Skip to main content

Dimensions of Programming Knowledge

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9378))

Abstract

Nowadays, learning and teaching outcomes are defined predominantly by target competencies. In order to assess learning outcomes, properly defined and empirically validated competency models are required. For object-oriented programming, such models have not been brought forward up to now. Aiming to develop a competency structure and level model for this field, we have examined the structural knowledge of programming novices to derive its potential dimensions. The results suggest 6 dimensions. Additionally, we propose difficulty levels for two of these dimensions based on the SOLO taxonomy. The empirical validation of these dimensions and their levels is subject to further investigations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartholomew, D.J., Steele, F., Moustaki, I., Galbraith, J.I.: Analysis of Multivariate Social Science Data, 2nd edn. Chapman & Hall/CRC and CRC Press, Boca Raton (2008)

    Google Scholar 

  2. Bennedsen, J., Schulte, C.: A competence model for object-interaction in introductory programming. In: 18th Workshop of the Psychology of Programming Interest Group, vol. 18, pp. 215–229 (2006)

    Google Scholar 

  3. Bennedsen, J., Schulte, C.: Object interaction competence model v. 2.0. In: Learning and Teaching in Computing and Engineering, pp. 9–16. IEEE Press, Los Alamitos (2013)

    Google Scholar 

  4. Biggs, J.B., Collis, K.F.: Evaluating the quality of learning: The SOLO taxonomy; structure of the observed learning outcome. Educational Psychology Series. Acad. Pr., New York (1982)

    Google Scholar 

  5. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Physical Review E 70(6), 066111 (2004)

    Google Scholar 

  6. Dearholt, D.W., Schvaneveldt, R.W.: Properties of pathfinder netowrks. In: Schvaneveldt, R.W. (ed.) Pathfinder Associative Networks, pp. 1–30. Ablex Pub. Corp., Norwood (1990)

    Google Scholar 

  7. Derbentseva, N., Safayeni, F., Cañas, A.J.: Concept maps: Experiments on dynamic thinking. Journal of Research in Science Teaching 44(3), 448–465 (2007)

    Article  Google Scholar 

  8. Gouli, E.: Concept Mapping in Didactics of Informatics. Assessment as a Tool for Learning in Web-based and Adaptive Educational Environments. Ph.D. thesis, National and Kapodistrian University of Athens, Athen (2007)

    Google Scholar 

  9. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. The Morgan Kaufmann series in data management systems, 2nd edn. Elsevier/Morgan Kaufmann, Amsterdam (2010)

    Google Scholar 

  10. Hawkins, W., Hedberg, J.G.: Evaluating logo: Use of the solo taxonomy. Australian Journal of Educational Technology 2(2), 103–109 (1986)

    Google Scholar 

  11. Hubwieser, P.: Computer science education in secondary schools – the introduction of a new compulsory subject. Trans. Comput. Educ. 12(4), 16:1–16:41 (2012)

    Google Scholar 

  12. Keppens, J., Hay, D.B.: Concept map assessment for teaching computer programming. Computer Science Education 18(1), 31–42 (2008)

    Google Scholar 

  13. Klieme, E., Avenarius, H., Blum, W., Döbrich, P., Gruber, H., Prenzel, M., Reiss, K., Riquarts, K., Rost, J., Tenorth, H.E., Vollmer, H.J.: The Development of National Educational Standards: An Expertise. Bundesministerium für Bildungund & Forschung, Berlin (2004)

    Google Scholar 

  14. Klieme, E., Hartig, J., Rauch, D.: The concept of competence in educational contexts. In: Hartig, J., Klieme, E., Leutner, D. (eds.) Assessment of Competencies in Educational Contexts, pp. 3–22. Hogrefe & Huber Publishers, Toronto (2008)

    Google Scholar 

  15. Magenheim, J., Nelles, W., Rhode, T., Schaper, N.: Towards a methodical approach for an empirically proofed competency model. In: Hromkovič, J., Královič, R., Vahrenhold, J. (eds.) ISSEP 2010. LNCS, vol. 5941, pp. 124–135. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Misra, S., Akman, I.: Measuring complexity of object oriented programs. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2008, Part II. LNCS, vol. 5073, pp. 652–667. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Mühling, A.M.: Investigating Knowledge Structures in Computer Science Education. Ph.D. thesis, Technische Universität München, München (2014)

    Google Scholar 

  18. Neugebauer, J., Hubwieser, P., Magenheim, J., Ohrndorf, L., Schaper, N., Schubert, S.: Measuring student competences in german upper secondary computer science education. In: Gülbahar, Y., Karataş, E. (eds.) ISSEP 2014. LNCS, vol. 8730, pp. 100–111. Springer, Heidelberg (2014)

    Google Scholar 

  19. Novak, J.D.: Meaningful learning: the essential factor for conceptual change in limited or inappropriate propositional hierarchies leading to empowerment of learners. Science Education 86(4), 548–571 (2002)

    Google Scholar 

  20. Novak, J.D.: Learning, Creating, and Using Knowledge: Concept Maps as Facilitative Tools in Schools and Corporations, 2nd edn. Routledge, London (2010)

    Google Scholar 

  21. Novak, J.D., Cañas, A.J.: The theory underlying concept maps and how to construct and use them: Technical report IHMC cmaptools 2006–01 rev. 01–2008 (2008)

    Google Scholar 

  22. Novak, J.D., Cañas, A.J.: The universality and ubiquitousness of concept maps. In: Sánchez, J., Cañas, A.J., Novak, J.D. (eds.) Concept Maps: Making Learning Meaningful, vol. 1, pp. 1–13. Universidad de Chile, Chile (2010)

    Google Scholar 

  23. Novak, J.D., Musonda, D.: A twelve-year longitudinal study of science concept learning. American Educational Research Journal 28(1), 117–153 (1991)

    Google Scholar 

  24. OECD (ed.): PISA 2012 Results in Focus: What 15-year-olds know and what they can do with what they know. OECD Publishing, Paris (2013)

    Google Scholar 

  25. Ormerod, T.: Human cognition and programming. In: Hoc, J.M., Green, T., Samurcay, R., Gilmore, D.J. (eds.) Psychology of Prgramming. Computers and People, pp. 63–82. Academic Press, London (1990)

    Google Scholar 

  26. Rosas, S.R., Kane, M.: Quality and rigor of the concept mapping methodology: A pooled study analysis. Evaluation and Program Planning 35(2), 236–245 (2012)

    Google Scholar 

  27. Ruf, A., Berges, M., Hubwieser, P.: Types of assignments for novice programmers. In: Proceedings of the 8th Workshop in Primary and Secondary Computing Education, WiPSE 2013, pp. 43–44. ACM, New York (2013)

    Google Scholar 

  28. Ruiz-Primo, M.A., Shavelson, R.J.: Problems and issues in the use of concept maps in science assessment. Journal of Research in Science Teaching 33(6), 569–600 (1996)

    Google Scholar 

  29. Sanders, K., Boustedt, J., Eckerdal, A., McCartney, R., Moström, J.E., Thomas, L., Zander, C.: Student understanding of object-oriented programming as expressed in concept maps. ACM Inroads 40(1), 332–336 (2008)

    Google Scholar 

  30. Schvaneveldt, R.W., Durso, F.T., Dearholt, D.W.: Network structures in proximity data. The Psychology of Learning and Motivation 24, 249–284 (1989)

    Google Scholar 

  31. Seidel, T., Prenzel, M.: Assessment in large-scale studies. In: Hartig, J., Klieme, E., Leutner, D. (eds.) Assessment of Competencies in Educational Contexts, pp. 279–304. Hogrefe & Huber Publishers, Toronto (2008)

    Google Scholar 

  32. Shao, J., Wang, Y.: A new measure of software complexity based on cognitive weights. Canadian Journal of Electrical and Computer Engineering 28(2), 69–74 (2003)

    Google Scholar 

  33. Sousa, D.A.: How the Brain Learns: A Multimedia Kit for Professional Development, 3rd edn. Corwin Press, Thousand Oaks and Calif (2009)

    Google Scholar 

  34. Squire, L.R.: Memory and Brain. Oxford University Press, New York (1987)

    Google Scholar 

  35. Trumpower, D.L., Sharara, H., Goldsmith, T.E.: Specificity of structural assessment of knowledge. The Journal of Technology, Learning and Assessment 8(5) (2010)

    Google Scholar 

  36. Weinert, F.E.: Concept of competence: a conceptual clarification. In: Rychen, D.S., Salganik, L. (eds.) Defining and Selecting Key Competencies, pp. 45–65. Hogrefe and Huber, Seattle (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Mühling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Mühling, A., Hubwieser, P., Berges, M. (2015). Dimensions of Programming Knowledge. In: Brodnik, A., Vahrenhold, J. (eds) Informatics in Schools. Curricula, Competences, and Competitions. ISSEP 2015. Lecture Notes in Computer Science(), vol 9378. Springer, Cham. https://doi.org/10.1007/978-3-319-25396-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25396-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25395-4

  • Online ISBN: 978-3-319-25396-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics