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Abstract

A partition (C1, C2, ..., Cq) ofG = (V,E) into clusters of strong (respectively, weak) diameter d, such
that the supergraph obtained by contracting each Ci is ℓ-colorable is called a strong (resp., weak) (d, ℓ)-
network-decomposition. Network-decompositions were introduced in a seminal paper by Awerbuch,
Goldberg, Luby and Plotkin in 1989. Awerbuch et al. showed that strong (exp{O(√logn log logn)},
exp{O(√logn log logn)})-network-decompositions can be computed in distributed deterministic time
exp{O(√logn log logn)}. Even more importantly, they demonstrated that network-decompositions
can be used for a great variety of applications in the message-passing model of distributed computing.

The result of Awerbuch et al. was improved by Panconesi and Srinivasan in 1992: in the latter re-
sult d = ℓ = exp{O(√logn)}, and the running time is exp{O(√logn)} as well. In another remarkable
breakthrough Linial and Saks (in 1992) showed that weak (O(log n), O(log n))-network-decompositions
can be computed in distributed randomized time O(log2 n). Much more recently Barenboim (2012) de-
vised a distributed randomized constant-time algorithm for computing strong network decompositions
with d = O(1). However, the parameter ℓ in his result is O(n1/2+ǫ).

In this paper we drastically improve the result of Barenboim and devise a distributed randomized
constant-time algorithm for computing strong (O(1), O(nǫ))-network-decompositions. As a corollary
we derive a constant-time randomized O(nǫ)-approximation algorithm for the distributed minimum
coloring problem, improving the previously best-known O(n1/2+ǫ) approximation guarantee. We also
derive other improved distributed algorithms for a variety of problems.

Most notably, for the extremely well-studied distributed minimum dominating set problem cur-
rently there is no known deterministic polylogarithmic-time algorithm. We devise a deterministic
polylogarithmic-time approximation algorithm for this problem, addressing an open problem of Lenzen
and Wattenhofer (2010).

1 Introduction

1.1 Network-Decompositions
In the distributed message-passing model a communication network is represented by an n-vertex graph
G = (V,E). The vertices of the graph host processors that communicate over the edges. Each vertex has
a unique identity number (ID) from the range {1, 2, ..., n}. We consider a synchronous setting in which
computation proceeds in rounds, and each message sent over an edge arrives by the beginning of the next
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round. The running time of an algorithm is the number of rounds from the beginning until all vertices
terminate. Local computation is free.

A strong (respectively, weak) diameter of a cluster C ⊆ V is the maximum distance distG(C)(u, v)
(resp., distG(u, v)) between a pair of vertices u, v ∈ C, measured in the induced subgraph G(C) of C
(resp., in G). A partition (C1, C2, ..., Cq) of G = (V,E) into clusters of strong (resp., weak) diameter
d, such that the supergraph G = (V, E), V = {C1, C2, ..., Cq}, E = {(Ci, Cj) | Ci, Cj ∈ V, i 6= j,∃vi ∈
Ci, vj ∈ Cj, (vi, vj) ∈ E} obtained by contracting each Ci is ℓ-colorable is called a strong (resp., weak)
(d, ℓ)-network-decomposition.

Network-decompositions were introduced in a seminal paper by Awerbuch et al. [3]. The au-
thors of this paper showed that strong (exp{O(

√
log n log log n)}, exp{O(

√
log n log log n)})-network-

decompositions can be computed in distributed deterministic exp{O(
√
log log log n)} time. Even more

importantly they demonstrated that many pivotal problems in the distributed message passing model
can be efficiently solved if one can efficiently compute (d, ℓ)-network-decompositions with sufficiently
small parameters. In particular, this is the case for Maximal Independent Set, Maximal Matching, and
(∆ + 1)-Vertex-Coloring.

The result of [3] was improved a few years later by Panconesi and Srinivasan [45] who devised a de-
terministic algorithm for computing strong (exp{O(

√
log n)}, exp{O(

√
log n)})-network-decompositions

in exp{O(
√
log n)} time. Awerbuch et al. [1] devised a deterministic algorithm for computing strong

(O(log n), O(log n))-network-decomposition in time exp{O(
√
log n)}. Around the same time Linial and

Saks [39] devised a randomized algorithm for computing weak (O(log n), O(log n))-network-decompositions
in O(log2 n) time. More generally, the algorithm of [39] can compute weak (λ,O(n1/λ log n))-network-
decompositions or weak (O(n1/λ), λ)-network-decompositions in time O(λ · n1/λ log n).

Observe, however, that all these algorithms [3, 45, 39] require super-logarithmic time, for all choices of
parameters. In ICALP’12 the first-named author of the current paper [5] devised a randomized algorithm
for computing strong (O(1), n1/2+ǫ)-network-decomposition in O(1/ǫ) time. Unlike the algorithms of
[3, 45, 39], the algorithm of [5] requires constant time. Its drawback however is its very high parameter
ℓ = n1/2+ǫ. In the current paper we alleviate this drawback, and devise a randomized algorithm for
computing strong (exp{O(λ)}, n1/λ)-network-decomposition in time exp{O(λ)}. In other words, the
parameter λ of our new decompositions can be made nǫ, for an arbitrarily small constant ǫ > 0, while
the running time is still constant (specifically, exp{O(1/ǫ)}).
1.2 Constant-Time Distributed Algorithms
In their seminal paper titled ”What can be computed locally?” [43] Naor and Stockmeyer posed the
following question: which distributed tasks can be solved in constant time? This question is appealing
both from theoretical and practical perspectives. From the latter viewpoint it is justified by the emergence
of huge networks. The number of vertices in the latter networks may be so large that even mildest
dependence of the running time on n may make the algorithm prohibitively slow.

Naor and Stockmeyer themselves [43] showed that certain types of weak colorings can be computed in
constant time. A major breakthrough in the study of distributed constant time algorithms was achieved
though a decade after the paper of [43] by Kuhn andWattenhofer [34]. Specifically, Kuhn andWattenhofer

[34] showed that an O(
√
k∆1/

√
k log ∆)-approximate minimum dominating set1 can be computed in O(k)

randomized time. Here ∆ = ∆(G) is the maximum degree of the input graph G, and k is a positive
possibly constant parameter.

An approximation algorithm for another fundamental optimization problem, specifically, for the min-
imum coloring problem, was devised by Barenboim [5] as an application of his aforementioned algorithm
for computing network-decompositions. Specifically, it is shown in [5] that an O(n1/2+ǫ)-approximation

1A subset U ⊆ V in a graph G = (V,E) is a dominating set if for every v ∈ V \U there exists u ∈ U , such that (u, v) ∈ E.
In the minimum dominating set (henceforth, MDS) problem the goal is to find a minimum-cardinality dominating set of G.
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for the minimum coloring problem can be computed in O(1/ǫ) randomized time. (In the minimum color-
ing problem one wishes to color the vertices of the graph properly with as few colors as possible.) Observe
that since approximating the minimum coloring problem up to a factor of n1−ǫ is NP-hard [27, 24, 49],
the algorithm of [5] inevitably has to employ very heavy local computations.

In the current paper we employ our improved network-decomposition procedure to come up with a
significantly improved constant-time approximation algorithm for the minimum coloring problem. Specif-
ically, our randomized algorithm provides an O(nǫ)-approximation for the minimum coloring problem
in exp{O(1/ǫ)} time, for an arbitrarily small constant ǫ > 0. We also devise a randomized O(nǫ)-
approximation algorithm for the minimum t-spanner problem with running time exp{O(1/ǫ)} + O(t),
for any arbitarily small constant ǫ > 0. (A subgraph G′ = (V,H) of a graph G = (V,E), H ⊆ E, is a
t-spanner of G if for every u, v ∈ V , distG′(u, v) ≤ t · distG(u, v). In the minimum t-spanner problem the
objective is to compute a t-spanner of the input graph G with as few edges as possible.)

Ajtai et al. [2] showed that triangle-free n-vertex graphs admit an O(
√
n/
√
log n)-coloring. This exis-

tential bound was shown to be tight by Kim [29]. We devise a randomized O(n1/2+ǫ)-coloring algorithm
for triangle-free graphs with running time O(1/ǫ). More generally, we devise a randomized O(n1/k+ǫ)-
coloring algorithm for graphs of girth greater than g = 2k, k ≥ 2, with running time O(1/ǫ2). Both results
apply for any arbitrarily small ǫ > 0, and, in particular, they show that such graph can be colored with a
reasonably small number of colors in constant time. Together with our drastically improved constant-time
approximation algorithm for the minimum coloring problem, these results significantly expand the set of
distributed problems solvable in constant time.

Most our algorithms for constructing network-decompositions use only short messages1 (i.e., messages
of size O(log n) bits), and employ only polynomially-bounded local computations. Although in general
graphs our algorithms for O(n1/ǫ)-approximate minimum coloring require large messages, our O(n1/2+ǫ)-
coloring and O(n1/k+ǫ)-coloring algorithms for triangle-free graphs and graphs of large girth employ short
messages. Hence the latter coloring algorithms are suitable to serve as building blocks for various tasks.
Despite that the number of colors is superconstant, in many tasks it does not affect the overall running
time, so the entire task can be performed very quickly. For example, if the colors are used for frequency
assignment or code assignment tasks, the running time will not be affected by the number of colors.
Instead, the range of frequencies or codes will be affected. However, this is unavoidable in the worst case,
in view of the lower bounds on the chromatic number of triangle free graphs and graph of large girth.
1.3 The Minimum Dominating Set Problem
The MDS problem is one of the most fundamental classical problems of distributed graph algorithms. Jia
et al. [28] devised the first efficient randomized O(log∆)-approximation algorithm for the MDS problem
with running time O(log n log∆). Their result was improved and generalized by Kuhn and Wattenhofer

[34] who devised an O(k)-time randomized O(
√
k∆1/

√
k log∆)-approximation algorithm for the problem.

The results of [28, 34] spectacularly advanced our understanding of the distributed complexity of the
MDS problem. However, both these algorithms [28, 34] are randomized, and no efficient deterministic
distributed algorithms with a non-trivial approximation guarantee for general graphs are currently known.
Lenzen and Wattenhofer [37] devised such algorithms for graphs with bounded arboricity. Below we
provide a quote from their paper:
”To the best of our knowledge, the deterministic distributed complexity of MDS approximation on general
graphs is more or less a blind spot, as so far neither fast (polylogarithmic time) algorithms nor stronger
lower bounds are known”.

In this paper we address this blind spot and devise a deterministic O(n1/k)-approximation algorithm for
the MDS problem with time O((log n)k−1). Similarly to our approximation algorithms for the minimum
coloring and the minimum t-spanner problems, this algorithm is also a consequence of our algorithms

1The only exceptions are weak network-decompositions from Section 6.3.
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for constructing network-decompositions. However, for the MDS we use a deterministic version of these
algorithms, while for the minimum coloring and minimum t-spanner problems we use a randomized
version. Also, we present a variant of our MDS approximation algorithm that employs only polynomially-
bounded local computations, requires O((log n)k−1) time, and provides an O(n1/k log ∆) approximation.
1.4 Additional Results
We also use our algorithms for computing network-decompositions for devising algorithms for computing
low-intersecting partitions. Low-intersecting partitions were introduced by Busch et al. [14] in a paper
on universal Steiner trees. A low-intersecting (α, β, γ)-partition P of a graph G is the partition of the
vertex set V such that: (1) Every cluster C in P has strong diameter at most α · γ.
(2) For every vertex v ∈ V , a ball Bγ(v) of radius γ around v intersects at most β clusters of P.

Busch et al. showed that given a hierarchy of low-intersecting partitions with certain properties (see
[14] for details) one can construct a universal Steiner tree. (See [14] for the definition of universal Steiner
tree.) Also, vice versa, given universal Steiner tree they showed that one can construct a low-intersecting
partition. They constructed a low-intersecting partition with α = 4k, β = k · n1/k, and arbitrary γ.

We devise a distributed randomized algorithm that constructs low-intersecting ((O(γ)k, n1/k, γ)-
partitions in time (O(γ))k log2/3 n in general graphs and in (O(γ))k ·exp{O(

√
log log n)} time in graphs of

girth g ≥ 6. This algorithm employs only short messages and polynomially-bounded local computations.
Comparing this result with the algorithm of Busch et al. [14] we note that the partition of [14] has

smaller radius. (It is γ · (O(1))k instead of (O(γ))k in our case.) On the other hand, the intersection
parameter β of our partitions is smaller. (It is n1/k instead of k · n1/k.) In particular, the intersection
parameter in the construction of [14] is always Ω(log n), while ours can be as small as one wishes. Finally,
and perhaps most importantly, the algorithm of [14] is not distributed, and seems inherently sequential.
1.5 Comparison of Our and Previous Techniques
Basically, our algorithms for computing network-decompositions can be viewed as a randomized variant
of the deterministic algorithm of Awerbuch et al. [3]. The algorithm of Awerbuch et al. [3] computes
iteratively ruling sets for subsets of high-degree vertices in a number of supergraphs. These supergraphs
are induced by certain graph partitions which are computed during the algorithm. (A subset U ⊆ V
of vertices is called an (α, β)-ruling set if any two distinct vertices u, u′ ∈ U are at distance at least α
one from another, and every v ∈ V \ U not in a ruling set has a ”ruler” u ∈ U at distance at most
β from v.) As a result of the computation the algorithm of [3] constructs a partition into clusters of
diameter at most α, such that the supergraph induced by this partition has arboricity at most β. The
algorithm of [3] then colors this partition with O(β) colors in time O(β log n) ·O(α). (The running time
of the algorithm is O(β log n) when running on an ordinary graph. The running time is multiplied by a
factor of O(α), because the coloring algorithm is simulated on a supergraph whose vertices are clusters
of diameter O(α).) The fact that the running time in the result of [3] is (roughly speaking) the product
α ·β of the parameters of the resulting network-decomposition is the reason that Awerbuch et al [3] made
an effort to balance these parameters, and set both of them to be equal to exp{O(

√
log n log log n)}.

