Skip to main content

Residential Demand Response Algorithms: State-of-the-Art, Key Issues and Challenges

  • Conference paper
  • First Online:
Wireless and Satellite Systems (WiSATS 2015)

Abstract

Demand Response (DR) in residential sector is considered to play a key role in the smart grid framework because of its disproportionate amount of peak energy use and massive integration of distributed local renewable energy generation in conjunction with battery storage devices. In this paper, first a quick overview about residential demand response and its optimization model at single home and multi-home level is presented. Then a description of state-of-the-art optimization methods addressing different aspects of residential DR algorithms such as optimization of schedules for local RE based generation dispatch, battery storage utilization and appliances consumption by considering both cost and comfort, parameters uncertainty modeling, physical based dynamic consumption modeling of various appliances power consumption at single home and aggregated homes/community level are presented. The key issues along with their challenges and opportunities for residential demand response implementation and further research directions are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vardakas, J.S., Zorba, N., Verikoukis, C.V.: A survey on demand response programs in smart grids: pricing methods and optimization algorithms. IEEE Commun. Surv. Tutor. 17(1), 152–178 (2014)

    Article  Google Scholar 

  2. Barbato, A., Capone, A.: Optimization models and methods for demand-side management of residential users: a survey. Energies 7, 5787–5824 (2014)

    Article  Google Scholar 

  3. Hu, Q., Member, S., Li, F., Member, S.: Hardware design of smart home energy management system with dynamic price response. IEEE Trans. Smart Grid 4, 1878–1887 (2013)

    Article  Google Scholar 

  4. RELOAD Database Documentation and Evaluation and Use in NEMS. (2001)

    Google Scholar 

  5. Nair, A.G., Rajasekhar, B.: Demand response algorithm incorporating electricity market prices for residential energy management. In: Proceedings of 3rd International Workshop Software Engineering Challenges Smart Grid - SE4SG 2014, pp. 9–14 (2014)

    Google Scholar 

  6. Shao, S., Pipattanasomporn, M., Rahman, S.: Development of physical-based demand response-enabled residential load models. IEEE Trans. Power Syst. 28, 607–614 (2013)

    Article  Google Scholar 

  7. Hopkins, M.D., Pahwa, A., Easton, T.: Intelligent dispatch for distributed renewable resources. IEEE Trans. Smart Grid 3, 1047–1054 (2012)

    Article  Google Scholar 

  8. Yu, Z., Mclaughlin, L., Jia, L., Murphy-hoye, M.C., Pratt, A., Tong, L.: Modeling and stochastic control for home energy management. Power Energy Soc. Gen. Meet. 2012, 1–9 (2012)

    Google Scholar 

  9. Chen, Z., Wu, L., Fu, Y.: Real-time price-based demand response management for residential appliances via stochastic optimization and robust optimization. IEEE Trans. Smart Grid 3, 1822–1831 (2012)

    Article  Google Scholar 

  10. Fernandes, F., Sousa, T., Silva, M., Morais, H., Vale, Z., Faria, P.: Genetic algorithm methodology applied to intelligent house control. In: 2011 IEEE Symposium on Computational Intelligence Applications In Smart Grid (CIASG), pp. 1–8. IEEE (2011)

    Google Scholar 

  11. Sou, K.C., Weimer, J., Sandberg, H., Johansson, K.H.: Scheduling smart home appliances using mixed integer linear programming. In: IEEE Conference on Decision and Control and European Control Conference, pp. 5144–5149. IEEE (2011)

    Google Scholar 

  12. Tsui, K.M., Chan, S.C.: Demand response optimization for smart home scheduling under real-time pricing. IEEE Trans. Smart Grid 3, 1812–1821 (2012)

    Article  Google Scholar 

  13. Kumaraguruparan, N., Sivaramakrishnan, H., Sapatnekar, S.S.: Residential task scheduling under dynamic pricing using the multiple knapsack method. In: 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), pp. 1–6. IEEE (2012)

    Google Scholar 

  14. Corno, F., Razzak, F.: Intelligent energy optimization for user intelligible goals in smart home environments. IEEE Trans. Smart Grid 3, 2128–2135 (2012)

    Article  Google Scholar 

  15. Ozturk, Y., Senthilkumar, D., Kumar, S., Lee, G.: An intelligent home energy management system to improve demand response. IEEE Trans. Smart Grid 4, 694–701 (2013)

    Article  Google Scholar 

  16. Mohsenian-Rad, A.-H., Leon-Garcia, A.: Optimal residential load control with rrice prediction in real-time electricity pricing environments. IEEE Trans. Smart Grid 1, 120–133 (2010)

    Article  Google Scholar 

  17. Chen, C., Wang, J., Heo, Y., Kishore, S.: MPC-based appliance scheduling for residential building energy management controller. IEEE Trans. Smart Grid 4, 1401–1410 (2013)

    Article  Google Scholar 

  18. Yoon, J.H., Baldick, R., Novoselac, A.: Dynamic demand response controller based on real-time retail price for residential buildings. IEEE Trans. Smart Grid 5, 121–129 (2014)

    Article  Google Scholar 

  19. Zuniga, K.V., Castilla, I., Aguilar, R.M.: Using fuzzy logic to model the behavior of residential electrical utility customers. Appl. Energy 115, 384–393 (2014)

    Article  Google Scholar 

  20. Edwards, R.E., New, J., Parker, L.E.: Predicting future hourly residential electrical consumption: a machine learning case study. Energy Build. 49, 591–603 (2012)

    Article  Google Scholar 

  21. Zhao, Z., Lee, W.C., Shin, Y., Song, K.: An optimal power scheduling method for demand response in home energy management system. IEEE Trans. Smart Grid 4, 1391–1400 (2013)

    Article  Google Scholar 

  22. Boynuegri, A.R., Yagcitekin, B., Baysal, M., Karakas, A., Uzunoglu, M.: Energy management algorithm for smart home with renewable energy sources. In: 4th International Conference on Power Engineering, Energy and Electrical Drives, pp. 1753–1758. IEEE (2013)

    Google Scholar 

  23. Hubert, T., Grijalva, S.: Modeling for residential electricity optimization in dynamic pricing environments. IEEE Trans. Smart Grid 3, 2224–2231 (2012)

    Article  Google Scholar 

  24. Ivanescu, L., Maier, M.: Real-time household load priority scheduling algorithm based on prediction of renewable source availability. IEEE Trans. Consum. Electron. 58, 318–326 (2012)

    Article  Google Scholar 

  25. Pipattanasomporn, M., Kuzlu, M., Rahman, S.: An algorithm for intelligent home energy management and demand response analysis. IEEE Trans. Smart Grid 3, 2166–2173 (2012)

    Article  Google Scholar 

  26. Kuzlu, M., Pipattanasomporn, M., Rahman, S.: Hardware demonstration of a home energy management system for demand response applications. IEEE Trans. Smart Grid 3, 1704–1711 (2012)

    Article  Google Scholar 

  27. Anvari-Moghaddam, A., Monsef, H., Rahimi-Kian, A.: Optimal smart home energy management considering energy saving and a comfortable lifestyle. IEEE Trans. Smart Grid 6, 324–332 (2015)

    Article  Google Scholar 

  28. Anvari-Moghaddam, A., Monsef, H., Rahimi-Kian, A.: Cost-effective and comfort-aware residential energy management under different pricing schemes and weather conditions. Energy Build. 86, 782–793 (2014)

    Article  Google Scholar 

  29. Jacomino, M., Le, M.H.: Robust energy planning in buildings with energy and comfort costs. 4OR 10, 81–103 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhou, S., Wu, Z., Li, J., Zhang, X.: Real-time energy control approach for smart home energy management system. Electr. Power Compon. Syst. 42, 315–326 (2014)

    Article  Google Scholar 

  31. Mohsenian-Rad, A.-H., Wong, V.W.S., Jatskevich, J., Schober, R.: Optimal and autonomous incentive-based energy consumption scheduling algorithm for smart grid. In: 2010 Innovative Smart Grid Technologies (ISGT), pp. 1–6. IEEE (2010)

    Google Scholar 

  32. Li, D., Jayaweera, S.K., Naseri, A.: Auctioning game based demand response scheduling in smart grid. In: 2011 IEEE Online Conference on Green Communications, pp. 58–63. IEEE (2011)

    Google Scholar 

  33. Zhu, Z., Tang, J., Lambotharan, S., Chin, W.H., Fan, Z.: An integer linear programming and game theory based optimization for demand-side management in smart grid. In: 2011 IEEE GLOBECOM Work. (GC Wkshps), pp. 1205–1210 (2011)

    Google Scholar 

  34. Zheng, D., Ge, W., Zhang, J.: Distributed opportunistic scheduling for ad hoc networks with random access: an optimal stopping approach. IEEE Trans. Inf. Theory 55, 205–222 (2009)

    Article  MathSciNet  Google Scholar 

  35. Conejo, A.J., Morales, J.M., Baringo, L.: Real-time demand response model. IEEE Trans. Smart Grid 1, 236–242 (2010)

    Article  Google Scholar 

  36. Yi, P., Dong, X., Iwayemi, A., Zhou, C., Li, S.: Real-time opportunistic scheduling for residential demand response. IEEE Trans. Smart Grid 4, 227–234 (2013)

    Article  Google Scholar 

  37. Giannakis, G.B.: Scalable and robust demand response with mixed-integer constraints. IEEE Trans. Smart Grid 4, 2089–2099 (2013)

    Article  Google Scholar 

  38. Guo, Y., Pan, M., Fang, Y., Khargonekar, P.P.: Decentralized coordination of energy utilization for residential households in the smart grid. IEEE Trans. Smart Grid 4, 1341–1350 (2013)

    Article  Google Scholar 

  39. Samadi, P., Schober, R., Wong, V.W.S.: Optimal energy consumption scheduling using mechanism design for the future smart grid. In: 2011 IEEE International Conference Smart Grid Communication, pp. 369–374 (2011)

    Google Scholar 

  40. Kishore, S., Snyder, L.V.: Control mechanisms for residential electricity demand in smartgrids. In: 2010 First IEEE International Conference Smart Grid Communication, pp. 443–448 (2010)

    Google Scholar 

  41. Pedrasa, M.A.A., Spooner, T.D., MacGill, I.F.: Coordinated scheduling of residential distributed energy resources to optimize smart home energy services. IEEE Trans. Smart Grid 1, 134–143 (2010)

    Article  Google Scholar 

  42. Guo, Y., Pan, M., Fang, Y., Khargonekar, P.P.: Coordinated energy scheduling for residential households in the smart grid. In: 2012 IEEE Third International Conference Smart Grid Communication, pp. 121–126 (2012)

    Google Scholar 

  43. Safdarian, A., Member, S., Fotuhi-firuzabad, M.: A distributed algorithm for managing residential demand response in smart grids. IEEE Trans. Ind. Inform. 10, 2385–2393 (2014)

    Article  Google Scholar 

  44. Tushar, W., Chai, B., Yuen, C., Smith, D., Wood, K., Yang, Z., Poor, V.: Three-party energy management with distributed energy resources in smart grid. IEEE Trans. Ind. Electron. 62, 2487–2498 (2014)

    Article  Google Scholar 

  45. Saeedi, A.: Real time demand response using renewable resources and energy storage in smart consumers. In: 22nd International Conference on Electricity Distribution Stockholm, pp. 10–13 (2013)

    Google Scholar 

  46. O’Neill, D., Levorato, M., Goldsmith, A., Mitra, U.: residential demand response using reinforcement learning. In: 2010 First IEEE International Conference on Smart Grid Communications, pp. 409–414. IEEE (2010)

    Google Scholar 

  47. Fan, Z.: A distributed demand response algorithm and its application to PHEV charging in smart grids. IEEE Trans. Smart Grid 3, 1280–1290 (2012)

    Article  Google Scholar 

  48. Kim, B.-G., Ren, S., van der Schaar, M., Lee, J.-W.: Bidirectional energy trading for residential load scheduling and electric vehicles. In: 2013 Proceedings of IEEE INFOCOM, pp. 595–599 (2013)

    Google Scholar 

  49. Wijaya, T.K., Banerjee, D., Ganu, T., Chakraborty, D., Battacharya, S., Papaioannou, T., Seetharam, D.P., Aberer, K.: DRSim: a cyber physical simulator for demand response systems. In: 2013 IEEE International Conference on Smart Grid Communications, SmartGridComm 2013, pp. 217–222 (2013)

    Google Scholar 

  50. Morais, H., Kádár, P., Faria, P., Vale, Z.A., Khodr, H.M.: Optimal scheduling of a renewable micro-grid in an isolated load area using mixed-integer linear programming. Renew. Energy 35, 151–156 (2010)

    Article  Google Scholar 

  51. Thevampalayam, A., Sathiakumar, S.: Peak demand management in a smart community using coordination algorithms. Int. J. Smart Home 7, 371–390 (2013)

    Google Scholar 

  52. Aghaei, J., Alizadeh, M.-I.: Demand response in smart electricity grids equipped with renewable energy sources: a review. Renew. Sustain. Energy Rev. 18, 64–72 (2013)

    Article  Google Scholar 

  53. Barbato, A., Carpentieri, G.: Model and algorithms for the real time management of residential electricity demand. In: 2012 IEEE International Energy Conference and Exhibition (ENERGYCON), pp. 701–706. IEEE (2012)

    Google Scholar 

  54. Faria, P., Soares, J., Vale, Z., Morais, H., Sousa, T.: Modified particle swarm optimization applied to integrated demand response and DG resources scheduling. In: 2014 IEEE PES T&D Conference Exposition, p. 1 (2014)

    Google Scholar 

  55. Bellifemine, F., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with JADE. John Wiley & Sons Ltd, Chichester (2007)

    Book  Google Scholar 

  56. GridLab-D software. http://www.gridlabd.org/

  57. Asare-Bediako, B., Kling, W.L., Ribeiro, P.F.: Integrated agent-based home energy management system for smart grids applications. IEEE PES ISGT Eur. 2013, 1–5 (2013)

    Google Scholar 

  58. Khan, A.A., Razzaq, S., Khan, A., Khursheed, F.: HEMSs and enabled demand response in electricity market: an overview. Renew. Sustain. Energy Rev. 42, 773–785 (2015)

    Article  Google Scholar 

  59. Zhang, X., Huang, G.H., Chan, C.W., Liu, Z., Lin, Q.: A fuzzy-robust stochastic multiobjective programming approach for petroleum waste management planning. Appl. Math. Model. 34, 2778–2788 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  60. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point based non-dominated sorting approach, part I: solving problems with box constraints. IEEExplore IEEE Org. 18, 577–601 (2013)

    Google Scholar 

  61. Spiess, J., Joens, Y.T., Dragnea, R., Spencer, P.: using big data to improve customer experience and business performance. Bell Labs Tech. J. 18, 3–17 (2014)

    Article  Google Scholar 

  62. Saad, W., Han, Z., Poor, H.V., BaÅŸar, T.: Game theoretic methods for the smart grid. IEEE Signal Process. Mag. Spec. Issue Signal Process. Tech., Smart Grid (2012)

    Google Scholar 

  63. Zhao, J., Kucuksari, S., Mazhari, E., Son, Y.-J.: Integrated analysis of high-penetration PV and PHEV with energy storage and demand response. Appl. Energy 112, 35–51 (2013)

    Article  Google Scholar 

  64. Shao, S., Pipattanasomporn, M., Rahman, S.: Development of physical–based demand response–enabled residential load models. IEEE Trans. Power Syst. 28, 607—614 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naran M. Pindoriya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Institute for Computer Sciences, Social informatics and Telecommunication Engineering

About this paper

Cite this paper

Batchu, R., Pindoriya, N.M. (2015). Residential Demand Response Algorithms: State-of-the-Art, Key Issues and Challenges. In: Pillai, P., Hu, Y., Otung, I., Giambene, G. (eds) Wireless and Satellite Systems. WiSATS 2015. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 154. Springer, Cham. https://doi.org/10.1007/978-3-319-25479-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25479-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25478-4

  • Online ISBN: 978-3-319-25479-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics