MS.

Inference algorithms in this paper use some similar techniques with algo-
rithms mining global partial orders from sequence data [14, 15, 17]. However,
the semantic concepts there are typically quite different from ours. Mannila et
al. [15] tried to find mixture models of parallel partial orders. However, to learn
unordered regular expressions, series parallel orders may not be sufficient since
they can conflict with some data in the whole data set. Another restriction in
the above method is that it can only be applied to strings where each symbol
occurs at most once. Particularly, Gionis et al. [14] emphasised on recovering
the underlying ordering of the attributes in high-dimensional collections of 0-1
data. An implicit assumption is that attribute can also occur at most once. For
learning regular expressions with interleaving, symbols in strings can present
any times and partial orders among siblings are independent with no violations.
Hence many techniques from data mining are not directly applicable. Therefore,
learning restricted regular expressions with interleaving remains a challenging
problem.

In this paper, we address the problem of discovering a minimal regular ex-
pression with interleaving from positive examples. The main contributions of the
paper are listed as follows:

- We propose a better and more suitable formalism to specify precise unordered
XML: the subset of regular expressions with interleaving (SIREs). SIREs can
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express the content models succinctly and concisely. For example, the above
example can be depicted as (g1.m1∗g1.m2∗)&(g2.m1∗g2.m2∗).

- We introduce the notion of SIRE-minimal in the terminology of [12] and some
properties of SIRE-minimal.

- We prove the problem of finding a minimal SIRE is NP-hard and develop an
approximation algorithm conMiner to find solutions with worst-case quality
guarantees and a heuristic algorithm conDAG that mostly finds solutions of
better quality as compared to the approximation algorithm conMiner.

- We conduct experiments comparing our methods with Trang [8] on real world
data, incorporating small and large data sets. Our experiments show that
conMiner and conDAG outperform existing systems on such data.

The rest of the paper is organized as follows. Section 2 contains basic definitions.
In Section 3 we discuss properties of minimal-SIRE. In Section 4 an approx-
imation algorithm conMiner and a heuristic algorithm conDAG are proposed.
Section 5 gives the empirical results. Conclusions are drawn in Section 6.

2 Preliminaries

Let u and v be two arbitrary strings. By u&v we denote the set of strings that is
obtained by interleaving of u and v in every possible way. That is, u&ε = ε&u =
u, v&ε = ε&v = v. If both u and v are non-empty let u = au′, v = bv′, a and b are
single symbols, then u&v = a(u′&v)∪b(u&v′). Let Σ be an alphabet of symbols.
The regular expressions with interleaving over Σ are defined as: ∅, ε or a ∈ Σ is a
regular expression, E?

1 , E∗1 , E+
1 , E1E2, E1|E2, or E1&E2 is a regular expression

for regular expressions E1 and E2. They are denoted as RE(&). The language
described by E is defined as follows: L(∅) = {∅}; L(ε) = {ε}; L(a) = {a};
L(E?

1) = L(E1)?; L(E+
1 ) = L(E1)+; L(E∗1 ) = L(E1)∗; L(E1E2) = L(E1)L(E2);

L(E1|E2) = L(E1) ∪ L(E2); L(E1&E2) = L(E1)&L(E2). We consider the sub-
set of regular expressions with interleaving (SIREs) defined by the following
grammar.

Definition 1. The restricted class of regular expressions with interleaving (RREs)
are RE(&) over Σ by the following grammar for any a ∈ Σ:

S :: = T&S|T
T :: = ε|a|a+|a?|a∗|TT

The subset of regular expressions with interleaving (SIREs) are those RREs in
which every symbol can occur at most once. Since SIREs disallow repetitions of
symbols, they are certainly deterministic and satisfy the UPA constraint required
by the XML specification.

A partial order M for a string s is a binary relation that is reflexive, an-
tisymmetric and transitive. We write a ≺ b if a is before b in the partial or-
der. For string s = x1 · · ·xl, the transitive closure of s is denoted by tr(s) =
{(xi, xj)|1 ≤ i < j ≤ l}, where l is the length of s. For example s = abcd,
tr(s) = {ab, ac, ad, bc, bd, cd}.
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A partial-order set t is a set of symbols together with a partial ordering. We
say ab ∈ t if a precedes b in every string in a string collection. Consistent partial
order set (CPOS) T is a set which contains all the disjoint partial-order sets
ti of the given examples. For example, consider W = {abcd, dabc}. Obviously,
a ≺ b ≺ c, T = {abc, d}. The connection between CPOS and SIRE is directly.
That is, given a CPOS, we can write it to the form of SIRE by combining all
the elements in CPOS with &. For example, in this case the corresponding SIRE
s = abc&d. Therefore, the problem of finding a minimal SIRE can be reduced
to the problem of finding a minimal CPOS.

3 Descriptivity

This section introduces the notion of minimal expressions. Roughly speaking
minimal is the greatest lower bound of a language L within a class of expressions,
which is conceptually similar with infimum in the terminology of mathematics.

Definition 2 ([12]). Let D be a class of regular expressions over some alphabet
Σ. A δ ∈ D is called D-minimal of non-empty language S ⊆ Σ∗ if L(δ) ⊇ S,
and there is no γ ∈ D such that L(δ) ⊃ L(γ) ⊇ S.

Proposition 1. Let n be the number of alphabet symbols. The number of pair-
wise non-equivalent SIREs is O(n!).

Proof. Disregarding operators ?,+,*, the number of SIREs over a finite Σ is
equivalent to the number of ordered partitioning |Σ| symbols. The number of
these partitions is given by the |Σ|th ordered Bell numbers [11]. For instance, if
Σ = {a, b, c}, the 3th ordered Bell number a(3) = 13, and the ordered partitions
of {a, b, c} is {abc, acb, bac, bca, cab, cba, ab&c, ba&c, ac&b, ca&b, bc&a, cb&a, a&b&c}.
They are also distinct partitions of SIREs over Σ. The ordered Bell number [10]
can be approximated as a(n) =

∑n
k=0 k!

(
n
k

)
≈ n!

2(ln2)n+1 . Since every symbol a in

Σ has four forms which can be represented as a, a?, a+ and a∗, the number of
SIREs over Σ is 4na(n). Then s(n) ≈ 4nn!

2(ln2)n+1 . ut

We can then prove the existence of minimal regular expressions for SIRE.

Proposition 2. Let Σ be a finite alphabet. For every language L ⊆ Σ∗, there
exists a SIRE-minimal SIRE δs.

Proof. Assume there is a language L over Σ such that no expression α ∈ SIRE
is SIRE-minimal. This implies that there is an infinite sequence (βi)i≥0 of ex-
pressions from SIRE with α = β0 and L(βi) ⊃ L(βi+1) ⊇ L for all i ≥ 0. This
contradicts the fact that there are only a finite number of non-equivalent SIREs
over Σ by Proposition 1. ut

Proposition 3. For any example string set E over {a1, · · · , an}, let S = s1& · · ·
&sl be a SIRE such that E ⊆ L(S). S is a minimal SIRE if and only if:
(1) the number of si is minimized and
(2) the size of each si is as large as possible.
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The proof was omitted for space reasons.
In other words, a minimal SIRE is the most specific SIRE that consistent with

the given example strings. For instance, all of S1 = a&bc&d, S2 = abc&d and
S3 = ad&bc can accept E = {abcd, adbc}. However, since S1 = (ad|da)&bc =
(ad&bc)|(da&bc) = S3|(ad&bc), we can get L(S1) ⊃ L(S3) which means S1

is not minimal. As for S2 and S3, since L(S2) = {abcd, abdc, adbc, dabc} and
L(S3) = {bcad, bacd, badc, abcd, abdc, adbc}, this means S3 is not minimal. As we
shall see, S2 is a better approximation of E. In fact, S2 can be verified to be a
minimal by referring to Proposition 3.

4 Minimal SIREs

In this section, we first prove finding a minimal SIRE for a given set of strings
is NP-hard by reducing from finding a maximum independent set of a graph,
which is a well-known NP-hard graph problem [7]. Then we present learning
algorithms that construct approximatively minimal SIREs.

4.1 Exact Identification

First, we introduce the notion of maximum independent set of a graph [7]. Con-
sider an undirected graph G(V,E), an independent set (IS) is a set I ⊆ V
such that ∀u, v ∈ V , (u, v) /∈ E. The maximum independent set (MIS) problem
consists in computing an IS of the largest size. Next, we define the problem
all_mis which takes a graph G as input, finding a MIS S′ of G by applying
function max_independent_set, and repeating the step for subgraph G[V − S′]
until there exists no vertex in the subgraph. In other words, all_mis is to divide
V into disjoint subsets by max_independent_set. Clearly, problem all_mis is
NP-hard.

The main idea of finding a minimal SIRE is based on the observation that
there are sets of conflicting siblings that cannot be divided into the same subset
of CPOS. A pair xy is called forbid pair in a string database if both xy and
yx exists in the transitive closure of strings. The set of forbid pairs is called a
constraint. By Proposition 3, if we split the set of symbols in a constraint into
several subsets t1, · · · , tn such that n is minimized and for each i ∈ [1..n], ti is
the longest of its alternatives. Then the set of ti where i ∈ [1..n], is a minimal
CPOS which can be transformed to a minimal SIRE.

Lemma 1. Minimal SIRE finding problem is NP-hard.

Proof. We demonstrate that all_mis can be reduced in polynomial time to
minimal SIRE finding problem. Given an instance of all_mis, we can generate
a corresponding instance of minimal SIRE finding as follows. For the graph G
in all_mis, the reduction algorithm computes the constraint set by adding
all edges in G to constraint, which is easily obtained in polynomial time. The
output of the reduction algorithm is the instance set constraint of minimal
SIRE finding problem. ti in CPOS is the longest of its alternatives if and only if
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all_mis computes a maximum independent set at the ith step. Thus, minimal
SIRE finding problem is equivalent to the original all_mis. Since all_mis is
NP-hard, minimal SIRE finding problem is NP-hard. ut

4.2 Approximation Algorithm

The process of this approach is formalized in Algorithm 1. Algorithm 1 works in
four steps and we illustrate them on the sample E = {abcd, aadbc, bdd}. The first
step (lines 1-2) computes the non-constraint and constraint set using the func-
tion tran_reduction. The transitive closure of E is tr = {ab, ac, ad, bc, bd, db,
dc}. Add uv to constraint if vu ∈ tr. Add uv to L2 otherwise. We get L2 =
{ab, ac, ad, bc} and constraint = {bd, cd, db, dc}. Construct an undirected graph
G using element in constraint as edges. The second step (lines 3-7) is to select
a MIS of G, add it to list allmis and delete the MIS and their related edges
from G. The process is repeated until there exists no nodes in G. The problem
of finding a maximum independent set is an NP-hard optimization problem. As
such, it is unlikely that there exists an efficient algorithm for finding a maxi-
mum independent set of a graph. However, we can find a MIS in polynomial
time with a approximation algorithm, e.g. the clique_removal algorithm pro-
posed in [19] that finds the approximation of maximum independent set with
performance guarantee O(n/(log n)2) by excluding subgraphs. For graph G, we
obtain allmis = {{b, c}, d}. Next, we add the non-constraint symbols to the first
MIS. Then we have allmis = {{a, b, c}, d}. The third step (lines 8-10) computes
the topological sort for all subgraphs induced by subset of L2 and add the result
to T . For the sample, it returns T = {abc, d}. Finally, the algorithm returns the
SIRE whose corresponding counting operators 1, ∗,+, ? can be inferred using
technique in algorithm CRX [4]. For the sample, it returns a∗bc?&d+.

Algorithm 1 conMiner(W )

Input: Set of words W = {w1, ..., wn}
Output: a minimal SIRE T
1: L2, constraint = tran reduction(W,T )
2: G = Graph(constraint)
3: while G.nodes()! = null do
4: v = clique removal(G)
5: G = G− v
6: allmis.append(v)

7: allmis[0] = allmis[0].union(alphabet(L2)− alphabet(constraint))
8: for each mis ∈ allmis do
9: H = Graph(mis, L2)

10: T.append(topological sort(H))

11: return learneroper(W,T )
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4.3 Heuristic Algorithm

Although a number of approximation algorithms and heuristic algorithms have
been developed for the maximum independent set problem, on any given in-
stance, they may produce a SIRE that is very far from optimal. We introduce a
heuristic directed acyclic graph construction algorithm directly computing a min-
imal SIRE. The main idea is to cluster the vertices of the existing directed graph
into several disconnected subgraphs. The graph is constructed incrementally to
preserve CPOS within each vertex using a greedy approach. The pseudocode of
algorithm conDAG is given in Algorithm 2.

The input to this algorithm is the same as the input of the conMiner. The
algorithm maintains lists p, q as records to keep track of pairs violating the
partial order constraint and lists s, t to record pairs violating the partial order
constraint of the string under reading. Note that (a, b) violating the partial order
constraint means there exist some w1, w2 ∈ W such that a ≺ b in w1 and b ≺ a
in w2.

Let ab be two adjacent symbols in a word w. The add_or_break function
checks whether edge ab is added to the present graph G. If there exists no path
from b to a, no path from a to b in G and edge ab will not make a connection
between some p[i] and q[i], we add edge a → b in G. Self-loops such as f → f
are always ignored since they have no influence on the partial order constraints.
However, if there exist paths from b to a in G, (a, b) /∈ (p[i], q[i]), (q[i], p[i]) and
a, b are not in p[i], q[i] at the same time for all i < len(p), we should break all
paths from b to a. The breakpoint can be found as below. Suppose there exists
a path u = bα1...a, α0 = b in G, and substring of w over {b, α1, ..., a} is αi...a,
then we delete edge αi−1 → αi, add edge β → αi for all nodes β that β → b,
and add edge αi−1 → γ for all nodes γ that a → γ. In the end, add bα1...αi−1
to p,s and add αi...a to q,t.

β a b c d γ

β a b c d γ

Figure 1: This is an example to find the breakpoint

Example in Figure 1 shows how the function works. W = {βabcdγ, cda},
initialize empty list p,q,s,t and empty graph G. After reading w1, list p,q,s,t are
still empty. When reading da ∈ w2, there already exists a path abcd and (d, a) /∈
(p[i], q[i]), (q[i], p[i]). We should break abcd. Since substring(w2, {a, b, c, d}) =
cda, breakpoint is c. Then we delete edge b→ c, and add edges β → c,b→ γ. In
the end, add ab to p,s and add cd to q,t.
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1: function consistent(G,w, p, q)
2: s, t := ∅, i := 1
3: while i < |w| − 1 do
4: if w[i] 6= w[i + 1] ∧ (w[i], w[i + 1]) /∈ (p, q), (q, p) then
5: add or break(G,w,w[i], w[i + 1], p, q, s, t)

6: for j := 1 to |s| do
7: if (w[i] ∈ s[j]) ∧ ((t[j][−1], w[i + 1]) /∈ (p, q)) then
8: add or break(G,w, last symbol(t[j]), w[i + 1], p, q, s, t)

9: if (w[i] ∈ t[j]) ∧ (s[j][−1], w[i + 1]) /∈ (p, q)) then
10: add or break(G,w, last symbol(s[j]), w[i + 1], p, q, s, t)

11: i + +

The consistent function scans the whole string w by sequence to exe-
cute add_or_break function. Each time after reading two adjacent symbols ab,
for all pairs (α1aα2, α3c) or (α3c, α1aα2) ∈ (s, t), handle cb likewise. Because
(α1aα2, α3c) or (α3c, α1aα2) ∈ (s, t) declare a ≺ c and c ≺ a are in w, if a ≺ b in
w, c ≺ b is also in w. Consider acab as an example, c and a have been two parts
after reading ca, a has been added to p and s and c added to q and t. After read-
ing the next two symbols ab, add edge a→ b. Next we should consider cb since
a ∈ s[0], c ∈ s[0], thus add edge c → b. The topological_sort(g) construct a
topological ordering of DAG in linear time. The learner_oper is used to infer
operators ?,+, ∗ for each vertex.

The conDAG algorithm combines all the functions. The constructed graph is
denoted by G and the corresponding set of partitions by C. In each iteration,
it invokes consistent to update G using the ith string. Then it adds all the
paths from the set of vertices of in-degree zero to the set of vertices of out-
degree zero. To be able to calculate the largest independent partial-order plans,
a preprocessing phase is implemented. First, we consider the elements of C in
decreasing order of size. In each iteration, whenever we find two elements that
the one contains elements of p[i] and the other one contains elements of q[i],
we updates the shorter one by removing the common elements. Next, we merge
all the lists in C that share common elements. The preprocess terminates when
every symbol is included in one and only one list. The following steps of the
algorithm are the same as the third and the forth step of the conMiner.

The time complexity analysis of this algorithm is straightforward. add or brea
k(G,w, a, b, p, q, s, t) can find all possible paths between two given nodes by mod-
ifying the DFS which needs O(|V |+ |E|) steps. Breaking a circle requires O(|V |).
Therefore, an overall time complexity for add or break is O(c|V | + |E|), where
c is number of paths between the given nodes in the graph. When there exist
n(n−2)/2 inconsistent terms in W, every two symbols are not in a group, which
is the worst case. When tackling of αi−1αi, len(p) = (n−i+1)(n−i)/2, deciding
whether (αi−1, αi) ∈ (p[j], q[j]), (q[j], p[j]) needs (n− i+1)(n− i) time. Deciding
whether αi ∈ s[j], t[j] needs n − i time. There is only one path between two
nodes, thus c = 1. So the total time of consisitent is

∑n
i=2(n − i)2(|V | + |E|)

where |V | = n, and |E| is O(n) according to the analysis above.
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Algorithm 2 conDAG(W )

Input: Set of unordered words W = {w1, ..., wn}
Output: a minimal SIRE
1: L2, constraint = tran reduction(W,T )
2: initialize graph G, p, q := ∅
3: for i := 1 to n do
4: consistent(G,wi, p, q)

5: C = all paths(G, source, destination)
6: remove the common elements from the shorter of ci, cj ∈ C if ci[m] + cj [n] ∈

constraint.
7: merge all lists that share common elements in C
8: for each mis in C do
9: H = Graph(mis, L2)

10: T.append(topological sort(H))

11: return learneroper(W,T )

The tran reduction computation requires O(n2) time, where n is the number
of distinct symbols. Each iteration requires O(n3) time to maintain the graph.
Computing all paths from source to destination can be done in O(n2) time, and
topological sort(g) constructs a topological ordering of DAG in linear time, thus
O(|V |+ |E|) steps are sufficient. Inference of operators ?,+, ∗ needs time O(m).
Hence the time complexity of the algorithm is O(tn4 +m), where m is the sum
of length of the input example strings, n the number of alphabet symbols and t
the number of strings.

To illustrate our algorithm, consider the example E = {abcd, aadbc, bdd},
L2 = {ab, ac, ad, bc}, constraint = {bd, cd, db, dc} in the above section. A di-
rected graph which consists of vertex V = {a, b, c, d} and edges E = {ab, bc, ad}
can be obtained. p = {bc} and q = {d}. All paths from source to destination are
C = {abc, ad}. Since bd ∈ constraint, C[2] is updated by removing the common
elements between C[1] and C[2]. C[2] is d. The final C is {abc, d}. The following
steps are the same.

5 Experiments

In this section, we validate our approaches on real-life DTDs, and compare them
with that of Trang [8]. All experiments were conducted on an IBM T400 laptop
computer with a Intel Core 2 Duo CPU(2.4GHz) and 2G memory. All codes
were written in python.

The number of corpora of XML documents with an interesting schema is
rather limited. We obtained our real-life DTDs from the XML DATA repository
maintained by Miklau [18]. Unfortunately, most of them are either not data-
centric or not with a DTD. Specifically, We chose the DBLP Computer Science
Bibliography corpus, a data-centric database of information on major computer
science journals and proceedings.
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Element Original DTD
name Exact Minimal DTD
Sample Result of conMiner
size Result of conDAG

Result of Trang
Number of Simplified Exact Minimal DTD
interleaving Simplified Result of conMiner

Simplified Result of conDAG

inproceedings (a1|a2| · · · |a22)∗

2122274 a1
∗a12?a5

∗a9?a18?a15
∗&a3a6a11

∗&a19
∗&a13

∗&a4&a14
∗

2122274 a5
∗a18?a15

∗&a12?a9?a13
∗&a1

∗a14
∗&a6a11

∗&a3&a4&a19
∗

2122274 a1
∗a4a9?a11

∗a15
∗&a3a12?a5

∗a18?&a13
∗&a6&a14

∗&a19
∗

2122274 (a1|a3|a5|a6|a9|a11|a12|a13|a14|a15|a18|a19)+

5 6&3&1&1&1&1
6 3&3&2&2&1&1&1
5 5&4&1&1&1&1

article (a1|a2| · · · |a22)∗

111608 a1
∗a17?a∗

5a12?a15
∗&a3a6a11?&a13

∗&a8&a10?&a14
∗&a9?

111608 a17?a12?a9?a15
∗&a1

∗a6a11?&a3&a∗
5&a13

∗&a8&a10?&a14
∗

111608 a3
∗a17?a6a11?&a1

∗a8a12?a15
∗&a13

∗&a∗
5&a10?&a12?&a9?

111608 a2?(a1|a3|a5|a6|a8|a9|a10|a11|a12|a13|a14|a15|a17)+

6 5&3&1&1&1&1&1
7 4&3&1&1&1&1&1&1
6 4&4&1&1&1&1&1

proceedings (a1|a2| · · · |a22)∗

3007 a2
∗a3

+a18?a21?a8?a10?a13?a12?a15
∗a19?a7?a9?&a4?&a17?&a6&a∗

20&a11?
3007 a2

∗a3
+a19?a13?a∗

20a15
∗a12?&a4?a7?a8?a9?&a21?a18?a10?&a6&a17?&a11?

3007 a2
∗a3

+a8?a18?a21?a10?a9?a19?a13?a7?a15
∗&a4?a12?&a17?&a6&a∗

20&a11?
3007 a2

∗a3
+(a4|a6|a7|a8|a9|a10|a11|a12|a13|a17|a18|a19|a20|a21)+a15

∗

5 12&1&1&1&1&1
5 7&4&3&1&1&1
5 11&2&1&1&1&1

incollection (a1|a2| · · · |a22)∗

1009 a1
∗a3a4a17?a20?a16?a11?a15

∗a14?&a13?a19?&a5?&a6

1009 a1
∗a3a17?a6&a15

∗a13?a16?a14?&a4a11?&a20?a19?&a5?
1009 a1

∗a3a4a17?a11?a15
∗a14?&a6a20?&a5?a16?&a13?&a19?

1009 (a1|a3|a4|a5|a6|a11|a13|a16|a17|a20)+(a14|a15
∗)

3 9&2&1&1
4 4&4&2&2&1
4 7&2&2&1&1

phdthesis (a1|a2| · · · |a22)∗

72 a1a3a6a17?a21?a20?a9?a13?a12?&a22

72 a1a3a6a12?a21?a22a13?a20?&a17?a9?
72 a1a3a6a17?a21?a20?a13?a9?a12?&a22

72 a1a3a6(a12|a21)?(a9|a17|a22)+(a13|a20)?
1 9&1
1 8&2
1 9&1

www (a1|a2| · · · |a22)∗

38 a1
∗a2

∗a3a4?a6?a11

38 a1
∗a2

∗a3a4?a6?a11

38 a1
∗a2

∗a3a4?a6?a11

38 (a1
∗|a2

∗)a3a4?a6?a11

0 6
0 6
0 6

Table 1: Results of exact algorithm, conMiner, conDAG and Trang on DTDs
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Table 1 lists the non-trivial element definitions in the above mentioned DTD
together with the results derived by exact algorithm, heuristic algorithm con-
Miner, approximation algorithm conDAG, and Trang. We implement the exact
algorithm using conMiner by replacing function clique_removal with an expo-
nential time algorithm proposed by S. Tsukiyama [20]. We also list the number
of interleavings used and the simplified of our results to have a clear view of their
relationship. The numbers in the first column the first five rows in each element
refer to the element name and the sample size respectively. The numbers in the
first column the last three rows in each element refer to the number of interleav-
ings used by the result of exact algorithm, conMiner and conDAG, respectively.
It can be verified that all expressions learned by exact algorithm, conDAG and
conMiner are more strict than that of Trang and the original DTDs which in-
dicates there exists much more over-permissive in both the original DTDs and
the results of Trang.

We note that there may exist many minimal expressions given a set of un-
ordered strings. For instance, for phdthesis, the form of the result of conDAG
is the same with the exact minimal expression. The orders among symbols of
their first siblings, however, differ widely. This is due to the fact that a diagraph
may have several different topological sorts. Therefore, we ignore the sequel in
the symbols and only compare their simplified form. The table shows clearly
that conDAG yields concise super-approximations to the exact minimal expres-
sions. Although for proceedings, incollection and phdthesis, the expres-
sions produced by conMiner and conDAG have the same number of interleavings,
conDAG yields longer length of siblings and thus finds solutions of better quality
as compared to the solutions found by the approximation algorithm.

6 Conclusion

This paper proposes a strategy for learning a class of regular expressions with
interleaving: first, compute consistent partial order T , then equip each factor
with counting operators. As future work, we will investigate several interesting
problems inspired by this study. First, we would like to extend our algorithms
for more expressive schemas, for example schemas allow disjunction “|” within
siblings. Second, how to extend algorithms to mine all independent frequent
closed partial orders [17] is also an attractive topic.
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19. R. Boppana and M. M. Halldórsson: Approximating maximum independent sets
by excluding subgraphs. BIT Numerical Mathematics 32.2: 180-196 (1992)

20. S. Tsukiyama, M. Ide, H. Ariyoshi and I. Shirakawa: A new algorithm for gener-
ating all the maximal independent sets. SIAM Journal on Computing 6.3: 505-517
(1977)

21. Algorithm to divide a set of symbols with constraints into minimun number of
subsets, http://stackoverflow.com/q/29117747/4684328