The algorithm of Panconesi and Srinivasan [45] is closely related to that of [3] except that it invokes
a sophisticated doubly-recursive scheme for computing ruling sets via network-decompositions, and vice
versa. This ingenious idea enables [45] to balance the parameters and running time better. Specifically,
they are all equal to 2O(

√
logn).

Our algorithm is different from [3, 45] in two respects. First, we replace a quite slow (it requires
O(log n) time) deterministic procedure for computing ruling sets by a constant-time randomized one.
Note that generally computing (O(1), O(1))-ruling sets requires Ω(log∗ n) time [38], but we only need to
compute them for high-degree vertices of certain supergraphs. This can be easily done in randomized
constant time. Second, instead of coloring the resulting partition with O(β) colors in O(β log n) · O(α)
time, we color it in O(β · nǫ) colors in O(1/ǫ) · O(α) time by a simple randomized procedure, or in
O(β2 log(t) n) colors in O(t) · O(α) time, for a parameter t > 0, by a deterministic algorithm Arb-Linial
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[6]. Hence the number of colors is somewhat greater than in [3, 45], but the running time is constant.
The algorithm of Linial and Saks [39] is inherently different from both [3, 45] and from our algorithm.

It runs for O(log n) phases, each of which constructs a collection of clusters of diameter O(log n) at
pairwise distance at least 2 which covers at least half of all remaining vertices. The running time of the
algorithm of [39], similarly to [3] and [45], is the product of the number of phases and clusters’ diameter.
Hence the approach of [39] appears to be inherently incapable to give rise to a constant time algorithm.

Our deterministic variant of the network-decomposition procedure is the basis for our deterministic
approximation algorithm for MDS. Our deterministic variant is closer to the algorithm of [3] than our
randomized one. The main difference between our deterministic variant and the algorithm of [3] is that
we use a different much faster coloring procedure for the supergraph induced by the ultimate partition.
1.6 Related Work
Network-decompositions for general graphs were studied in [1, 16, 4]. Dubhashi et al. [19] used network
decompositions for constructing low-stretch dominating sets. Recently, Kutten et al. [35] extended Linial-
Saks network-decompositions to hypergraphs. Many authors [25, 33, 48] studied network-decompositions
for graphs with bounded growth. Distributed approximation algorithms is a vivid research area. See,
e.g., [42] and the references therein. Distributed graph coloring is also a very active research area.
See a recent monograph [9], and the references therein. Schneider et al. [47] devised a distributed
coloring algorithm whose performance depends on the chromatic number of the input graph. However,
the algorithm of [47] provides no non-trivial approximation guarantee. To the best of our knowledge
there are no known distributed approximation algorithms for the minimum t-spanner problem. Efficient
distributed algorithms for constructing sparse undirected spanners can be found in [20, 17]. For centralized
approximation algorithms for the minimum t-spanner problem, see [30, 22, 11].

2 Preliminaries

For a subset V ′ ⊆ V , the graph G(V ′) denotes the subgraph of G induced by V ′. The degree of a vertex
v in a graph G = (V,E), denoted degG(v), is the number of edges incident on v. A vertex u such that
(u, v) ∈ E is called a neighbor of v in G. The neighborhood of v in G, denoted ΓG(v), is the set of
neighbors of v in G. If the graph G can be understood from context, then we omit the underscript G.
For a vertex v ∈ V , the set v ∪ Γ(V ) is denoted by Γ+(v). For a set W ⊆ V , we denote by Γ+(W ) the
set W ∪⋃

w∈W Γ(w). The distance between a pair of vertices u, v ∈ V , denoted distG(u, v), is the length
of the shortest path between u and v in G. The diameter of G is the maximum distance between a pair
of vertices in G. The chromatic number χ(G) of a graph G is the minimum number of colors that can be
used in a proper coloring of the vertices of G.

3 Network Decomposition

3.1 Procedure Decompose

In this section we devise an algorithm for computing an (O(1), O(nǫ))-network-decomposition in O(1)
rounds, for an arbitrarily small constant ǫ > 0. More generally, our algorithm computes a (3k, O(k ·
n2/k · log2 n))-network-decomposition Q in O(3k · log∗ n) rounds, for any positive parameter k, 1 ≤ k ≤
log n, along with an O(k · n2/k · log2 n)-coloring ϕ of the supergraph induced by Q. (The log∗ n term
can be eliminated from the running time at the expense of increasing the number of colors used by ϕ
by a multiplicative factor of log(t) n, for an arbitrarily large constant t. We will later show that the
multiplicative factor of k in the second parameter of the network decomposition can also be eliminated
without affecting other parameters.) The algorithm is called Procedure Decompose. The procedure runs
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on some supergraph Ĝ = (V̂ , Ê) of the original graph G. Each vertex C ∈ V̂ is a cluster (i.e., a subset
of vertices) of the original graph G = (V,E), and different clusters are disjoint. Observe that generally
it may happen that V 6= ∪C∈V̂ C. The procedure accepts as input the supergraph Ĝ, the number of

vertices n of G, the parameter k, and an upper bound s on the number of vertices of the supergraph Ĝ.
It also accepts as input two numerical parameters ǫ and t. The parameter ǫ > 0 is a sufficiently small
positive constant and t > 0 is a sufficiently large integer constant. Initially the supergraph is G itself,
with each vertex v forming a singleton cluster {v}. Hence initially it holds that n = s. The procedure
is invoked recursively. After each invocation the current supergraph Ĝ is replaced with a supergraph on
fewer vertices, and s is updated accordingly. The parameter n, however, remains unchanged throughout
the entire execution.) As a result of an execution of Procedure Decompose every vertex v in Ĝ is assigned
a label label(v). The value of label(v) is equal to the color ϕ(Cv) of the cluster Cv of Q which contains v.

Procedure Decompose partitions the graph Ĝ into two vertex-disjoint subgraphs with certain helpful
properties. Specifically, one of the subgraphs has a sufficiently small maximum degree that allows us to
compute a network decomposition in it directly and efficiently. The other subgraph can be partitioned into
a sufficiently small number of clusters with bounded diameter. The latter property is used to construct
a supergraph whose vertices are formed from the clusters. Since the number of clusters is sufficiently
small, the number of vertices of the supergraph is small as well. Then our algorithm proceeds recursively
to compute a network decomposition of the new supergraph, using fresh labels that have not been used
yet. The recursion continues for k levels. Then each vertex is assigned the label of the supernode it
belongs to. (Supernodes of distinct recursion levels may be nested one inside the other. In this case an
inner supernode receives the label of an outer supernode. A vertex of the original graph G receives the
(same) label of all supernodes it belongs to. Notice that a vertex belongs to exactly one supernode in
each recursion level.) This completes the description of the algorithm. Its pseudocode is provided below.
(See Algorithm 1.)

The algorithm employs two auxiliary procedures that we describe in detail in Section 3.2. The
procedures succeed with high probability, i.e., with probability 1− 1/nc, for an arbitrarily large constant
c. The first procedure is called Procedure Dec-Small. It accepts a graph G with at most n vertices and
maximum degree at most d. Procedure Dec-Small accepts also as input two numerical parameters, ǫ and
t, which are relayed to it from Procedure Decompose. Recall that ǫ > 0 is a sufficiently small constant and
t is a sufficiently large integer constant. The procedure computes an O(min{d · nǫ, d2})-coloring of G in
O(log∗ n) time. (The time is O(1) if d > nǫ. Another variant of this procedure computes an O(d2 log(t) n)-
coloring in O(t) time, for an arbitrarily large positive integer t.) Observe that for any integer p > 0, a
proper p-coloring of a graph G is also a (0, p)-network-decomposition of G. (There are p labels, and each
cluster consists of a single vertex. Thus the diameter of the decomposition is 0.) Procedure Dec-Small
returns a (0, p)-network-decomposition S on line 5. It also returns a labeling function labelS for vertices
of a subset A. (We will soon describe how this subset is obtained.) The labeling labelS also serves as a
proper coloring for the supergraph induced by S.

The second procedure which is invoked by our algorithm is called Procedure Partition. This random-

ized procedure accepts as input an s-vertex supergraph Ĝ = (V̂ , Ê) and a parameter q < |V̂ |
2c·logn , and

partitions V̂ into two subsets A and B, such that Ĝ(A) and Ĝ(B) have the following properties. The
subgraph Ĝ(A) has maximum degree O(q log n). The subgraph Ĝ(B) consists of O(|V |/q) = O(s/q)
clusters of diameter at most 2 with respect to Ĝ. The procedure contracts each such cluster into a su-
pernode. Let B denote the resulting set of supernodes and G(B) = (B, E(B)) the resulting supergraph.
Specifically, the vertex set of G(B) is B, and its edge set is E(B) = {(C,C ′) | C,C ′ ∈ B, ∃u ∈ C, u′ ∈
C ′, such that (u, u′) ∈ Ê}. Procedure Partition returns the subset A ⊆ V̂ and the set of supernodes B.

The clusters in B are obtained by computing a dominating set D of B of size O(|V |/q). Each vertex
in D becomes a leader of a distinct cluster. Each vertex in B \D selects an arbitrary neighbor in D and
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joins the cluster of this neighbor. Consequently, in all clusters all vertices are at distance at most 1 from
the leader of their cluster. Hence all clusters have diameter at most 2. Initially, each vertex of V joins the
set D with probability 1/q. Then the set B is formed by the vertices of D and their neighbors. Finally,
the set A is formed by the remaining vertices, i.e., A = V \ B. In this stage the procedure returns the
set of nodes A and the set of supernodes B which is obtained from B, and terminates. This completes
the description of Procedure Partition.

Algorithm 1 Procedure Decompose(Ĝ, n, k, s, ǫ, t)

1: if s ≤ 2c · n1/k log n then
2: return Dec-Small(Ĝ, n, s, ǫ, t)

/* Compute directly a (0, O(s2))-network-decomposition of Ĝ. (See Section 3.2.) */
3: else
4: (A,B) := Partition(Ĝ, q := n1/k)

/* Partition Ĝ into A and B. (See Section 3.2.) The maximum degree of Ĝ(A) is O(n1/k log n).*/
5: (S, labelS) := Dec-Small(G(A), n, n1/k log n, ǫ, t)

/* Compute directly a (0, O(n2/k · log2 n))-network-decomposition of Ĝ(A). (See Section 3.2.) */
6: (L, labelL) := Decompose(G(B), n, k, s

n1/k )
/* A recursive invocation on the supergraph G(B) that contains at most s

n1/k supernodes. */

7: for each vertex v of Ĝ, in parallel, do
8: if v ∈ S then
9: label(v) := labelS(v)

10: else if v ∈ L then
11: label(v) := labelL(v) + Λ

/* Λ = γ ·
⌊

n2/k · log2 n
⌋

, where γ is a sufficiently large constant to be determined later. */
12: end if

/* The labeling function label on S ∪ L is defined by: for a cluster C ∈ S (respectively, C ∈ L)
it applies to it the function labelS() (resp., labelL() + Λ). */

13: end for
14: return (S ∪ L, label)
15: end if

The recursive invocation of Procedure Decompose on line 6 returns a network decomposition L for
the supergraph G(B). The for-loop (lines 7-13) adds (in parallel) Λ = γ ·

⌊

n2/k log2 n
⌋

to the color of each
cluster of the network decomposition L0 of G(B), where γ is a sufficiently large constant to be determined
later. Since the number of colors used in each recursive level is at most Λ, this loop guarantees that colors
used for clusters created on different recursion levels are different. This is because the labeling returned
by procedure Dec-Small on line 5 for clusters of S employs the palette [Λ] while the labeling computed
in lines 10 - 12 for clusters of L employs labels which are greater than Λ. The termination condition of
the procedure is the case s = O(n1/k log n), i.e., when the number s of vertices in the supergraph Ĝ is
already small. At this point the maximum degree of Ĝ is small as well (at most s − 1), and so coloring
the supergraph (by Procedure Dec-Small) results in a sufficiently good network decomposition.

Observe that our main algorithm will invoke the procedure on the original graph G. Hence in the
first level of the recursion Ĝ = G, and each supernode is actually a node of G. In the second recursion
level it is executed on the supernodes of nodes of the original graph G. In the third level it is executed on
supernodes of supernodes, etc. Consequently, starting from the second recursion level supernodes have
to be simulated using original nodes of the network. To this end each cluster that forms a supernode
selects a leader which is used for simulating the supernodes. Moreover, the leader is used to simulate all
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nested supernodes to which it belongs. Our supernodes are obtained by at most k levels of nesting. In
each level of nesting a supernode is a cluster of diameter at most 2 in a graph whose nodes are lower-level
supernodes. Hence a simulation of a single round on such a supergraph will require up to 3k+1 rounds.

Next we provide several lemmas that will be used for the analysis of the algorithm. We leave the
parameters ǫ and t unspecified in all lemmas in this section, because they have no effect on the analysis.

Lemma 3.1. Consider an invocation of Procedure Decompose on the original graph G = (V,E) with
parameters n = |V |, k, and s = n, for 1 ≤ k ≤ log n. The number of recursion levels in the execution of
this Procedure (i.e., Decompose(Ĝ := G,n, k, s := n)) is k.

Proof. In recursion level i, i = 1, 2, ..., the parameter s is equal to n1−(i−1)/k. Hence, in recursion level k
the parameter s is equal to n1/k, and the recursion reaches the termination condition. (See lines 1-2 of
Algorithm 1.)

Lemma 3.2. The number of labels used in the invocation of Procedure Decompose(Ĝ := G,n, k, s := n)
is O(k · n2/k log2 n).

Proof. We show that the number of labels is γ · k ·
⌊

n2/k log2 n
⌋

, where γ is a sufficiently large constant.
Specifically, the constant γ needs to be larger than the constants hidden by the O-notation in comments
on lines 2 and 5 of the algorithm. (Recall that line 2 computes a (0, O(s2))-network-decomposition,
and line 5 computes a (0, O(n2/k log2 n))-network-decomposition. The constant γ appears in line 11 of
Algorithm 1.) The proof is by induction on ℓi = k − i+ 1, where i is the recursion level. In other words,
this is an inverse recursion on the number of recursion levels. For each index i ∈ [k], denote by Ĝi the
supergraph on which Procedure Decompose is invoked on the ith level of the recursion. Note that at this
point s = n1−(i−1)/k. The inductive claim is that the ith level invocation of Procedure Decompose (on
the supergraph Ĝi) employs at most ℓi · γ ·

⌊

n2/k log2 n
⌋

≤ (k − i+ 1) · γ · n2/k log2 n labels.

Base (ℓi = 1, i.e., i = k): In this case s ≤ 2c · n1/k log n, the termination condition of the recursion
holds, and thus the number of labels used in the decomposition is O(s2). (See line 2 of Algorithm 1.) By
the choice of γ, the number of labels is at most γ · n2/k · log2 n.
Step: Suppose that the invocation has returned from level i + 1 of the recursion, and it is now at level
i. By the induction hypothesis, line 6 of Algorithm 1 returns a labeling with γ · ℓi+1 ·

⌊

n2/k log2 n
⌋

=

γ · (ℓi−1) ·
⌊

n2/k log2 n
⌋

labels. Once line 11 is executed, the number of labels becomes γ ·ℓi ·
⌊

n2/k log2 n
⌋

.
This proves the inductive claim.

In the end of recursion level i = 1 the algorithm terminates (after returning from all recursive invo-
cations). In this stage it holds that ℓ1 = k, and the claim follows.

Lemma 3.3. Each cluster created by the invocation above has diameter at most 3k−1 − 1.

Proof. We prove by induction on ℓ = k − i + 1, where i is the recursion level, that level-i clusters have
diameter at most 3ℓ−1 − 1.
Base (ℓ = 1, i.e., i = k): In this case a (0, O(s2))-network-decomposition is computed directly, and thus
the diameter of all clusters in the graph Ĝ on which it is executed is 0. (Recall that the argument Ĝ in
the level-k invocation is a supergraph of the original input graph Ĝ.)
Step: First, observe that a (0, O(n2/k · log2 n))-network-decomposition of Ĝ(A) is computed directly in
line 5 of Algorithm 1. Hence S consists of clusters of diameter 0 (with respect to supernodes of the
supergraph Ĝ of the current recursion level). Next, we analyze the diameter of clusters in L. By the
induction hypothesis, line 6 of Algorithm 1 (i.e., the recursive invocation of Procedure Decompose) returns
a network decomposition in which all clusters have diameter at most 3ℓ−2 − 1. This is a decomposition
of the supergraph G(B). Consider a cluster C of diameter at most 3ℓ−2 − 1 in G(B). Let x, y be a pair
of vertices of Ĝ that belong to supernodes in C. Let C(x), C(y) ∈ C be these two supernodes (clusters),
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such that x ∈ C(x), y ∈ C(y). Since the diameter of C in G(B) is at most 3ℓ−2 − 1, there exist clusters
C(x) = C1, C2, ..., Ct = C(y) ∈ C, such that t ≤ 3ℓ−2 − 1, and the following holds. There exist edges
e1 = (u1, v1), e2 = (u2, v2), ..., et−1 = (ut−1, vt−1), such that for every i ∈ [t − 2], ui ∈ Ci, and for
every i ∈ [2, t − 1], vi ∈ Ci+1. (See Figure 1 for an illustration.) By construction, each of the clusters
C1, C2, ..., Ct has diameter at most 2. Hence for i ∈ [t− 2], it holds that distĜ(vi, ui+1) ≤ 2. Therefore,

distĜ(x, y) ≤ distĜ(x, u1) + 1 + distĜ(v1, u2) + 1 + distĜ(v2, u3) + 1 +

... +distĜ(vt−2, ut−1) + 1 + distĜ(vt−1, y) ≤ 2 · t+ t− 1 = 3 · t− 1.

Since t ≤ 3ℓ−2, it follows that distĜ(x, y) ≤ 3 · 3ℓ−2 − 1 = 3ℓ−1 − 1. Therefore, the diameter of C in Ĝ is

at most 3ℓ−1 − 1. Hence all clusters in S ∪ L have diameter at most 3ℓ−1 − 1 in Ĝ. Since the number of
recursion levels is k, the claim follows.

Fig. 1. The clusters C(x) = C1, C2, ..., Ct = C(y).

Lemma 3.4. Suppose that all invocations of auxiliary procedures of Procedure Decompose have succeeded.
Then the invocation computes a (3k−1 − 1, O(k · n2/k · log2 n))-network-decomposition.

Proof. Consider a pair of distinct adjacent clusters C,C ′ ∈ S ∪ L. If C ∈ S and C ′ ∈ L then label(C) =
labelS(C) ∈ [Λ], while label(C ′) = labelL(C

′) > Λ. Hence label(C) 6= label(C ′).
If C,C ′ ∈ S then since Procedure Dec-Small returns on line 5 a network decomposition with a proper

labeling labelS(·), it follows that labelS(C) 6= labelS(C
′), and so label(C) 6= label(C ′).

Finally, if C,C ′ ∈ L then inductively we conclude that labelL(C) 6= labelL(C
′), and thus label(C) 6=

label(C ′) too. (The induction base is the recursion level k, where the correctness follows from the
correctness of Procedure Dec-Small invoked on line 2 of Algorithm 1.)
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Hence Procedure Decompose returns a partition S ∪L into clusters of diameter at most 3k−1− 1 (by
Lemma 3.3), and a proper labeling label(·) of this partition. By Lemma 3.2, the number of labels used
by the labeling label(·) is O(k · n2/k · log2 n). Hence S ∪ L is a (3k−1 − 1, O(k · n2/k · log2 n))-network-
decomposition for G, and label(·) is a proper labeling for the network decomposition S ∪ L.

Recall that the auxiliary procedures Dec-Small and Partition succeed with probability 1 − 1/nc, for
an arbitrarily large constant c. Each of these procedures is invoked at most k ≤ log n times during the
execution of Procedure Decompose. Therefore, the probability that all executions of Procedure Dec-Small
and Procedure Partition succeed is at least (1− 1/nc)2 logn ≈ 1− 1

nc/2 logn . Since c is an arbitrarily large
constant, all executions of the auxiliary procedures succeed, with high probability. Hence Procedure
Decompose computes a (3k, O(k · n2/k · log2 n))-network-decomposition, with high probability.

The next lemma analyzes the running time of the algorithm.

Lemma 3.5. Let Tpart(n, q) (respectively, Tdec(n, d)) denote the running time of Procedure Partition
invoked with parameters n and q (resp., Procedure Dec-Small invoked with parameters n and d). We will
assume that both these running times are monotone non-decreasing in both parameters. Then the running
time of Procedure Decompose is O(3k · (Tpart(n, n1/k) + Tdec(n, 2c · n1/k log n))).

Proof. During the execution of Procedure Decompose the Procedure Dec-Small is executed k times, and
Procedure Partition is executed k−1 times. For i = 1, 2, ..., k−1, in recursion level i both procedures are
executed on supergraphs whose supernodes constitute subgraphs of diameter at most 3i of the original
graph. Thus, the number of rounds required in level i is the product of the number of steps required to
execute the procedure on the supergraph and the maximum diameter of supernodes. This running time
is at most (Tpart(n, n

1/k) + Tdec(n, n
1/k log n) + O(1)) · 3i. The running time of the last recursion level

k in which the termination condition holds is Tdec(n, 2c · n1/k log n) · 3k. Therefore, the overall running
time is
O(

∑k
i=1 3

i · (Tpart(n, n1/k) + Tdec(2c · n1/k log n))) = O(3k · (Tpart(n, n1/k) + Tdec(n, 2c · n1/k log n))).

Procedure Dec-Small and Procedure Partition are provided and analyzed in Section 3.2. Next we
state the main results obtained by plugging these procedures into Procedure Decompose. See Section 3.2
for the proofs.

Theorem 3.6. For any parameter k, 1 ≤ k ≤ log n, Procedure Decompose computes a (3k, O(k · n2/k ·
log2 n))-network-decomposition along with the corresponding O(k · n2/k · log2 n)-labeling function in time
O(3k · log∗ n), with high probability. Alternatively, one can also have the second parameter equal to
O(k · n2/k log n) and the running time O(3k · k).

It follows that, an (O(1), nδ)-network-decomposition of an arbitrary n-vertex graph along with a
proper nδ-labeling for it can be computed by a randomized algorithm, in O(1) time, with high probability.
See Section 4.

3.2 Procedure Dec-Small and Procedure Partition

We start with the description of Procedure Dec-Small. This procedure accepts a graph G with at most
n vertices and maximum degree at most d, and computes an O(min{d · nǫ, d2})-coloring of G, where
ǫ is a fixed arbitrarily small positive constant. In other words, if d ≤ nǫ then an O(d2)-coloring is
computed, and otherwise an O(d ·nǫ)-coloring is computed. For computing an O(d2)-coloring, Procedure
Dec-Small employs the deterministic algorithm of Linial [38] that computes an O(∆2)-coloring of graphs
with maximum degree ∆ within O(log∗ n) time. For computing an O(d · nǫ)-coloring, Procedure Dec-
Small employs the randomized algorithm of Barenboim [5] that computes, with high probability, an
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O(∆ · nǫ)-coloring in O(1/ǫ) time, for an arbitrarily small ǫ > 0. We henceforth refer to this algorithm
as Procedure Random-Color. This completes the description of Procedure Dec-Small. Its pseudocode is
provided below.

For completeness, we provide a high-level description of the algorithm of Linial [38] and the algorithm
of Barenboim [5]. The algorithm of Linial [38] starts with a legal n-coloring of the input graph obtained
from the IDs of the vertices. It proceeds in phases, each of which reduces the number of colors while
preserving the legality of the coloring. In each round the number of colors is reduced from p to O(∆2 log p),
where p is the number of colors in the beginning of a round. (Initially p = n.) In the last round the
number of colors is reduced from O(∆ · polylog(∆)) to O(∆2). Each phase requires just a single round,
and the overall running time of the algorithm of Linial is O(log∗ n). (It is actually log∗ n+O(1), but this
precision is immaterial for our purposes.)

Observe also that one can run Linial’s algorithm for just t rounds, for some positive integer parameter
t, and obtain an O(∆2 · log(t) n)-coloring. For a single phase of Linial’s algorithm it employs ∆-union free
set systems from the paper by Erdos, Frankel and Furedi [23]. A family F of sets over a given ground-set
X is said to be ∆-union-free if for every ∆ + 1 sets S0, S1, ..., S∆ ∈ F , it holds that S0 * ∪∆i=1Si. Erdos
et al. showed that for any positive integers p and ∆, p ≥ ∆+ 1, there exists a ∆-union-free family F of
p subsets over a ground-set X of size |X| = O(∆2 log n).

Let ϕ be a proper p-coloring of G in the beginning of a phase of Linial’s algorithm. The algorithm
associates a set Sc from F with each color c of ϕ. Every vertex v that runs the algorithm computes a
new color c′ ∈ Sϕ(v) \ ∪u∈Γ(v)Sϕ(u). Such a color exists since F is a ∆-union-free family, and ϕ(u) 6= ϕ(v)
for every u ∈ Γ(v).) The vertex v sets its new color ϕ′(v) by ϕ′(v) = c′. Since c′ ∈ X, |X| = O(∆2 log n),
it follows that ϕ′(·) is an O(∆2 log n)-coloring. Also, consider a pair of neighbors v and u. Observe that
ϕ′(v) ∈ Sϕ(v) \ Sϕ(u), while ϕ′(u) ∈ Sϕ(u). Hence ϕ′(v) 6= ϕ′(u), and thus ϕ′ is a proper coloring. See [38]
or [9] Chapter 3.10 for more details.

The algorithm of Barenboim [5] (Procedure Random-Color) proceeds in phases as well, however, each
phase consists of a randomized procedure. In this procedure each vertex either succeeds in selecting a
final color, or fails and continues to the next phase. Each vertex selects a color from the range [∆ · nǫ]
uniformly at random, where ǫ > 0 is an arbitrarily small constant. A vertex succeeds if and only if it
selects a color that has not been selected by any of its neighbors (either in the current round, or as a final
color in a previous round). Otherwise, it fails, discards its color, and continues to the next phase. Hence,
the probability that a vertex v fails to select a color that is different from the colors of its neighbors
is at most 1/nǫ. If we run this procedure for ⌈c/ǫ⌉ rounds, for a sufficiently large constant c, then the
probability that a given vertex v fails on all these rounds is at most 1/nc. Hence, by union bound, after
⌈c/ǫ⌉ rounds all vertices succeed with probability at least 1− 1/nc−1, i.e., with high probability.

Algorithm 2 Procedure Dec-Small(G,n, d, ǫ, t)

1: if d ≤ nǫ then
2: compute an O(d2)-coloring of G using the algorithm of Linial [38]

/* alternatively, one can compute here an O(d2 log(t) n)-coloring in O(t) time */
3: else
4: compute an O(d · nǫ)-coloring of G using Procedure Random-Color
5: end if

Observe that if d2 ≤ d · nǫ then d ≤ nǫ and an O(d2)-coloring is computed. Otherwise, d2 > d · nǫ,
and an O(d · nǫ)-coloring is computed. Therefore, the number of colors is O(min{d2, d · nǫ}). Recall also
that the running time of the algorithm of Linial [38] is O(log∗ n), and the running time of Procedure
Random-Color is O(1). Thus we obtain the following lemma.
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Lemma 3.7. Procedure Dec-Small invoked on a graph G with maximum degree at most d computes, with
high probability, an O(min{d2, d · nǫ})-coloring, which is a (0, O(min{d2, d · nǫ}))-network-decomposition.
If d ≤ nǫ, the running time of Procedure Dec-Small is O(log∗ n). Otherwise, it is O(1).

Another variant of the Procedure Dec-Small checks if d ≤ nǫ

log(t)n
, and if it is the case it invokes the

t-round version of Linial’s algorithm. Otherwise it invokes line 4 of Algorithm 2 (i.e., the algorithm from
[5]). This modified procedure always requires constant time. (Assuming that t = O(1).) If d ≤ nǫ

log(t) n
,

it computes an O(d2 log(t) n)-coloring. Otherwise (in this case d2 log(t) n > d · nǫ) it computes a (d · nǫ)-
coloring. To summarize:

Lemma 3.8. A modified variant of Procedure Dec-Small computes an O(min{d2 log(t) n, d ·nǫ})-coloring
in O(t) time, with high probability. In particular, the running time is constant if t = O(1).

Next, we describe Procedure Partition. Procedure Partition accepts as input a graph G = (V,E) and
a positive parameter q, and partitions V into two subsets A and B, such that G(A) and G(B) have the
following properties. The subgraph G(A) has maximum degree O(q log n). The subgraph G(B) consists
of O(|V |/q) clusters of diameter at most 2. The procedure contracts the clusters of B into supernodes,
which form the supergraph G(B). The clusters in B are obtained by computing a dominating set D of B
of size O(|V |/q). Each vertex in D becomes a leader of a distinct cluster. Each vertex in B \D selects an
arbitrary neighbor in D and joins the cluster of this neighbor. Consequently, in all clusters all vertices
are at distance at most 1 from the leader of their cluster. Hence all clusters have diameter at most 2.

Initially, each vertex of V joins the set D with probability 1/q. Then the set B is formed by the
vertices of D and their neighbors. Finally, the set A is formed by the remaining vertices, i.e., A = V \B.
In this stage the procedure returns the set of nodes A and the set of supernodes B which is obtained from
B, and terminates. This completes the description of the procedure. Its pseudocode is provided below.

Algorithm 3 Procedure Partition(G, q)

An algorithm for each vertex v ∈ V .

1: v joins D with probability 1/q and informs its neighbors
2: if v has joined D or a neighbor of v has joined D then
3: v joins B
4: else
5: v joins A
6: end if
7: if v ∈ D then
8: v initializes a singleton cluster Cv, becomes the leader of Cv, and sends Id(v) to all neighbors in B
9: end if

10: if v ∈ B and v receives at least one message from a leader of a cluster in D then
11: v joins a cluster of an arbitrary neighbor in D
12: end if
13: B := the set of supernodes obtained by contracting all clusters Cv ⊆ B
14: return (A,B)

Note that the sets A and B are returned in a distributed manner. In other words, each vertex knows
whether it belongs to A or to B. If it belongs to B, then it knows the identity of the leader of its cluster.
The leaders of the clusters represent the supernodes formed by the clusters. Thus, when we say that
a supernode performs some action, it is actually performed by the leader of the cluster that forms the
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supernode. (For nested supernodes the operations are performed by the leaders of the innermost clusters,
which are vertices in the original input graph G.)

In the next lemmas we prove that Algorithm 3 computes a partition with the properties described
above.

Lemma 3.9. Suppose that Procedure Partition is invoked on a graph G = (V,E) and a positive parameter
q. Then the subgraph G(A) induced by the set A which is returned by the procedure has maximum degree
O(q · log n), with high probability.

Proof. Consider a vertex v ∈ V such that v has at least c · q · lnn neighbors in G, for a sufficiently large
constant c. Denote δ = degG(v). Let y1, y2, ..., yδ denote the neighbors of v in G, and let y0 = v. The
probability that none of these neighbors join D is

Pr(y1 /∈ D, ..., yδ /∈ D) = Πδ
i=1 Pr(yi /∈ D) = Πδ

i=1(1− 1/q) = (1− 1/q)δ ≤ (1 − 1/q)c·q·lnn ≤ 1/nc.

Hence, by union bound, the probability that at least one vertex v with at least c · q · lnn neighbors does
not have a neighbor in D is at most 1/nc−1. Hence with probability at least 1− 1/nc−1, all high-degree
vertices (vertices with degG(v) ≥ c · q · lnn) end up in B. Hence, with high probability, the maximum
degree of a vertex in A = V \B is O(q log n).

The next lemma analyzes the number of supernodes and their diameters.

Lemma 3.10. Suppose that Procedure Partition is invoked on a graph G = (V,E) and a parameter

q < |V |
2c·logn , for some constant c > 1. Then the set B returned by the procedure has the following

properties. With high probability, B consists of O(|V |/q) supernodes. All supernodes of B are clusters of
diameter at most 2 in G.

Proof. Recall that the set B is created by contracting the clusters of B into supernodes. First, we prove
that all clusters of B have diameter at most 2. Let C be a cluster of B. Let u, v ∈ C be any pair of
vertices in the cluster. Then either one of these vertices is the leader of the cluster and dist(u, v) = 1
or both u and v are connected to the same leader, and so dist(u, v) ≤ 2. (Since u and v belong to B
they must have a leader neighbor, unless they are leaders themselves. Since u and v belong to the same
cluster, and there is exactly one leader in each cluster, if u and v are not the leaders, they are connected
to the same leader.) Next, we prove that B consists of O(|V |/q) supernodes. Note that the number of
supernodes in B is equal to the number of vertices in D, since each vertex in D becomes a leader of a
cluster (i.e., of a supernode). Let X denote a random variable that counts the number of vertices in
D. Since each vertex in V joins D with probability 1/q independently of other vertices, it holds that
IIE(X) = |V |/q. By Chernoff bound for upper tails (see, e.g., [41], Chapter 4),

Pr[X > 2|V |/q] = Pr[X > 2IIE(X)] ≤ (e/4)IIE(X) = (e/4)|V |/q ≤ (e/4)2c·log n ≤ 1/nc.

Finally, note that each line of Procedure Partition is either performed locally, or involves sending
messages to neighbors. The latter requires one time unit. Therefore, the running time of Procedure
Partition is O(1).

Lemma 3.11. Procedure Partition requires O(1) time.

Combining Lemmas 3.3 - 3.5 with Lemmas 3.7 - 3.10 imply the following results.

Theorem 3.12. For any parameter k, 1 ≤ k ≤ log n, Procedure Decompose computes a (3k, O(k · n2/k ·
log2 n))-network-decomposition along with the corresponding O(k · n2/k · log2 n)-labeling function in time
O(3k · log∗ n), with high probability.
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Consider now a variant of Algorithm 1 (Procedure Decompose) in which in Procedure Dec-Small we
always invoke Procedure Random-Color with a parameter ǫ. (As opposed to Algorithm 2 where we do it
only when d ≤ nǫ.) Also, in Algorithm 1 we now set Λ← (2 · c · n1/k · log n) · nǫ.

Then, by the previous argument, this modified variant of Procedure Decompose computes a (3k, O(k ·
n1/k+ǫ log n))-network-decomposition along with a legal O(k·n1/k+ǫ log n)-labeling function in timeO(3k/ǫ).
By substituting ǫ = 1/k we conclude:

Theorem 3.13. A (3k, O(k · n2/k log n))-network-decomposition along with the appropriate proper (with
respect to this decomposition) O(k · n2/k log n)-labeling can be computed in O(k · 3k) time, with high
probability.

In particular, by setting k to be an arbitrarily large constant we obtain an (O(1), nδ)-network-
decomposition along with a proper nδ-coloring for it in randomized constant time, for an arbitrarily
small constant δ > 0.

Corollary 3.14. An (O(1), nδ)-network-decomposition of an arbitrary n-vertex graph along with a proper
nδ-labeling for it can be computed by a randomized algorithm, in O(1) time, with high probability.

A yet another variant of Procedure Decompose (Algorithm 1) is obtained if in Proc Dec-Small we
always invoke the t-round variant of Linial’s algorithm [38], for some positive integer parameter t. (Again
we do it regardless of the value of d.) Also, for this variant we set Λ = γ · n2/k log2 n log(t) n, where
γ > 0 is a sufficiently large constant. (Specifically, the t-round variant of Linial’s algorithm computes an
O(∆2 log(t) n)-coloring of the input n-vertex graph with maximum degree ∆. The constant γ should be
larger than the constant hidden by the O-notation in O(∆ log(t) n).)

The resulting algorithm computes a (3k, O(k · n2/k · log2 n · log(t) n))-network-decomposition with a
proper O(k · n2/k · log2 n · log(t))-labeling for it, in O(3k · t) time.

Corollary 3.15. For any n-vertex graph G and parameters k = 1, 2, ...; t = 1, 2, ...; ǫ > 0, one can
compute a (3k, O(k · n1/k+ǫ · log n))-network-decomposition (respectively, (3k, O(k · n2/k · log2 n · log(t) n))-
network-decomposition) with an appropriate labeling function in O(3k/ǫ) (resp., O(3k · t)) randomized
time,

4 Refining the Algorithm

In this section we argue that one can save a factor of k in the number of labels, and compute a
(3k, O(n1/k+ǫ log n))-network-decomposition (and a (3k, O(n2/k log n log(t) n))-network-decomposition) with
an appropriate labeling in O(3k/ǫ) (resp., in O(3k · t)) time. While this improvement is negligible when
k is small, it becomes significant when k is superconstant. We remark, however, that in the context of
the current paper we are mainly interested in the regime of small k.

To describe this improvement we need the notions of arboricity and H-partition. (We refer the reader
to [6] and [9] for a more elaborate discussion on this topic.)

The arboricity a(G) of a graphG = (V,E) is the minimum number t of edge-disjoint forests F1, F2, ..., Ft,
such that E = ∪ti=1Fi. An H-partition (H1,H2, ...,Hℓ) of G = (V,E) with degree at most A, for some
number A, is a partition of the vertex set V of G into vertex disjoint subsets V = ∪ℓi=1Hi, Hi ∩Hj = ∅
for every pair of distinct indices i 6= j, i, j ∈ [ℓ], such that for every index i ∈ [ℓ] and every vertex v ∈ Hi,
the number of neighbors deg(v,∪ℓj=iHj) that v has in H-sets Hj with an index j ≥ i is at most A.

Consider again Procedure Decompose. (See Algorithm 1.) For i = 1, 2, ..., k, let Ĝi denote the
supergraph on which the procedure is invoked in the ith level of recursion. In particular, Ĝ1 = G is the
original graph. Also, in all levels i ≤ k − 1 the procedure enters lines 4 - 15, and in the last level i = k
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it enters the termination condition (line 2). In the former case Procedure Decompose invokes Procedure
Dec-Small (in line 5), which returns the collection S of clusters. (It also returns the labeling function that
is immaterial for the current discussion.) For i = 1, 2, ..., k − 1, let Si denote the set of clusters returned
by Procedure Dec-Small on line 5 of the ith level recursive invocation of Procedure Decompose. Finally,
in level k of the recursion Procedure Dec-Small is invoked in line 2. Denote by Sk the decomposition that
it returns.

Lemma 4.1. ∪ki=1Si is the network decomposition that Procedure Decompose returns (in line 14 of the
first level recursive invocation). Moreover, for any index i, k ≥ i ≥ 1, ∪kj=iSj is the network decomposition
that the ith level recursive invocation of Procedure Decompose returns.

Proof. The proof is by induction on i.
Base (i = k): In this case Procedure Decompose returns the output Sk of an invocation of Procedure
Dec-Small (on line 2 of Algorithm 1).
Step: Consider some 1 ≤ i < k. The ith level recursive invocation returns S ∪ L in line 14. Recall that
S = Si is a network decomposition for Ĝ(A) computed in line 5 of Algorithm 1. (In all levels except the
first one S is actually equals to A. In the first level S = {{v} | v ∈ A}.) Also, L (computed by the (i+1)st
level recursive invocation of Procedure Decompose; see line 6 of Algorithm 1) is a network decomposition
for G(B). By induction hypothesis the latter is ∪kj=i+1Sj. Hence S ∪ L = ∪kj=iSj , as required.

In the next lemma we show that (S1, S2, ..., Sk) is an H-partition with relatively small degree of the
supergraph G(∪ki=1Si) induced by the network decomposition ∪ki=1Si.

Lemma 4.2. (S1, S2, ..., Sk) is an H-partition with degree O(n1/k log n) of the supergraph G(∪ki=1Si).

Proof. Again, by an induction on i, k ≥ i ≥ 1, we show that (Si, Si+1, ..., Sk) is an H-partition of
G(∪ki=1Si) with maximum degree O(n1/k log n).
Base (i = k): In this case we need to show that the maximum degree in G(Sk) is O(n1/k log n). By
the termination condition of Algorithm 1 (line 1), |Sk| = O(n1/k log n), and thus the same upper bound
applies to its maximum degree.
Step: For some i, 1 ≤ i ≤ k, we argue that for any cluster C ∈ Si its degree in G(∪kj=iSj) is O(n1/k log n).

By Lemma 4.1, ∪kj=iSj is the network decomposition for G(∪kj=iSj) that the ith level recursive invocation of

Procedure Decompose returns. By construction, Si is the set of clusters with degree at most O(n1/k log n)
in the supergraph Ĝi. Since clusters of ∪kj=i+1Sj are obtained by merging clusters of Ĝi, it follows that

the degree of C in ∪kj=iSj is no greater that its degree in Ĝi, i.e., at most O(n1/k log n).

To recap, Lemma 4.2 shows that in addition to computing a network decomposition Q of its input
graph G, Procedure Decompose also computes a low-degree H-partition of the induced supergraph G(Q).
(Here Q = ∪ki=1Si, and the H-partition is (S1, S2, ..., Sk). The degree of the partition is O(n1/k log n).)

For the variant of Procedure Decompose that we describe in this section we do not actually need to
explicitly compute the labeling function during the execution of the procedure. As a result Procedure
Dec-Small can be greatly simplified. Specifically, if it is invoked on a supergraph Ĝ = (V̂ , Ê), then
it returns V̂ as its output partition. If it is invoked on a subgraph G(U) = (U,E(U)) of the original
graph G, then it returns a partition of U into singleton clusters, i.e., {{u} | u ∈ U}. Observe that in
this simplified form Procedure Dec-Small requires O(1) time. As a result the overall running time of
Procedure Decompose becomes O(3k) rather than O(3k/ǫ) or O(3k · t).

Next, we utilize the H-partition (S1, S2, ..., Sk) of G(Q) for computing an O(n2/k log2 n log(t) n)-
coloring of G(Q) in O(3k · t) time, or alternatively, an O(n1/k+ǫ log n)-coloring of Ĝ(Q) in O(3k/ǫ) time.
Such colorings can be viewed as labelings of the network decomposition ∪ki=1Si = Q. (For every vertex
v ∈ V , its label will be equal to the color of the cluster Cv ∈ Q that contains it.)
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To simplify presentation, consider an n-vertex graph G′ = (V ′, E′) and an H-partition (S1, S2, ..., Sk)
for G′ with degree A = O(n1/k log n). We will argue that G′ can be efficiently colored. To implement
this coloring in a supergraph G(Q), we will need to multiply the running time by the maximum diameter
of a cluster in Q, i.e., by O(3k). We start with arguing that G′ can be colored in O(A2 log(t) n) colors
in O(t) time, by a deterministic algorithm. (This algorithm is closely related to Algorithm Arb-Linial
from [6], based on Linial’s algorithm [38]. The current algorithm is however more general than Algorithm
Arb-Linial.) The algorithm starts by orienting all edges (u, v) in the following way: let iu (respectively,
iv) be the index of the set Siu (resp., Siv) which contains u (resp., v). If iu < iv then the edge is oriented
towards v. If the opposite holds than it is oriented towards u. If iu = iv then the edge is oriented towards
the endpoint with a greater Id.

Observe that under this orientation each vertex v has at most A outgoing edges incident on it. The
opposite endpoints of these edges will be referred to as the parents of v. Let Π(v) denote the set of parents
of v.

Let ϕ be a proper p-coloring of G′. We argue that a legal O(A2 log p)-coloring ϕ′ of G′ can be
computed within one single round. To this end we again employ an A-union-free family F of p sets (due
to [23], see also Section 3.2 of this paper). Each color class c of ϕ is associated with a set Xc ∈ F . A
vertex v computes a color ϕ′(v) which belongs to Xϕ(v) \ ∪u∈Π(v)Xϕ(u). Such a color necessarily exists,
because F is an A-union-free family. Also, for an edge (v, u) ∈ E′, suppose without loss of generality
that u ∈ Π(v). Then ϕ′(v) ∈ Xϕ(v) \Xϕ(u), while ϕ

′(u) ∈ Xϕ(u), and so ϕ′(v) 6= ϕ′(u). By [23], a family
F over a ground-set of size O(A2 log p) exists (and can be efficiently constructed). Thus, ϕ′ is a proper
O(A2 log p)-coloring. By repeating this recoloring step for t times, we obtain an O(A2 log(t) n)-coloring in
O(t) rounds. (We start with an initial n-coloring of G′. Specifically, each vertex uses its Id as its initial
color.)

Corollary 4.3. An O(n2/k log2 n log(t) n)-coloring of G(Q) can be computed in O(3k · t) time, for any
t = 1, 2, ....

Observe that this argument shows in fact that the arboricity of G(Q) is O(A) = O(n1/k log n), and
thus Q is a (3k−1−1, O(n1/k log n))-network-decomposition. We summarize these results in the following
corollary.

Corollary 4.4. Procedure Decompose, invoked on an n-vertex graph G = (V,E) with a parameter k =
1, 2, ..., computes a (3k−1 − 1, O(n1/k log n))-network-decomposition Q and an H-partition (S1, ..., Sk) of
degree O(n1/k log n) and length k for G(Q) in O(3k) randomized time, with high probability. Moreover,
for a parameter t = 1, 2, ..., one can compute in O(3k · t) time an O(n2/k log2 n log(t) n)-labeling for Q. In
particular, by setting t = log∗ n one can get here time O(3k log∗ n) and labeling with O(n2/k log2 n) labels.

Note that the O(A2 log(t) n)-coloring algorithm for G′ that was described above does not require the
fact that the H-partition (S1, S2, ..., Sk) has small number of sets. Next we show that this H-partition
can be used in a more explicit way to compute an O(A · nǫ)-coloring of G′ in O(k/ǫ) time.

First, every vertex v of Sk tosses a color ϕ(v) uniformly at random from the palette [A ·nǫ]. It checks
if its color is different from the colors of all its neighbors in Sk. If it is the case, it finalizes its color.
Otherwise, it tosses its color from the same palette again. The process is repeated for ⌈c/ǫ⌉ rounds, for
a sufficiently large constant c. As we have already seen (see Lemma 3.7 and the discussion preceding it),
in O(1/ǫ) rounds we will obtain a legal O(A · nǫ)-coloring ϕk for Sk, with high probability. (Recall that
the maximum degree in Sk is at most A.) Define also ϕ̂k = ϕk.

Suppose that we have already computed an O(A ·nǫ)-coloring ϕ̂i for G
′(∪kj=iSj), for some i, 2 ≤ i ≤ k.

Next we show how to extend this coloring into an O(A · nǫ)-coloring ϕ̂i−1 for G′(∪kj=i−1Sj). To this end
every vertex v ∈ Si−1 tosses a color from [A · nǫ] uniformly at random, and checks if its color is different
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from the colors (either tossed on this round, or finalized colors) of its neighbors in ∪kj=i−1Sj. If it is
different from them, then v finalizes its color. Otherwise, it continues to the next round. The entire
process continues for O(1/ǫ) rounds.

The key observation required for the analysis is that v ∈ Si−1 has at most A neighbors in ∪kj=i−1Sj
Thus, a legal (A · nǫ)-coloring ϕi−1 for Si−1 will be computed, with high probability, within additional
O(1/ǫ) rounds. It is then combined in a trivial way with the coloring ϕ̂i for ∪kj=iSj to obtain the (A ·nǫ)-
coloring ϕ̂i−1 for ∪kj=i−1Sj.

Theorem 4.5. Given an H-partition (S1, S2, ..., Sk) with degree at most A for an n-vertex graph G′ =
(V ′, E′), and a parameter ǫ > 0, an (A · nǫ)-coloring of G′ can be computed in O(k/ǫ) rounds.

By invoking this algorithm on the network decomposition Q we obtain:

Corollary 4.6. Using a (3k−1 − 1, O(n1/k log n))-network-decomposition Q of the input graph G and an
H-partition (S1, S2, ..., Sk) for Q with degree O(n1/k log n), one can compute an O(n1/k+ǫ log n)-labeling
for Q within O(3k · k/ǫ) randomized time.

By substituting ǫ = 1/k we get:

Corollary 4.7. A (3k−1−1, O(n1/k log n))-network-decomposition Q along with an O(n2/k log n)-labeling
for it can be computed in O(3k · k2) randomized time.

5 Decompositions with a smaller number of labels

When k is small the logarithmic factor in the number of labels (O(n2/k log n)) of the network decomposi-
tion Q from Corollary 4.7 is almost negligible. However, for large k (e.g., k = Ω(log n)) this logarithmic
factor becomes dominant. In this section we describe a modification of our algorithm that produces
(exp{O(k)}, O(n1/k))-network-decomposition in exp{O(k)} · log2/3 n time. (For graphs of girth at least 6
the running time of this algorithm is even better, specifically exp{O(k)} · exp{O(

√
log log n)}.) Observe

that for k = Ω(log log n), the overhead factor of log2/3 n can be swallowed by the O-notation in exp{O(k)}.
This version of our algorithm is closely related to the deterministic algorithm of Awerbuch et al. [3];
in fact, our algorithms in this section can be viewed as a randomized version of their algorithm. Their
deterministic algorithm requires time (log n)O(k), and so we essentially show here that their algorithm
can be made faster by means of randomization.

The difference between the new variant of our algorithm (which we introduce here; we will refer to
it as Procedure RS-Decompose) and the original version of our algorithm (described in Section 3.1) is a
different algorithm for Procedure Partition. (See Algorithm 3.) The new variant of Procedure Partition
which we will next describe will be called Procedure RS-Partition. (RS stands for the acronym of ”ruling
set”.)

In a graph G = (V,E) for a vertex set U ⊆ V and positive integer parameters r, δ a subset W ⊆ U is
called an (r, δ)-ruling set for U if the following two conditions hold:
(a) Every pair of distinct vertices w,w′ ∈W satisfy distG(w,w

′) ≥ δ.
(b) For every vertex u ∈ U there exists a ”ruling vertex” (also called ”ruler”) w ∈ W such that
distG(w, u) ≤ r.

Observe that an MIS is a (2, 1)-ruling set. In the description of Procedure RS-Partition we will
assume that we have an efficient distributed subroutine for computing (r, δ)-ruling sets for r = 3 and
δ = O(1). We will later elaborate on this subroutine. Procedure RS-Partition starts with computing a
(3, δ)-ruling set W for the set U = {u ∈ V | deg(u) ≥ q} of high-degree vertices of G. (Recall that q is an
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input parameter of Procedure RS-Partition.) Then every vertex w ∈W sends an exploration message to
distance δ. Every vertex v ∈ V that receives an exploration message from two distinct rulers w′, w′′ ∈W
assigns himself to the ruler w which is closer to it. (Ties are broken in an arbitrary but consistent manner
by comparing rulers’ identities.)

As a result of these explorations clusters {Cw | w ∈ W} are formed. Observe that these clusters all
have strong radius at most δ, and that every u ∈ U (i.e., every high-degree vertex) is assigned to some
cluster. (This collection of clusters is often called a ruling forest. See, e.g., [3].) Procedure RS-Partition
now forms the set B of supernodes by contracting these clusters Gw, exactly as in line 13 of Algorithm 3.
Further, it creates the set A by setting A← V \ (∪w∈WCw), i.e., every vertex v which is not clustered is
assigned to A. Observe that for every v ∈ A, it holds that deg(v) ≤ q. Finally, Procedure RS-Partition
returns the pair (A,B), exactly as in line 14 of Algorithm 3.

Lemma 5.1. Suppose that Procedure RS-Partition is invoked on a graph G = (V,E) and a positive
parameter q. Suppose further that it uses a subroutine for computing a (3, δ)-ruling set, for a positive
integer parameter δ. The the subgraph G(A) has maximum degree smaller q. Moreover, B consists of at
most |V |/q supernodes, each of which is a cluster of strong diameter at most 2δ.

Proof. All the assertions of the lemma were already argued in the preceding discussion, except for the
claim that |B| ≤ |V |/q. We next show this claim. Recall that every supernode of B originated from a
cluster Cw, w ∈W , where W is a (3, δ)-ruling set for the set U of vertices with degree at least q. Hence
for two distinct clusters Cw, Cw′ from the collection B = {Cw | w ∈ W}, it holds that distG(w,w′) ≥ 3,
and deg(w),deg(w′) ≥ q. All (immediate) neighbors of w (respectively, w′) are assigned to the cluster
Cw (resp., Cw′), and these sets of neighbors are disjoint. Hence |Cw| ≥ q for every w ∈ W , and
|B| ≤ |V |/q.

We now use Procedure RS-Partition instead of Procedure Partition within Procedure RS-Decompose.
The diameter of clusters in the modified procedure becomes (2δ + 1)k instead of 3k, but the factor
log n is shaved from the bound on arboricity. (This is because the bound on deg(A) for A returned by
Procedure RS-Partition is q instead of O(q · log n). Hence as a result we obtain a ((2δ + 1)k, O(n1/k))-
network-decomposition Q and an H-partition (S1, S2, ..., Sk) of degree O(n1/k) of length k for G(Q). (See
Corollary 4.4 for a comparison.)

To analyze the running time we need to specify the black-box procedure for computing a (3, δ)-ruling
set W for the set U of high degree vertices. Barenboim et al. [10] (based on [31] and [12]) showed that
(2, 2)-ruling sets can be computed in O(log2/3 ∆)+exp{O(

√
log log n)} randomized time in general graphs,

and that (2, 3)-ruling sets can be computed in graphs with girth at least 6 in just exp{O(
√
log log n)} time.

By running their routine in G2 we guarantee that any two distinct vertices w,w′ ∈W are at distance at
least 2 in G2, i.e., at distance at least 3 in G. On the other hand, the domination parameter grows by a
factor of 2, i.e., we obtain a (3, 4)-ruling set in O(log2/3 ∆)+ exp{O(

√
log log n)} time in general graphs,

and a (3, 6)-ruling set in exp{O(
√
log log n)} time in graphs of girth at least 6. Hence the running time of

Procedure RS-Partition becomes now O(log2/3 n) for general graphs and exp{O(
√
log log n)} for graphs

of girth at least 6, instead of the running time of O(1) for Procedure Partition. (See Lemma 3.11.) Hence
by Lemma 3.5, the overall running time of Procedure RS-Decompose becomes O((2δ + 1)k · log2/3 n) for
general graphs, and O((2δ + 1)k · exp{O(

√
log log n)} for graphs of girth at least 6. In the former case

δ = 4, while in the latter it is 6. To summarize, we have proved the following theorem.

Theorem 5.2. Procedure RS-Decompose invoked on an n-vertex graph G = (V,E) with a parameter
k = 1, 2, ..., computes an ((O(1))k , n1/k)-network-decomposition Q and an H-partition (S1, S2, ..., Sk) of
degree A = O(n1/k) of length k for G(Q) in (O(1))k log2/3 n randomized time for general graphs, and in
(O(1))k · exp{O(

√
log log n)} time in graphs of girth at least 6.
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See Corollary 4.4 for the comparison between the result here and the result that we have for the
original variant of our algorithm.

Also in a way analogous to Corollary 4.7, Theorem 5.2 implies that we can also compute a labeling for
the network-decomposition Q. The time required to compute an O(A · n1/k)-coloring for G(Q) given an
H-partition as above is, by Theorem 4.5, at most O(Diam(Q) ·k2) = (O(1))k = exp{O(k)}. The number
of labels (colors) is O(A · n1/k) = O(n2/k). We summarize the properties of the network-decomposition
Q in the next corollary.

Corollary 5.3. An (exp{O(k)}, n1/k)-network-decomposition Q along with an O(n2/k)-labeling for it can
be computed in exp{O(k)}· log2/3 n (respectively, exp{O(k)}·O(

√
log log n)} ) randomized time in general

graphs (resp., in graphs of girth at least 6).

Observe that randomization was used by the modified variant of Procedure Decompose only for com-
puting a ruling set and for computing the labeling. There is a deterministic algorithm for computing
(3, O(log n))-ruling sets in O(log n) time due to [3]. If we plug it in the above algorithm the diame-
ter of Q grows from (O(1))k to O(log n)k−1), and consequently, the running grows to O((log n)k−1) as
well. (The most time-consuming step involves computing a (3, O(log n))-ruling set in the last phase of
the algorithm, i.e., in a supergraph in which each cluster has diameter (O(log n))k−2. This requires
(O(log n))k−1 time.) Hence we obtain the following result, which is a generalization of the network de-
composition of [3]. (They arrived to the same result with k =

√
log n log log n, i.e., they obtained an

(exp{O(
√
log n log log n)}, exp{O(

√
log n log log n)})-network-decomposition.)

Corollary 5.4. An (((O(log n))k−1, n1/k)-network-decomposition Q along with an H-partition (S1, S2, ..., Sk)
of degree A = O(n1/k) of length k for G(Q) can be computed in deterministic (O(log n))k−1 time in general
graphs.

This also gives rise to a construction of O((log n)k−1)-spanner with O(n1+1/k) edges, in deterministic
O((log n)k−1) time, in the CONGEST model. This is achieved by adding one edge for every pair of
adjacent clusters of the decomposition of Corollary 5.4. By setting k = logn

c log logn , for a constant c > 1,

one can get O(n1/c) time and O(n · logc n) edges. In particular, this results in a sparse skeleton (with
n·polylog(n) edges), in time O(nǫ), for an arbitrarily small constant ǫ > 0, in the deterministic CONGEST
model.

Using theH-decomposition of G(Q) from Corollary 5.4 an O(A2) = O(n2/k)-labeling for it (i.e., O(A2)-
coloring) for G(Q) can be computed by Algorithm Arb-Linial within additional O(Diam(Q) · log∗ n) =
(O(log n))k−1 · log∗ n deterministic time. (This is another point in which this deterministic routine is
different from that of [3]. To compute the coloring Awerbuch et al. [3] used here O(Diam(Q) ·A · log n) =
O(n1/k logk n) time, but the number of colors was only O(n1/k) instead of O(n2/k). Since we insist on
having a deterministic polylogarithmic time, this modification is crucial.)

Corollary 5.5. For any positive integer k, an ((O(log n))k−1, n1/k)-network-decomposition Q along with
an O(n2/k)-labeling of it can be computed in (O(log n))k−1 · log∗ n deterministic time.

By running a t-round version of Algorithm Arb-Linial, for some positive integer constant t, one can
also have here running time O((log n)k−1 · t) = O((log n)k−1), but the number of colors (labels) becomes
O(n2/k log(t) n).

6 Applications

6.1 An Approximation Algorithm for the Coloring Problem

The results described in the previous sections (Theroem 3.6; see also Corollary 4.7) imply an approx-
imation algorithm for the optimization variant of the coloring problem. A distributed approximation
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algorithm for the graph coloring problem (based on an (O(1), O(n1/2+ǫ))-network decomposition) was
given in [5]. We describe here a generalization of that algorithm which works with any network-
decomposition. The algorithm starts by computing a (3k − 1, O(n1/k log n))-network-decomposition Q
with an O(n2/k log n)-labeling label(·) for it. See Corollary 4.7. Then in each cluster C the entire induced
subgraph G(C) is collected into the leader vertex vC of C. The leader vertex vC computes locally the
optimum coloring ϕC for C. Finally, vC broadcasts (a table representation of ϕC) to all vertices of C.
Each vertex u that receives this broadcast computes its final color ψ(u) by ψ(u) = 〈ϕC(u), label(u)〉. The
running time of this algorithm is the sum of the time required to compute the decomposition Q (i.e.,
O(3k · k2)) with the time required for the computation of the colorings ϕC . The latter is dominated by
the diameter of Q, times a small constant. The overall running time is therefore O(3k · k2).

The next lemma shows that the coloring ψ provides an O(n2/k log n)-approximation to the optimal
coloring for G.

Lemma 6.1. ψ is a proper O(n2/k log n · χ(G))-coloring.

Proof. Consider an edge (u,w) ∈ E. If u,w ∈ C, for some cluster C ∈ Q, then ϕC(u) 6= ϕC(w), and so
ψ(u) 6= ψ(w). Otherwise, let Cu (respectively, Cw) be the cluster that contains u (resp., w), and Cu 6= Cw.
The clusters Cu and Cw are adjacent in G(Q), and thus label(Cu) 6= label(Cw). Hence label(u) 6= label(w),
and so ψ(u) 6= ψ(w).

Note also that χ(G(C)) ≤ χ(G), for every vertex subset C ⊆ V . The coloring ψ employs maxC∈Q{χ(G(C))}·
n2/k · log n colors, i.e., O(χ(G) · n2/k · log n).

We proved the following theorem:

Theorem 6.2. For any n-vertex graph G = (V,E) and an integer parameter k = 1, 2, ..., an O(n2/k log n)-
approximation of the optimal coloring for G can be computed in O(3k · k2) time.

In particular, by setting the parameter k to be an arbitrarily large constant we can get a distributed
O(nǫ)-approximation algorithm for the coloring problem with a constant running time, for an arbitrarily
small constant ǫ > 0. (The running time is O(3⌈1/ǫ⌉ · 1

ǫ2
).) This greatly improves the current state-

of-the-art constant-time distributed approximation algorithm for the coloring problem due to [5], which
provides an approximation guarantee of O(n1/2+ǫ). On the other hand, the dependence of the running
time on ǫ is only O(1/ǫ) in the result of [5].

Note that the algorithm in Theorem 6.2 requires very heavy (exponential in n) local computations and
large messages. The heavy computations are inevitable, because unless NP = P , the coloring problem
cannot be approximated up to a ratio of n1−ǫ, for any constant ǫ > 0 [27, 24, 49].

6.2 Coloring Triangle-Free Graphs and Graphs with Large Girth

A result of Ajtai et al [2] shows that triangle-free n-vertex graphs G admit an O(
√
n/
√
log n)-coloring.

(This existential bound was shown to be tight by Kim [29].) Here we show that one can construct an
O(n1/2+ǫ)-coloring of triangle-free graphs in distributed randomized O(1/ǫ) time. Moreover, unlike our
algorithm from the previous section, this algorithm uses only short messages and does not rely on heavy
local computations.

The algorithm starts with invoking the algorithm from Corollary 4.4 on its input n-vertex graph
G = (V,E) with the parameter k = 2. We obtain a (2, O(n1/2 log n))-network decomposition Q in O(1)
time. Moreover, the algorithm also constructs an H-partition (S1, S2) of the vertex set V of G into two
sets. The degree of this H-partition is A = O(n1/2 log n). The clusters in S1 are singleton clusters. (Each
such a cluster C ∈ S1 contains a single vertex v ∈ C such that deg(v) ≤ A.) Each cluster C ∈ S2 is a star
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rooted at a center vertex r ∈ C. Also, since the graph is triangle-free, neighbors of r are not connected
via edges one with another.

Centers of clusters of S2 now toss a color for their cluster from [A ·nǫ]. If a color tossed by the root r of
C is different from the colors of clusters incident on C in the supergraph G(Q), then r stops. Otherwise it
continues. Overall, as we have seen, after O(1/ǫ) rounds, clusters of S2 will be colored in O(n1/2+ǫ log n)
colors. (The communication between centers of adjacent clusters can be executed efficiently using short
messages. This requires some care. The root r of each cluster informs all vertices of C of its choice of
color. Then each vertex of C (including r) sends the root’s color c(r) over inter-cluster edges incident on
them. Then every vertex v ∈ C checks if one of its neighboring clusters chose a color c equal to c(r). If
it is the case, then it informs r. In this case r abandons its color (and informs all vertices of C about it),
and continues to the next round of the randomized coloring procedure.) Then clusters of S1 toss colors
for them from the same range. Since each cluster of S1 has only O(A) neighbors in S1 ∪ S2, the coloring
will be computed within additional O(1/ǫ) rounds. Finally within each cluster C ∈ S2 actually two colors
are used. (One for the center, and another for its neighbors.) Hence the overall number of colors is at
most 2 · A · nǫ = O(n1/2+ǫ log n). The factor log n can be swallowed by slightly increasing the ǫ in the
exponent. To summarize:

Theorem 6.3. An O(n1/2+ǫ)-coloring of triangle-free n-vertex graph can be computed in O(1/ǫ) dis-
tributed randomized time, using short messages and polynomially-bounded local computations.

This result extends also to graphs with large girth. Specifically, consider a graph G with girth greater
than g, for some integer g = 2k, k ≥ 2. The arboricity of G is at most n1/k. (See, e.g., [13]. Theorem
3.7.) By [6], an H-partition S1, S2, ..., Sℓ, ℓ = O(1/ǫ), of G with degree A = n1/k+ǫ can be computed
in constant time, for an arbitrarily small ǫ > 0. Hence, by Theorem 4.5, an A · nǫ-coloring of G can be
computed in O(ℓ/ǫ) = O(1) time. By scaling ǫ we obtain the following result.

Theorem 6.4. For a graph G with girth greater than g = 2k, k ≥ 2, and an arbitrarily small constant
ǫ > 0, an n1/k+ǫ-coloring can be computed in constant distributed randomized time (specifically, O(1/ǫ2)),
using short messages and polynomially-bounded local computations.

Note that the algorithm from Theorem 6.4 does not employ a network decomposition. Observe also
that for k = 2 (i.e., girth greater than 4) the numbers of colors in Theorems 6.3 and 6.4 are the same,
and both are existentially tight up to a slack factor of nǫ. On the other hand, their proofs are different.
However, Theorem 6.3 applies for g > 3 too, while Theorem 6.4 applies only for g > 4. So the result of
Theorem 6.4 is mainly of interest for k ≥ 3 (i.e., g ≥ 6).

6.3 Separated Decompositions

For the sake of some applications we need a stronger notion of network decompositions, called a σ-
separated (α, β)-network-decomposition, for positive parameters σ, α, and β [1]. An (α, β)-network-
decomposition Q of a graph G = (V,E) is called σ-separated if the clusters of Q can be β-colored in such
a way that every pair of clusters C,C ′ ∈ Q which are colored by the same color are at distance at least σ
from one another, i.e., distG(C,C

′) ≥ σ. Observe that an ordinary network decomposition is 2-separated.
It is very easy to convert any procedure that constructs an ordinary (2-separated) (α, β)-network-

decomposition into a procedure that constructs a weak σ-separated (α ·(σ−1), β)-network-decomposition,
for any parameter σ ≥ 3. (See Section 2 for the definition of weak decomposition.) Specifically, one just
executes the procedure for computing an ordinary (α, β)-network-decomposition on the graph Gσ−1 =
(V,Eσ−1), Eσ−1 = {(u, v) | u, v ∈ V, distG(u, v) ≤ σ − 1}. As a result one obtains a partition Q of
Gσ−1 such that each cluster C ∈ Q has diameter at most α in Gσ−1, and thus weak diameter at most
(σ− 1) ·α in G. Also, for any pair C,C ′ of distinct clusters in Q which are colored by the same color, the
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distance between them in Gσ−1 is at least 2, and so the distance between them in G is at least σ. Hence
Q is a weak σ-separated (α · (σ − 1), β)-network-decomposition of G. Simulating a distributed algorithm
for Gσ−1 in G increases the running time by a factor of σ − 1. (Here we assume that message size is
unbounded.) Therefore, Corollary 4.4 implies the following result.

Corollary 6.5. For a pair of positive integer parameters σ ≥ 2, k ≥ 2, a σ-separated weak ((3k−1 −
1) · σ,O(n1/k log n))-network-decomposition Q and an H partition (S1, S2, ..., Sk) of length k and degree
O(n1/k log n) for G(Q) can be computed in randomized O(3k ·σ) time, with high probability. Moreover, for
an integer parameter t = 1, 2, ..., one can compute an O(n2/k log2 n log(t) n)-labeling for Q in O(3k · σ · t)
time.

We remark that this simple approach for converting network-decompositions into weak separated ones
is not new. It was used, e.g., by Dubhashi et al. [19].

Next we show that our algorithm for constructing ordinary (3k−1−1, O(n1/k log n))-network-decompositions
can be adapted to compute strong σ-separated ((2σ− 1)k−1− 1, O(n1/k log n))-network-decomposition in
randomized time O((2σ)k), for an arbitrary integer parameter σ ≥ 2.

In what follows we describe Procedure Sep-Decompose which generalizes Procedure Decompose (Al-
gorithm 1). It accepts as input all the parameters of Procedure Decompose, and also the separation
parameter σ. Consider again Procedure Decompose (Algorithm 1). The termination condition of the
procedure (lines 1-2, the case when the size s is small, i.e., s = O(n1/k log n)) stays unchanged. In the
general case (the ”else” case of the procedure, lines 3-15) Procedure Decompose starts with invoking
Procedure Partition, which decomposes the input graph Ĝ into A and B. In the original procedure the
subgraph G(A) induced by A has a small maximum degree (at most O(q log n), where q = O(n1/k) is
an input parameter of Procedure Partition.) The generalized variant of the procedure (Procedure Sep-
Decompose) invokes instead a generalized variant of Procedure Partition, called Procedure Sep-Partition.
The latter procedure accepts as input all the parameters of Procedure Partition, but also the separation
parameter σ. It also decomposes the input graph Ĝ into A and B, but A has the property that Ĝ(σ−1)(A)
has maximum degree O(q log n) = O(n1/k log n), i.e., for every vertex v ∈ A, there are at most O(q log n)
other vertices of Ĝ at distance at most σ − 1 from v. (The distance is with respect to Ĝ.) Similarly to
Procedure Partition, in Procedure Sep-Partition too the set B is a collection of at most s/n1/k clusters of
small diameter in Ĝ. However, the diameter grows from 3 in the case of Procedure partition, to 2σ − 1
in Procedure Sep-Partition.

Then Procedure Sep-Decomposition invokes Procedure Dec-Small. (See line 5 of Algorithm 1.) Pro-
cedure Dec-Small converts every vertex C ∈ A into a separate cluster. (If Ĝ is the original graph G then
every vertex v ∈ A ⊆ V gives rise to a cluster {v}. Otherwise Ĝ is a supergraph of the original graph G,
and a vertex C ∈ A is a cluster of G.) The resulting set of clusters is denoted by S. Procedure Dec-Small
also returns a labeling for clusters of S, but similarly to the case of Section 4, this labeling is immaterial
for our discussion.

On line 6 of algorithm 1 Procedure Sep-Decompose invokes itself recursively on the supergraph G(B)
induced by the set B of clusters. The rest of the procedure stays unchanged.

At this point we are interested in a version of Procedure Sep-Decompose which only computes a
separated network-decomposition without a labeling function for it. (See the beginning of Section 4.)
To recap, this procedure returns a network-decomposition Q = ∪ki=1Si, where (S1, S2, ..., Sk) is an H-
partition of the supergraph G(Q) induced by this decomposition. (See Lemmas 4.1 and 4.2.) Moreover, it
is easy to verify that decompositions Q produced by Procedure Sep-Decompose satisfy a stronger property
than decompositions produced by Procedure Decompose. Specifically, by construction, for every index
i = 1, 2, ..., k, a cluster C ∈ Si has at most O(q log n) = O(n1/k log n) other clusters C ′ ∈ ∪kj=iSj at

distance at most σ − 1 from it in Ĝ. This fact is summarized in the next lemma.
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Lemma 6.6. (S1, S2, ..., Sk) is an H-partition with degree O(n1/k log n) of the supergraph (G(Q))σ−1,
where Q = ∪ki=1Si.

By invoking one of the algorithms from Section 4 for coloring low-arboricity graphs (for which a short
low-degree H-partition is provided) we can obtain an O(n2/k log2 n log(t) n)-labeling for Q, which has the
property that any two distinct clusters C,C ′ which receive the same label are at distance at least σ from
one another in G(Q), and thus at distance at least σ from one another in G. The running time of this
step is O(t · Diam(Q)). (See Theorem 4.4.) Alternatively, one can have an O(n2/k log n)-labeling with
this property in time O(Diam(Q) · k2). (See Corollary 4.7.)

Next we analyze Diam(Q). To do it we first describe Procedure Sep-Partition. (See Algorithm 3 for
Procedure Partition.) The procedure accepts the same parameters as Procedure Partition, but also the
separation parameter σ. (In fact, Procedure Partition is a special case of Procedure Sep-Partition, where
σ = 2.) Similarly to Procedure Partition, in Procedure Sep-Partition every vertex v selects itself (joins
D) independently at random with probability 1/q. Then every selected vertex v sends an exploration
message to distance σ − 1 from it in Ĝ. Every vertex u which is not selected (u /∈ D) and receives
at least one exploration message joins the cluster centered by the closest originator of an exploration
message received by u. (Ties are broken in an arbitrary but consistent way according to the identities of
originators. If originators themselves are clusters, then each of them has its own leader whose identity
serves as the identity of the cluster. The consistent rule for breaking ties may be, for example, to prefer
an originator with a smaller identity.) Other vertices join the set A. The procedure returns the set A
and the set B of clusters which are created in the way described above. Observe that if Ĝ is not the
original graph but rather a supergraph of it then the algorithm is executed by clusters rather than by
single vertices. In other words, in this case the center of each cluster simulates all the operations that
need to be performed by the cluster.

The next lemma shows that clusters created by Procedure Sep-Partition are connected and have
bounded diameter.

Lemma 6.7. Consider an invocation of Procedure Sep-Partition(Ĝ, q, σ), where q ≥ 1 is a parameter
and σ ≥ 2 is an integer parameter. Then each vertex v ∈ A has degree O(q · log n) in Ĝ(σ−1), and each
cluster C ∈ B has (strong) diameter at most 2σ − 2 in Ĝ.

Proof. Let c be a sufficiently large fixed constant, and consider a vertex v ∈ Ĝ such that a (σ − 1)-
neighborhood Bσ−1(v) of v in Ĝ contains at least c · q · log n vertices. Then with probability at least
1 − 1/nc at least one of the vertices u ∈ Bσ−1(v) joins D, and the vertex v becomes clustered. Hence
with probability at least 1− 1/nc−1 all vertices v with |Bσ−1(v)| ≥ c · q · log n become clustered, and so
each unclustered vertex v ∈ A satisfies |Bσ−1(v)| < c · q · log n.

Consider a cluster C ∈ B. It is centered around an originator v of an exploration message. (The
vertex v belongs to D, i.e., it is selected.) Consider a vertex u ∈ C, and let Pv,u be a shortest v− u path
in Ĝ. Let x be a vertex on this path. (Note that v, u, x are vertices of Ĝ, i.e., they are possibly clusters
themselves.) It follows that v is the closest selected vertex to x, and if there exists another selected vertex
v′ ∈ D which satisfies distĜ(v, x) = distĜ(v

′, x), then v has a smaller identity than v′. (As otherwise v′

would rule u as well.) Hence x ∈ C. Consequently all vertices of Pv,u are in C, and the length of Pu,v

is at most σ − 1. Hence the cluster C has strong radius at most σ − 1, i.e., strong diameter at most
2(σ − 1).

Observe also that by the same argument as in Lemma 3.10, the number of clusters in B is, with
high probability, O(s/q). We are now ready to analyze the diameter Diam(Q) of the ultimate network-
decomposition Q. The following lemma generalizes Lemma 3.3.
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Lemma 6.8. Let Q = (S1, S2, ..., Sk) be a σ-separated network-decomposition produced by the invocation
Sep-Decompose(G,n, k, s := n, ǫ, t, σ) on an input graph G. Then for each i ∈ [k], Diam(Si) ≤ (2σ −
1)i−1 − 1.

Proof. We prove by induction on i that in the ith level recursive invocation of Procedure Sep-Decompose
each vertex v of the input graph Ĝi of this invocation is a cluster of the original graph G with diameter
at most (2σ − 1)i−1 − 1. Since for each i ∈ [k], clusters of Si are vertices of Ĝi = (V̂i, Êi) the assertion of
the lemma follows from the inductive claim.
Base: Diam(S1) = 0 = (2σ − 1)0 − 1.
Step: Consider an index i < k. By Lemma 6.7, each cluster C created by the ith level invocation of
Procedure Sep-Decompose has strong diameter at most 2σ − 2 in Ĝi = (V̂i, Êi). It follows that

Diam(C) ≤ (2σ − 1) · max
C′∈V̂i

{Diam(C ′)}+ (2σ − 2).

By induction hypothesis it follows that

Diam(C) ≤ (2σ − 1)((2σ − 1)i−1 − 1) + (2σ − 2) = (2σ − 1)i − 1.

Since vertices v of Ĝi+1 are clusters which were formed by the ith level invocation of Procedure Sep-
Decompose, the assertion of the lemma follows.

We summarize this discussion with the following corollary.

Corollary 6.9. Consider an invocation of Sep-Decompose(G,n, k, s := n, ǫ, t, σ), where k ≥ 1, σ ≥ 2 are
integer parameters. It produces a σ-separated strong ((2σ−1)k−1−1, O(n1/k log n))-network-decomposition
Q = ∪ki=1Si, along with an H-partition (S1, S2, ..., Sk) for (G(Q))σ−1. The running time of this invocation
is O((2σ − 1)k−1).

As was discussed in the paragraph following Lemma 6.6, using this network-decomposition one can
compute an O(n2/k log2 n log(t) n)-labeling for Q within additional O(t · (2σ − 1)k−1) rounds, or alterna-
tively, an O(n2/k log n)-labeling within additional O((2σ − 1)k−1 · k2) rounds. In both cases the labeling
satisfies that any two distinct clusters C,C ′ which receive the same label are at distance at least σ one
from another in G.

One can also improve the parameters of the network-decomposition from Corollary 6.9 from ((2σ −
1)k−1−1, O(n1/k log n)) to (O(σ)k, O(n1/k)) at the expense of increasing the running time from ((O(2σ−
1)k−1) to O(σ)k log2/3 n in general graphs, and O(σ)k · exp{O(

√
log log n)} in graphs with girth at least

6. This is done by introducing to Procedure Sep-Decompose a modification analogous to the one that
we introduced to Procedure Decompose in Section 5. Recall that the difference between Procedure RS-
Decompose and Procedure Decompose is that the former invokes Procedure RS-Partition as a subroutine,
while the latter invokes Procedure Partition.

Procedure RS-Partition computes a (3, δ)-ruling set W for the set U = {u ∈ V | deg(u) ≥ q} of high
degree vertices of its input graph G, for a parameter δ. The variant of this procedure that we are now
describing, called Procedure Sep-RS-Partition, accepts as input also the separation parameter σ, and
computes a (2σ − 1, δ)-ruling set W ′ for the set U ′ = {u ∈ U : |Bσ−1(u)| ≥ q} of vertices that have
at least q vertices in their (σ − 1)-ball. The clusters {Cw | w ∈ W ′} are then created in the same way
as in Procedure RS-Partition. In particular, their strong radii are still bounded by δ. Also, every vertex
u ∈ U ′ is assigned to some cluster. The sets A and B are now formed as in Procedure RS-Partition.
Every vertex v ∈ A now satisfies |Bσ−1(v)| < q. The following lemma is analogous to Lemma 5.1, and its
proof is very similar to that of Lemma 5.1.
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Lemma 6.10. Suppose that Procedure Sep-RS-Partition is invoked on a graph G = (V,E) and positive
parameters σ and q. Suppose further that it uses a subroutine for computing a (2σ − 1, δ)-ruling set, for
a positive integer parameter σ. Then in the subgraph G(A) every vertex v ∈ A satisfies |Bσ−1(v)| < q.
Moreover, B consists of at most |V |/q supernodes, each of which is a cluster of strong diameter at most
2δ.

It follows now that Procedure Sep-RS-Decompose computes a σ-separated ((2δ+1)k , O(n1/k))-network-
decomposition Q. For the running time we need again to specify the running time required for computing
a (2σ − 1, δ)-ruling set. By running the algorithms for computing a ruling set due to Barenboim et al.
[10] and Kothapalli and Pemmaraju [31] respectively in G2(σ−1) we obtain a (2σ − 1, 2 · 2σ)-ruling set in
the case of general graphs, and a (2σ−1, 3 ·2σ)-ruling set in the case of graphs of girth at least 6. In both
cases δ = O(σ), and the running time is O(σ · log2/3 n) in the former case and O(σ) · exp{O(

√
log log n)}

time in the latter. The rest of the analysis is identical, except that the overall running time of Procedure
Sep-RS-Decompose becomes (O(σ))k log2/3 n and (O(σ))k · exp{O(

√
log log n)} in the cases of general

graphs and graphs of girth at least 6, respectively.

Theorem 6.11. Procedure Sep-RS-Decompose invoked on an n-vertex graph G = (V,E) with positive
integer parameters k and σ computes a σ-separated strong ((O(σ))k, n1/k)-network-decomposition Q in
randomized time (O(σ))k log2/3 n in general graphs and in (O(σ))k · exp{O(

√
log log n)} randomized time

in graphs of girth at least 6.

One application of strong separated network-decomposition is low-intersecting partitions. Low-intersecting
partitions were introduced by Busch et al. [14], in their work on universal Steiner trees. A low-intersecting
(α, β, γ)-partition P of a graph G is the partition of the vertex set V such that
(1) Every cluster C in P has strong diameter at most α · γ.
(2) For every vertex v ∈ V , a ball Bγ(v) of radius γ around v intersects at most β clusters of P.

Busch et al. showed that given a hierarchy of low-intersecting partitions with certain properties (see
[14] for details) one can construct a universal Steiner tree. (See [14] for the definition of universal Steiner
tree.) Also, vice versa, given universal Steiner tree they showed that one can construct a low-intersecting
partition. They constructed a low-intersecting partition with α = 4k, β = k · n1/k, and arbitrary γ.

We next argue that a (2γ+1)-separated strong (µ, η)-network-decomposition Q is also a low-intersecting
partition with parameters (α = µ/γ, β = η, γ). Indeed, every cluster C of Q has strong diameter at most
µ = α · γ. Moreover, consider a vertex v and a ball Bγ(v) of radius γ around v. Observe that for every
color class i ∈ [η] of G(Q), the ball Bγ(v) can intersect at most one cluster C colored by i. (This is
because for every two i-colored clusters C,C ′, it holds that distG(C,C

′) ≥ 2γ + 1.) Hence altogether
Bγ(v) may intersect up to η clusters of Q. This proves the claim.

Therefore, our distributed algorithm for computing a (2γ+1)-separated strong (O(γ))k, n1/k)-network-
decomposition in distributed randomized time (O(γ))k log2/3 n in general graphs and in
(O(γ))k · exp{O(

√
log log n)} in graphs of girth at least 6 provides also a distributed algorithm with the

same running time for constructing a low-intersecting ((O(γ))k, n1/k, γ)-partition. We summarize:

Corollary 6.12. For any pair of positive integer parameters k, γ, a low-intersecting ((O(γ))k, n1/k, γ)-
partition can be constructed in (O(γ))k log2/3 n randomized time in general graphs and in (O(γ))k ·
exp{O(

√
log log n)} randomized time in graphs of girth at least 6.

We remark that this construction can be implemented using short messages.
Comparing this result with the algorithm of Busch et al. [14] we note that the partition of [14] has smaller
radius. (It is γ · (O(1))k instead of (O(γ))k in our case.) On the other hand, the intersection parameter β
of our partitions is smaller. (It is n1/k instead of k ·n1/k.) In particular, the intersection parameter in the
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construction of [14] is always Ω(log n), while ours can be as small as one wishes. Finally, the algorithm
of Busch et al. [14] is not distributed, and seems inherently sequential.

6.4 Approximation Algorithms for the Minimum Dominating Set and Minimum t-

Spanner Problems

In this section we employ our network-decomposition algorithm in order to derive approximation algo-
rithms for the minimum dominating set and minimum t-spanner problems. Suppose that we are given a
3-separated (d, ℓ)-network-decomposition Q of a graph G. For each cluster C ∈ Q, we compute in paral-
lel a dominating set D ⊆ Γ+(C) of C, such that D has minimum cardinality among all dominating sets
D′ ⊆ Γ+(C) of C. The computation of D is performed by collecting the topology of the clusters and their
neighborhoods by the leaders of respective clusters, performing the computation locally using exhaustive
search1 , and broadcasting the results to the vertices of the clusters and their neighbors. Since the weak
diameter of the clusters is at most d, this requires O(d) rounds. We next show that the resulting set
obtained by taking the union of the dominating sets in all clusters constitutes an ℓ-approximate minimum
dominating set of the input graph G.

Lemma 6.13. For a 3-separated (d, ℓ)-network-decomposition Q, suppose that we have computed a mini-
mum dominating set DC ⊆ Γ+(C) of C, for each cluster C ∈ Q. Then |⋃{DC | C ∈ Q}| ≤ ℓ · |MDS(G)|.
Proof. For 1 ≤ i ≤ ℓ, let Ui ⊆ V denote the set of all vertices with label i in the network-decomposition Q.
Let Ûi = Γ+(Ui). We claim that |⋃{DC | C ⊆ Ui}| ≤ |W |, where W is a minimum dominating set of G.
(Note that in the current proof the notation C ⊆ Ui stands for a cluster C that belongs to Ui, rather then
just a subgraph of Ui, since DC is defined only for clusters.) Let Ci ∈ Q be a cluster of label i, 1 ≤ i ≤ ℓ.
Then Ci ⊆ Ui. Observe that W ∩ Γ+(Ci) is a dominating set of Ci. (Since W is a dominating set of Ci,
and any vertex in W \ Γ+(Ci) does not dominate any vertex in Ci.) Therefore, |W ∩ Γ+(Ci)| ≥ |DCi |.
Note also that for any cluster C ′

i 6= Ci of label i it holds that Γ+(C ′
i) ∩ Γ+(Ci) = ∅. Indeed, Q is a

3-separated network-decomposition, and thus, for any u ∈ Ci, v ∈ C ′
i it holds that distG(u, v) ≥ 3. Hence

for any w ∈ Γ+(Ci), x ∈ Γ+(C ′
i), it holds that distG(x,w) ≥ 1, and thus x 6= w. Consequently,

| ∪ {DC | C ⊆ Ui}| =
∑

C⊆Ui

|DC | ≤
∑

C⊆Ui

|W ∩ Γ+(Ci)| ≤ |W | = |MDS(G)|.

Therefore,

|
⋃

{DC | C ∈ Q}| = |
⋃

{(∪{DC | C ⊆ Ui}) : i ∈ [ℓ]} | ≤
ℓ

∑

i=1

| ∪ {DC | C ⊆ Ui}| ≤ ℓ · |MDS(G)|.

Recall that by Corollary 5.4, there is a routine that computes an ((O(log n))k−1, n1/k)-network-
decomposition in deterministic time (O(log n))k−1, for any k = 1, 2, .... As was discussed above, this
routine can also be adapted to compute a weak 3-separated network-decomposition with the same prop-
erties within the same running time. (See Section 6.3; both the diameter parameter and the running time
grow by a constant factor σ = 3.) Also, similarly to Corollary 6.9, one can adapt this routine so that
it will compute a strong network-decomposition with the same parameters and the same running time.
(The diameter and the running time grow by a factor of (2σ − 1)k = 5k, which is however swallowed
by the notation (O(log n))k−1.) Using this network-decomposition in conjunction with Lemma 6.13 we
obtain the following theorem.

1We note that once can employ polynomial-time local computations instead of exhaustive search in the expense of
increasing the approximation ratio by a factor of O(log∆). See Section 7.
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Theorem 6.14. For an n-vertex graph G, and a positive integer parameter k an O(n1/k)-approximation
for the minimum dominating set problem can be computed in deterministic time (O(log n))k−1.

Another problem for which an efficient approximation algorithm can be obtained using network-
decompositions is the minimum t-spanner problem. Given an (unweighted) graph G = (V,E) and a
positive integer parameter t, a subgraph G′ = (V,H), H ⊆ E, is a t-spanner of G if for every pair
u, v ∈ V of vertices, distG′(u, v) ≤ t · distG(u, v). In the minimum t-spanner problem the objective is to
find a t-spanner of the input graph with as few edges as possible.

Suppose that we are given a (2t − 1)-separated (d, ℓ)-network-decomposition Q of an input graph
G = (V,E). Let C1, C2, ..., Ch be a single color class of this labeling, i.e., Diam(Ci) ≤ d for each i ∈ [h],
and distG(Ci, Cj) ≥ 2t− 1, for every pair of distinct indices i 6= j, i, j ∈ [h]. Let Ĉi = Bt−1(Ci), for every
i ∈ [h]. Note that Ĉi ∩ Ĉj = ∅, for every pair of distinct indices i 6= j. Denote C = ∪hi=1Ci, Ĉ = ∪hi=1Ĉi,
and consider a minimum t-spanner H for E(C) which is allowed to use edges from E(Ĉ). Let also H∗ be
a minimum t-spanner for G.

Lemma 6.15. |H| ≤ |H∗|.

Proof. Observe that the restriction H∗(Ĉ) of H∗ to Ĉ is a t-spanner for C. Indeed, consider an edge
(u, v) ∈ E(C). Let Ci ∈ C be the cluster such that u, v ∈ Ci. Then H

∗ contains a path of length at most
t between u and w, and so this path belongs to H∗(Ĉi) ⊆ H∗(Ĉ).

The lemma now follows as H is the minimum t-spanner for C which is allowed to use edges from E(Ĉ),
while H∗(Ĉ) is a t-spanner for C of this type. Hence |H| ≤ |H∗(Ĉ)| ≤ |H∗|.

Denote also by Hi the minimum t-spanner for E(Ci) which is allowed to use edges of E(Ĉi).

Lemma 6.16. | ∪hi=1 Hi| = |H|.

Proof. Obviously, ∪hi=1Hi is a t-spanner for E(C) which uses only edges of E(Ĉ). Hence by optimality of
H, | ∪hi=1 Hi| ≥ |H|.

In the opposite direction, for every index i ∈ [h], let Hi = H∩E(Ĉi). By optimality of Hi, |Hi| ≤ |Hi|.
Also, for every pair of distinct indices i, j ∈ [h], Hi∩Hj = ∅. (This is because E(Ĉi)∩E(Ĉj) = ∅.) Hence

|H| = | ∪hi=1 Hi| =
h
∑

i=1

|Hi| ≥
h
∑

i=1

|Hi| ≥ | ∪hi=1 Hi|.

(The last inequation is, in fact, equality.)

In other words, to compute a minimum t-spanner H for E(C) one can compute minimum t-spanners
H1,H2, ...,Hℓ for E(C1), E(C2), ..., E(Ch) (which are allowed to use edges of E(Ĉ1), E(Ĉ2), ..., E(Ĉk),
respectively), and take their union. Our distributed algorithm will do precisely this. In each cluster C
of Q it computes a minimum t-spanner for E(C) using edges of E(Ĉ), Ĉ = Bt(C). This computation is
done by collecting the entire topology of (Ĉ, E(Ĉ)) into a vertex in C, doing a local (possibly very heavy)
computation, and informing all vertices of Ĉ about the results of this computation. The union of all these
t-spanners will be our ultimate spanner. Hence the algorithm returns a spanner H′ = ∪ℓj=1H(j), where

for each index j ∈ [h], H(j) is a minimum t-spanner for E(C(j)), where C(j) is the set of all vertices labeled
by j in the network decomposition Q. (In other, words, they belong to clusters of color j. Note, however,
that to execute the algorithm we do not need to know these colors/labels.) Since by Lemma 6.16, for
every j ∈ [ℓ], |H(j)| ≤ |H∗|, it follows that the algorithm returns an ℓ-approximation. The running time
of the algorithm is O(Diam(Q) + t) = exp{O(k)} +O(t). To summarize:
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Theorem 6.17. For any pair of positive integer parameters t, k an O(n1/k)-approximation of the mini-
mum t-spanner problem in n-vertex graphs can be computed in exp{O(k)} +O(t) randomized time.

Observe that the same result applies to the t-spanner problem in directed graphs, by the same argu-
ment. Note that even though the graph is directed, we assume that the communication over every edge
is bidirectional.

7 Removing heavy local computations from the minimum dominating

set and minimum t-spanner algorithms

It is well known that an O(log∆)-approximation of minimum dominating set can be computed in poly-
nomial time in the sequential setting. (See, e.g., [50].) However, this approach cannot be applied directly
to our algorithms since we compute minimum dominating sets DC of clusters C, such that DC ⊆ Γ+(C)
rather than DC ⊆ C. On the other hand, this problem reduces to the Set Cover problem with both the
degree parameters (i.e., the maximum cardinality of a set and the maximum number of sets that share an
element) bounded by ∆+1. Hence this problem admits a polynomial-time O(log∆)-approximation algo-
rithm. (See, e.g., [46].) One can also extend the classical centralized O(log∆)-approximation algorithm
for the MDS problem directly to our slightly more general problem. This extension is described below.
Consequently, we can obtain a dominating set whose size is at most O(log∆) the size of the minimum
dominating set of C consisting of vertices of Γ+(C). This can be achieved in the following way. Initially
DC = ∅. We proceed in phases, each time selecting a vertex v from C such that dv = |Γ+(v)∩C \Γ+(DC)|
is maximal, and adding v to DC . (Ties are broken by preferring vertices that belong to Γ+(DC), and if
this does not solve the tie, it is broken arbitrary.) Once no uncovered vertex remains we are done.

Let S∗ ⊆ Γ+(C) be a minimum dominating set of C. We claim that DC ≤ O(log∆ · |S∗|). The proof
is by amortized analysis. Each time a vertex v is added to DC we assign a weight 1/dv to each vertex of
Γ+(v) ∩ C \ Γ+(DC). Observe that the sum of all weights assigned during this procedure is |DC |. Next,
(for analysis) let each vertex of C select a single vertex from S∗ that dominates it. Consider a vertex
u ∈ S∗ and the set W of all neighbors of u in C that selected u. Next, we analyze the sum of weights of
W . For each w ∈ W it is assigned a weight once a neighbor of w (or w itself) joins the dominating set
DC . Let i be the number of the phase in which it happens, and degi(u) denote the number of neighbors
of u in C that are not covered in the beginning of phase i. Also, let z denote the neighbor that dominates
w, for which w obtained its weight. Since in each phase a vertex v with maximal dv is selected, it holds
that degi(u) ≤ degi(z). Consequently, w is assigned a weight at most 1/degi(z) ≤ 1/degi(u). Therefore,

the sum of weights of W is at most
∑|W |

j=1 1/j = O(log∆). Therefore, the sum of all weights in the graph
is |DC | = O(log∆ · |S∗|). This completes the proof.

A similar idea can be applied in the case of the minimum t-spanner problem. Again, we need a
centralized polynomial-time approximation algorithm for the minimum t-spanner for edges of E(C) (for
a cluster C), while the spanner is allowed to use edges of E(Ĉ). This is an instance for the client-server t-
spanner problem, and for the case t = 2 it was devised in [21]. By plugging it in our distributed algorithm
for approximating spanners we obtain a distributed O(n1/k log n)-approximation algorithm with running
time exp{O(k)} for the directed and undirected 2-spanner problem. The latter algorithm only employs
polynomially-bounded local computations. To the best of our knowledge, there are no existing centralized
algorithms with a non-trivial approximation guarantee for the client-server t-spanner problem for t ≥ 3.
It is however likely that the LP-based approaches to the minimum t-spanner problem (such as [11, 18])
extend to this more general problem.
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