
1

Network Coding Over SATCOM: Lessons
Learned

Jason Cloud, Muriel Médard

Massachusetts Institute of Technology, Cambridge, MA 02139, USA,
jcloud@mit.edu, medard@mit.edu

Summary. Satellite networks provide unique challenges that can restrict users’
quality of service. For example, high packet erasure rates and large latencies can
cause significant disruptions to applications such as video streaming or voice-over-
IP. Network coding is one promising technique that has been shown to help improve
performance, especially in these environments. However, implementing any form of
network code can be challenging. This paper will use an example of a generation-
based network code and a sliding-window network code to help highlight the benefits
and drawbacks of using one over the other. In-order packet delivery delay, as well
as network efficiency, will be used as metrics to help differentiate between the two
approaches. Furthermore, lessoned learned during the course of our research will
be provided in an attempt to help the reader understand when and where network
coding provides its benefits.

Key words: Intra-Session Network Coding, Implementation Concerns, Satellite
Networks, In-Order Delivery Delay, Lessons Learned

1.1 Introduction

Space-based packet data networks are becoming a necessity in everyday life,
especially when considering world-wide Internet connectivity. It is estimated
that over half of the world’s population still does not have access to broad-
band Internet due to a variety of factors including a lack of infrastructure
and low affordability, especially in rural areas and developing countries [1].
To overcome these barriers, a number of companies such as SpaceX, Google,
and FaceBook have recently launched projects that incorporate some form of
space-based or high altitude data packet network. However, significant chal-
lenges such as large latencies, high packet erasure rates, and legacy protocols
(e.g., TCP) can seriously degrade performance and inhibit the user’s quality
of service. One promising approach to help in these challenged environments
is network coding. This paper will investigate some of the gains that net-

ar
X

iv
:1

50
6.

06
15

4v
1

 [
cs

.N
I]

 1
9

Ju
n

20
15

2 Cloud et al.

work coding provides, as well as outline some of the lessons learned from our
research.

Space-based networks have a number of unique characteristics that chal-
lenge high quality of service applications. Large packet latencies and relatively
high packet erasure rates can negatively impact existing protocols. Fading due
to scintillation or other atmospheric effects are more pronounced than in ter-
restrial networks. The high cost in terms of both deployment and bandwidth
make efficient communication a requirement. Finally, the broadcast nature of
satellite networks create unique challenges that are non-existent in terrestrial
networks. While existing physical and data link layer techniques help improve
performance in these conditions, we will show that coding above these layers
can also provide performance gains.

Various forms of network coding can be used with great benefits in space-
based networks. In general, these can be characterized into two broad cate-
gories: inter-session network coding, and intra-session network coding. Figure
1.1 provides a simple example of both. Inter-session network coding combines
information flows together to improve the network capacity. A summary of
the various methods that can be used for satellite communications is provided
by Vieira et al. [2]. Intra-session network coding, on the other hand, is used
to add redundancy into a single information flow. Adding this redundancy
has shown that file transfer times can be decreased for both multicast [3] and
unicast [4, 5] sessions.

Fig. 1.1. Examples of inter-session (a) and intra-session (b) network coding. This
paper focuses completely on intra-session network coding.

While there are merits to both techniques, our focus will be on intra-session
network coding techniques that help achieve the following goals: provide con-
sistent performance for protocols not designed for space systems; decrease
delay for real-time or near real-time data streams; efficiently use any network
resources that are available; and reduce packet erasure rates due to correlated
losses. A generation-based approach [5, 6] and a sliding-window approach [7]
will be used to help highlight the potential gains, design choices, and imple-
mentation decisions that need to be taken into account. Several performance

1 Network Coding Over SATCOM: Lessons Learned 3

metrics including the in-order delivery delay, efficiency, and upper layer packet
erasure rates will be used to help differentiate between the approaches.

The remainder of the paper is organized as follows. Section 1.2 will provide
details on the coding algorithms considered. Section 1.3 provides information
about the assumed network model and evaluates the performance of these
coding algorithms when used for both reliable and unreliable data streams.
Section 1.4 discusses various considerations that need to be taken into account
when implementing network coding into real systems. Finally, conclusions are
summarized in Section 1.5.

1.2 Network Coding over Packet Streams

Network coding has been shown to dramatically improve network perfor-
mance; however, implementing it can be a challenge. In order to develop
practical coding techniques, random linear network coding (RLNC) [8] has
been used by a large number of coding schemes because of its simplicity and
effectiveness in most network scenarios. While both practical inter and intra-
session techniques have been proposed, we are primarily interested in the latter
due to the inherent limitations of existing satellite communication networks
(i.e., typical satellite communication networks employ a bent-pipe architec-
ture or have very limited on-orbit processing power). Assume that we want
to send a file consisting of information packets pi, i ∈ P, where P is the set
of information packet indexes (i.e., the file has size |P| packets). Within these
intra-session packet streams, RLNC can be used to add redundancy by treat-
ing each pi as a vector in some finite field F2q . Random coefficients αij ∈ F2q

are chosen, and linear combinations of the form ci =
∑
j∈P αijpj are gen-

erated. These coded packets are then inserted at strategic locations to help
overcome packet losses in lossy networks.

Management of the coding windows for these intra-session network coding
schemes generally fall within the following two categories: fixed-length/generation-
based schemes, or variable/sliding window based schemes. Fixed-length or
generation-based schemes first partition information packets into blocks, or
generations, Gi =

{
p(i−1)k+1, . . . ,pmin(ik,|P|)

}
for i = [1, d|P|/ke] and gener-

ation size k ≥ 1. Coded packets are then produced based on the informa-
tion packets contained within each individual generation. As a result, coded
packets consisting of linear combinations of packets in generation Gi cannot
be used to help decode generation Gj , i 6= j. Alternatively, sliding window
schemes do not impose this restriction. Instead, information packets are dy-
namically included or excluded from linear combinations based on various
performance requirements.

Examples of both schemes are provided in Figure 1.2. Columns within the
figure represent information packets that need to be sent, rows represent the
time when a specific packet is transmitted, and the elements of the matrix
indicate the composition of the transmitted packet. For example, packet p1 is

4 Cloud et al.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

T
im

e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

p5 − p13

p4 − p16

Information Packets (pi)Information Packets (pi)

(a) Generation-Based Code (b) Sliding-Window Code

p14

p15

p16

p1 p1

p2

p3

p4

p2

p3

Fig. 1.2. Examples of generation-based and sliding-window network coding
schemes. It is important to note that the generation-based coding scheme requires
feedback and retransmissions to ensure reliable delivery while the sliding-window
coding scheme only requires feedback to help slide the coding window.

transmitted in time-slot 1, while coded packet c5 =
∑4
i=1 αipi is transmitted

in time-slot 5. The double-arrows on the right of each matrix indicate when an
information packet is delivered, in-order, to an upper-layer application, and
the red crosses mark lost packets.

Each approach has its benefits and drawbacks. It is easy from a coding per-
spective to implement the generation-based coding scheme, and these schemes
achieve capacity when k →∞. However, partitioning packets into generations
adds artificial restrictions on the code’s capability to recover from losses, and
may not be as efficient as sliding window schemes. Furthermore, generation-
based schemes can increase the complexity of the feedback process, especially
for reliable data transfers. Sliding-window schemes, on the other hand, can
outperform generation-based schemes in terms of efficiency and delay. Un-
fortunately, coding window management can be difficult and these schemes
typically cannot guarantee a decoding event occurs before the termination of
a session. In addition, the size of the coding window maybe much larger than
the generation-based schemes leading to increased decoding complexity and
communication overhead.

The examples shown in Figure 1.2 will be used throughout the remainder
of this paper in order to provide some intuition into the trade-offs of using
one type of coding approach over the other. Algorithm 1 describes the packet
generation policy for the generation-based scheme shown in Figure 1.2(a),
while Algorithm 2 describes the policy for the sliding-window coding scheme

1 Network Coding Over SATCOM: Lessons Learned 5

shown in Figure 1.2(b). Each algorithm uses a systematic approach where
information packets pi, i ∈ P, are first sent uncoded and redundancy is added
to help correct packet erasures by inserting coded packets into the packet
stream. We will assume that the amount of redundancy added to the packet
stream is defined by R ≥ 1 (e.g., the code rate is c = 1/R).

Algorithm 1: Generation-based
coding algorithm [6]

for each j ∈
[
1, d |P|

k
e
]
do

wl ← (j − 1) k + 1
wu ← min (jk, |P|)
for each i ∈ [wl, wu] do

Transmit pi

for each m ∈ [1, k (R− 1)] do
Transmit
cj,m =

∑wu
i=wl

αi,j,mpi

Algorithm 2: Sliding window
coding algorithm [7]

Initialize k = 1, u = 1, and
n = R

R−1

for each k ∈ P do
if u < n then

Transmit packet pk

u← u+ 1

else

Transmit ck =
∑k

i=1 αk,ipi

u← 1

It is important to note that feedback is not addressed in these algorithms.
In general, feedback is necessary to accurately estimate the network packet
erasure rate. Furthermore, feedback maybe required to ensure reliable deliv-
ery in some instances. For the generation-based scheme, the server may need
to know the number of received degrees of freedom from each transmitted
generation. This feedback can be used by the server to retransmit additional
degrees of freedom if a particular generation cannot be decoded. Details are
provided in [6]. In the sliding window scheme, knowledge of the number of
received degrees of freedom may not be necessary [7]; but feedback can be
used to help slide the coding window or facilitate decode events if there are
delay constraints.

1.3 Network Coding Performance for Packet Streams

As we mentioned in the previous section, we will compare the performance
of two types of intra-session network coding schemes (see Algorithms 1 and
2) for both a reliable data stream (e.g., a TCP session) and an unreliable
data stream (e.g., a UDP session). The metrics used to evaluate both coding
schemes will depend slightly on the type of data stream; however, the following
definitions will be used throughout this section.

Definition 1. The in-order delivery delay D is the difference between the time
an information packet is first transmitted and the time that the same packet
is delivered, in-order.

6 Cloud et al.

Definition 2. The efficiency η of a coding scheme is defined as the total num-
ber of degrees of freedom (i.e., the total number of information packets) that
need to transfered divided by the actual number of packets (both uncoded and
coded) received by the sink.

Both of these metrics are particularly important for satellite communica-
tion systems. In the case of reliable data streams, large propagation delays
can compound the effects of packet losses by creating considerable backlogs
and in-order delivery delays. For large file transfers or non-time sensitive ap-
plications, this may not be an issue. However, a large number of time-sensitive
applications (e.g., non-real-time video streaming) use TCP. Lost packets can
result in very large resequencing delays that can seriously degrade the quality
of user experience. Network coding is particularly useful in these situations
to help recover from packet losses without excessive retransmissions. Fur-
thermore, bandwidth is expensive for these systems. Any coding scheme that
promises to provide a specified quality of service needs to be efficient.

The remainder of this section will provide an outline of the network model
and examine the performance of the two coding schemes presented above. The
two metrics defined earlier will be used in addition to any additional metrics
that are important for the specific type of data stream.

1.3.1 Network Model

We will assume a time-slotted model where each time-slot has a duration ts
equal to the time it takes to transmit a single packet. The network propaga-
tion delays will be taken into account by defining tp = RTT/2 where RTT is
the round-trip time. As a reminder, we will assume that the amount of redun-
dancy added (R ≥ 1/1−ε given that ε is the packet erasure probability) defines
the code rate c = 1/R. For the generation-based scheme, c is equal to the gen-
eration size divided by the number of degrees of freedom transmitted for that
generation (i.e., c = k/Rk where k is the generation size). In the case of the
sliding window scheme, c is dependent on the number of consecutively trans-
mitted information packets (i.e., c = n−1/n where n = R/R−1 is the number of
packets between each inserted coded packet).

The satellite channel will be modeled using a simple Gilbert channel with
transition probability matrix

P =

[
1− γ γ
β 1− β

]
(1.1)

where γ is the probability of transitioning from the “good” state (which has
a packet erasure rate equal to zero) to the “bad” state (which has a packet
erasure rate equal to one) and β is the probability of transitioning from the
“bad” state to the “good” one. The steady-state distribution of the “bad” state
πB = γ/γ+β and the expected number of packet erasures in a row E [L] = 1/β

1 Network Coding Over SATCOM: Lessons Learned 7

will be used as the primary parameters for determining the transition proba-
bilities of the channel model. It should be noted that this model does not nec-
essarily reflect the effects of fading due to scintillation or rain, which generally
have a duration equal to hundreds of milliseconds to hours. Instead, the model
is intended to help model the cases where the SNR is such that the perfor-
mance of the underlying physical layer code is degraded; but the situation does
not warrant the need to change to a more robust modulation/coding scheme.

Lesson Learned: Network coding is not a cure-all solution. It cannot mitigate
the effects of deep fades with very large durations.

1.3.2 Reliable Data Stream Performance

Reliable data delivery is a fundamental requirement for some applications.
This section will focus on the performance of both a generation-based and a
sliding-window coding scheme by looking at the following metrics: the ability
of the scheme to provide 100% reliability, the in-order delivery delay, and
the coding schemes’ efficiency. Furthermore, the performance of an idealized
version of selective-repeat ARQ will be provided to highlight the gains network
coding can provide in satellite communications systems.

Before proceeding, feedback maybe necessary to ensure reliability. With
regard to the two example coding schemes presented here, the generation-
based scheme requires feedback while the sliding-window scheme does not.
Algorithm 1 can be modified to include this feedback with only a few changes.
Assume that delayed feedback contains information regarding the success or
failure of a specific generation being decoded by the client. If a decoding failure
occurs, the server can then produce and send additional coded packets from
that generation to overcome the failure. On the other hand, the construction
of the sliding-window scheme outlined in Algorithm 2 has been shown in [7]
to provide a finite in-order delivery delay with probability one. Therefore, our
results will assume that no feedback is available when using this scheme even
though feedback may actually increase the algorithm’s performance.

A detailed analysis of the in-order delivery delay and the efficiency for
the generation-based scheme (E [DG] and ηG respectively) is provided in [6],
while the same is provided in [7] for the sliding-window scheme (E [DS] and ηS
respectively). The analysis of the generation-based scheme shows that E [DG]
and the delay’s variance σ2

G are dependent on both the generation size k and
the amount of added redundancy R. For a given R that is large enough and
independent and identically distributed (i.i.d.) packet losses, E [DG] is convex
with respect to k and has a global minimum. Determining this minimum,
E [D∗G] = arg mink E [DG], is difficult due to the lack of a closed form expres-
sion; however it can be found numerically. The following results will only show
E [D∗G] for a given R since the behavior of E [DG] and σ2

G as a function of k is
provided in [6]. The analysis of the sliding-window scheme’s in-order delivery

8 Cloud et al.

delay shows that E [DS] is only dependent on R since there is no concept of
generation or block size. Therefore, a simple renewal process can be defined
and a lower-bound for the expected in-order delay can be derived. While the
efficiency of this scheme is not explicitly given in [7], it can easily be shown
that the efficiency is ηS = 1/R(1−ε) for i.i.d. packet losses that occur with
probability ε. Regardless of this existing analysis, the in-order delivery delay
and efficiency used below for both the generation-based and sliding-window
coding schemes are found using simulations developed in Matlab.

Figures 1.3 and 1.4 show E [D] and η respectively for both coding schemes
as a function of R. Furthermore, each sub-figure shows the impact correlated
losses have on the schemes’ performance where E [L] is the expected number
of packet losses that occur in a row. For uncorrelated losses (e.g., E [L] = 1),
both coding schemes provide an in-order delivery delay that is superior to
the idealized version of selective repeat ARQ. This performance gain becomes
less pronounced as E [L] increases. In fact, the sliding-window coding scheme
performs worse than ARQ for small R when E [L] = 8. The cause of this is due
to the lack of feedback, which can help overcome the large number of erasures
if it is implemented correctly. Regardless, Figure 1.3 shows that coding can
help in the cases where losses are correlated; although the gains come with a
cost in terms of efficiency.

Lesson Learned: While feedback is necessary for estimating the chan-
nel/network state, it also aids in decreasing in-order delivery delay.

Redundancy (R)
1.05 1.1 1.15 1.2 1.25 1.3

In
-O

rd
e
r

D
e
liv

e
ry

 D
e
la

y
 (

m
s
)

150

200

250

300

350

400

450

E[L] = 1

ARQ
Generation-Based Coding Window
Sliding Window Coding Window

Redundancy (R)
1.05 1.1 1.15 1.2 1.25 1.3

10
2

10
3

E[L] = 4

Redundancy (R)
1.05 1.1 1.15 1.2 1.25 1.3

10
2

10
3

E[L] = 8

Fig. 1.3. In-order packet delay (E [D]) as a function of the redundancy (R) where
RTT = 200 ms, ts = 1.2 ms, and πB = 0.05.

Decreasing E [D] results in decreased η, which can be observed in Figure
1.4. The figure shows that the sliding-window coding scheme is more efficient
than the generation-based scheme. There are two major contributors to this
behavior. First, code construction has a major impact on efficiency. Since
coding occurs over more information packets in the sliding-window scheme,
coded packets can help recover from packet erasures that occur over a larger

1 Network Coding Over SATCOM: Lessons Learned 9

Redundancy (R)
1.05 1.1 1.15 1.2 1.25 1.3

E
ff
ic

ie
n
c
y

0.8

0.85

0.9

0.95

1

E[L] = 1

ARQ
Generation-Based Coding Window
Sliding Window Coding Window

Redundancy (R)
1.05 1.1 1.15 1.2 1.25 1.3

0.8

0.85

0.9

0.95

1

E[L] = 4

Redundancy (R)
1.05 1.1 1.15 1.2 1.25 1.3

0.8

0.85

0.9

0.95

1

E[L] = 8

Fig. 1.4. Efficiency (η) as a function of the redundancy (R) where RTT = 200 ms,
ts = 1.2 ms, and πB = 0.05.

span of time (i.e., multiple generations if we compare it with the generation-
based scheme). Second, the decrease in the generation-based scheme’s effi-
ciency, as well as the non-decreasing behavior of ηG, for E [L] > 1, is an in-
dication that retransmissions are necessary to provide reliability. In fact, the
generation-based scheme almost always requires retransmissions to be made
when E [L] = 8. This behavior helps illustrate that artificially restricting the
coding window’s size can have negative impacts and may not be the appro-
priate strategy in certain circumstances.

Lesson Learned: Generation-based coding schemes perform poorly when
packet losses are correlated due to the limited number of packets that are
used to form a coded packet.

1.3.3 Unreliable Data Stream Performance

Data streams such as real-time voice and video do not necessarily require 100%
reliability. However, decreasing the underlying packet erasure rates may still
drastically improve upper layer quality of service. Recent work in this area has
shown that network coding is one tool that can help improve performance [9,
10]. This section will compare both the generation-based and sliding-window
coding schemes with respect to the upper-layer packet erasure probabilities
and the expected in-order delivery delays.

The generation-based coding scheme shown in Algorithm 1, where feed-
back is only necessary to identify the packet erasure rate, is ideally suited to
the case where there is a delay constraint and packet delivery is not guar-
anteed. Packets within each generation are delivered in-order until the first
packet loss is encountered. Once the entire generation has been received, the
client attempts to decode it. If the generation cannot be decoded, only the
successfully received information packets are delivered. If the generation can
be decoded, every information packet contained in the generation is delivered
in-order.

10 Cloud et al.

Modifying the sliding-window coding scheme shown in Algorithm 2 for
unreliable data streams is somewhat difficult. If a delay constraint exists,
the coding window cannot be arbitrary changed to accommodate these con-
straints. For example, assume that a lost information packet pi is no longer
necessary due to its delivery time exceeding some specified value. One ap-
proach would be to move the left side of the coding window to the right
so that pi is no longer used in the generation of future coded packets (i.e.,

cj =
∑j
k=i+1 αj,kpk). In order for these new coded packets to be useful, the

decoder must discard any coded packet containing pi that it has already re-
ceived. Not only does this decrease the efficiency of the coding scheme, but
it also potentially increases the delay for subsequent packets pj , i < j. As a
result, we will assume that Algorithm 2 is left unchanged in this scenario.

Lesson Learned: Great care must be taken when modifying a sliding-window
coding schemes’ coding window when trying to meet a delay constraint. Not
doing so properly can lead to decreased efficiency and increased in-order de-
livery delay for subsequent packets.

Figures 1.5 and 1.6 show the expected upper-layer packet erasure rate
(PER) and expected in-order delivery delay E [D] respectively for both the
generation-based (GB) and sliding-window (SW) coding schemes. Three val-
ues of the expected number of packet losses in a row E [L] and two levels of
efficiency η (indicated by the values shown in parentheses) are provided. Due
to the sliding-window coding scheme’s construction, the PER and E [DS] are
constant with respect to k.

These figures illustrate some of the trade-offs that need to be taken into
account when selecting the appropriate code. First, the larger the generation
size in the generation-based scheme, the better the error performance. This is
expected since you are essentially averaging losses over more packets. However,
the cost is increased latency. Second, correlated losses can have a significant
impact on the performance of the generation-based code. This is a result
of partitioning information packets into generations, which places artificial
constraints the ability of the code to recover from packet losses. The sliding-
window scheme has no such constraints. On the other hand, the redundancy
inserted into the packet stream must be enough to ensure that any delay
constraints are satisfied. For example, Figure 1.6 shows that E [DS] and σS
can be very large if your goal is to be highly efficient (e.g., ηS ≈ 0.97). In
order to match the delay of the generation-based code, a significant amount
of redundancy must be added to the packet stream.

Lesson Learned: Decreasing the efficiency of sliding-window coding schemes
is necessary to outperform generation-based schemes in terms of in-order de-
livery delay.

1 Network Coding Over SATCOM: Lessons Learned 11

Generation Size (k)
50 100 150

P
a
c
k
e
t
E

ra
s
u
re

 R
a
te

 (
P

E
R

)

0

0.01

0.02

0.03

0.04

0.05

E[L] = 1

Generation Size (k)
50 100 150

0

0.01

0.02

0.03

0.04

0.05

E[L] = 4

Generation Size (k)
50 100 150

0

0.01

0.02

0.03

0.04

0.05

E[L] = 8

GB (0.97)
GB (0.83)
SW (0.97, 0.83)
Underlying Channel PER

Fig. 1.5. Upper layer packet erasure rate (PER) as a function of the generation-
based coding scheme’s generation size (k) where RTT = 200 ms, ts = 1.2 ms, and
πB = 0.05. The values shown within the parentheses for each item in the legend
indicate the efficiency η.

Generation Size (k)
50 100 150

In
-O

rd
e

r
D

e
liv

e
ry

 D
e

la
y
 (

m
s
)

150

200

250

300

350

400

450

E[L] = 1

Generation Size (k)
50 100 150

10
2

10
3

E[L] = 4

Generation Size (k)
50 100 150

10
2

10
3

E[L] = 8

GB (0.97)
GB (0.83)
SW (0.97)
SW (0.83)

Fig. 1.6. In-order delivery delay E [D] as a function of the generation-based coding
scheme’s generation size (k) where RTT = 200 ms, ts = 1.2 ms, and πB = 0.05.
The error bars show two standard deviations above and below the mean. The values
shown within the parentheses for each item in the legend indicate the efficiency η.

1.4 Implementation Considerations

Implementing any type of network coding scheme presents its own challenges.
Sections 1.2 and 1.3 highlighted just a few of them. However, there are a
number of items that also affect how we code, especially in satellite networks.
While we cannot address everything, we do provide a brief discussion on some
of the items that we believe are important.

The first major consideration is where to perform the coding and decoding
operations. Ideally, redundancy should be added at any point in the network
where packet losses occur. This includes locations such as queues or links
where the physical layer cannot provide 100% reliability. Furthermore, the
amount of added redundancy should only be enough to help recover from
losses that occur between network nodes that can code. This can be moti-
vated by the simple example shown in Figure 1.7 where a source S wants to
transmit |P| packets to the destination D. However, these packets must travel
over a tandem network where each link i ∈ {1, 2, 3} has an i.i.d. packet era-

sure probability εi. If end-to-end coding is used, |P|
(∏

i (1− εi)−1 − 1
)

coded

12 Cloud et al.

packets must be generated at S and transmitted through the network. This re-
sults in an inefficient use of links closer to the source than would be necessary
if redundancy is included into the packet stream at each node Ri, i ∈ 1, 2.

Lesson Learned: Coding at intermediate nodes, rather than coding end-to-end
increases overall network efficiency.

S R1 R2 D
ǫ2 = 0.2ǫ1 = 0 ǫ3 = 0.1

ηE2 = 0.9ηE1 = 0.72

ηE1 = 1 ηE2 = 1 ηE3 = 1

ηE3 = 1

Fig. 1.7. A simple example showing that coding within the network is more effi-
cient than end-to-end coding. ηji is the efficiency on link i ∈ 1, 2, 3 when coding is
performed end-to-end (j = Ē) or at each intermediate network node (j = E).

This simple fact can have major implications for satellite networks since
bandwidth is limited and very expensive. As a result, coding should be per-
formed at each satellite gateway or performance enhancing proxy (PEP) at a
minimum; and if possible, at each hop in the satellite network. While coding
should be performed as often as possible, network codes do not need to be
decoded at each hop. This is also extremely beneficial in satellite networks
since you can essentially shift a large portion of the required processing to the
satellite gateway or end client. In other words, coded packets can be generated
at multiple points within the network while only needing to decode once at
the client or satellite network gateway. In the example provided in Figure 1.7,
coding can take place at S, R1, and R2; however, only D needs to decode.

Lesson Learned: Decoding only needs to be performed once regardless of the
number of times coding occurs within the network.

The second consideration that needs to be taken into account is how to
communicate the coding coefficients αi used to the decoder. For generation-
based coding schemes where k is typically small, one can simply insert each
coding coefficient into the header, which would require qk bits assuming each
αi ∈ F2q . Coding within the network only needs to modify the existing co-
efficients and does not increase the size of the coding coefficient vector. Of
course, other approaches that require less than qk bits such as [11] or [12] can
be used to decrease overhead.

Communicating the coefficients efficiently for sliding-window schemes is
more challenging since the coding windows can be quite large. Existing meth-

1 Network Coding Over SATCOM: Lessons Learned 13

ods typically use a pseudo-random number generator and communicate only
the seed. This seed is then used by the decoder to generate the coefficients
used to create each coded packet. Unfortunately, this does not scale well when
coding occurs at intermediate network nodes. As an example, assume that an
intermediate node’s coding window contains multiple coded packets that were
generated by previous nodes. When the node generates a new coded packet, it
must communicate the seed used to generate the packet; in addition to all of
the seeds for each of the coded packets contained within its coding window. If
the coding window and the number of coded packets contained within the win-
dow are large, the amount of overhead required to reproduce the coefficients
can far exceed the payload size.

Lesson Learned: The overhead required to communicate coding coefficents for
sliding-window based schemes can be significant if not done correctly.

Finally, congestion control and file size can potentially dictate the coding
approach used. Regardless of the type of data stream, some form of congestion
control is typically needed at either the client/server or at the satellite network
gateway. Common congestion control algorithms can cause bursts of packets,
or packet trains, while they are ramping up to fully utilize the network. This
behavior is even more pronounced when considering TCP flows over satellite
networks. In these situations, it maybe preferable to use a coding scheme that
provides a high probability of delivering every packet within a burst without
needing retransmissions or waiting for the next packet burst to arrive. For
example, a generation-based coding scheme can be used for small congestion
window sizes and a sliding-window scheme can be used for large ones.

In a similar fashion, the coding strategy can also significantly impact the
overall throughput for some file sizes. For example, consider a small file that
can be transmitted using less than a single bandwidth-delay product worth of
packets. A generation-based coding scheme, or a mixture of the generation-
based and sliding-window schemes, should be used so that the the probability
of decoding the file after the first transmission attempt is made very large.
While this may impact the efficiency of the network, it can have major benefits
for the user’s quality of service or experience.

Lesson Learned: Congestion control and the length of the data stream may
affect the network coding strategy.

1.5 Conclusion

Intra-session network coding is a promising technique that can help improve
application layer performance in challenging space-based data packet net-
works. However, implementing it can be problematic if done incorrectly. This

14 Cloud et al.

paper used two common examples of intra-session network codes to show the
benefits and drawbacks of one over the other. The first example used was a
generation-based network code and the second a sliding-window based net-
work code. While generation-based network codes are easier to implement,
sliding-window network codes can provide improved performance in terms of
in-order delivery delay and efficiency. This is especially the case when reliabil-
ity is required. However, generation-based network codes are able to provide
strict delay guarantees and improved upper layer packet erasure rates with
little impact to the overall network efficiency when reliability is not a con-
straint. On the other hand, implementation considerations typically limit the
performance of sliding-window network codes in these environments.

Lessons learned, as well as other implementation tips, were provided in ad-
dition to the above comparison. Some of the more important lessons learned
include the facts that restricting the size of the coding window in any way lim-
its the network code’s performance gains; and feedback is useful for not only
estimating the channel/network state information, but it also can be used to
decrease delay. Both of these are apparent when considering the effects corre-
lated packet losses have on the delay for reliable data streams. Various imple-
mentation considerations were also highlighted. These include where coding
and decoding within the network should occur, how congestion control affects
the way we code, and the challenges regarding the communication of RLNC
coefficients between the source and sink. While properly implementing net-
work coding in real networks can be difficult, we hope that our lessons learned
will aid in the deployment of network codes in future satellite communication
systems.

References

1. K. Sprague, F. Grijpink, J. Manyika, L. Moodley, B. Chappuis, K. Pattabira-
man, and J. Bughin, “Offline and falling behind: Barriers to internet adoption,”
McKinsey & Company, Tech. Rep., October 2014.

2. F. Vieira, S. Shintre, and J. Barros, “How feasible is network coding in current
satellite systems?” in Advanced satellite multimedia systems conference (asma)
and the 11th signal processing for space communications workshop (spsc), 2010
5th, Sept 2010, pp. 31–37.

3. A. Rezaee, L. Zeger, and M. Médard, “Speeding multicast by acknowledg-
ment reduction technique (smart),” in Global Telecommunications Conference
(GLOBECOM 2011), 2011 IEEE, Dec 2011, pp. 1–6.

4. D. Lucani, M. Stojanovic, and M. Médard, “Random linear network coding for
time division duplexing: When to stop talking and start listening,” in INFOCOM
2009, IEEE, April 2009, pp. 1800–1808.

5. D. Lucani, M. Médard, and M. Stojanovic, “Systematic network coding for
time-division duplexing,” in Information Theory Proceedings (ISIT), 2010 IEEE
International Symposium on, June 2010, pp. 2403–2407.

6. J. Cloud, D. Leith, and M. Médard, “A coded generalization of selective repeat
ARQ,” in INFOCOM, 2015 Proceedings IEEE, April 2015, pp. 1–9.

1 Network Coding Over SATCOM: Lessons Learned 15

7. M. Karzand and D. Leith, “Low delay random linear coding over a stream,” in
Communication, Control, and Computing (Allerton), 2014 52nd Annual Aller-
ton Conference on, Sept 2014, pp. 521–528.

8. T. Ho, M. Médard, R. Koetter, D. Karger, M. Effros, J. Shi, and B. Leong,
“A random linear network coding approach to multicast,” Information Theory,
IEEE Transactions on, vol. 52, no. 10, pp. 4413–4430, Oct 2006.

9. S. Teerapittayanon, K. Fouli, M. Médard, M.-J. Montpetit, X. Shi, I. Seskar,
and A. Gosain, “Network coding as a wimax link reliability mechanism: An
experimental demonstration,” in Multiple Access Communications. Springer
Berlin Heidelberg, 2012, vol. 7642, pp. 75–78.

10. D. Adams, J. Du, M. Médard, and C. Yu, “Delay constrained throughput-
reliability tradeoff in network-coded wireless systems,” in Global Communica-
tions Conference (GLOBECOM), 2014 IEEE, Dec 2014, pp. 1590–1595.

11. D. E. Lucani, M. V. Pedersen, J. Heide, and F. H. P. Fitzek, “Fulcrum network
codes: A code for fluid allocation of complexity,” CoRR, vol. abs/1404.6620,
2014.

12. N. Thomos and P. Frossard, “Toward one symbol network coding vectors,”
Communications Letters, IEEE, vol. 16, no. 11, pp. 1860–1863, November 2012.

	1 Network Coding Over SATCOM: Lessons Learned
	Jason Cloud, Muriel Médard
	1.1 Introduction
	1.2 Network Coding over Packet Streams
	1.3 Network Coding Performance for Packet Streams
	1.3.1 Network Model
	1.3.2 Reliable Data Stream Performance
	1.3.3 Unreliable Data Stream Performance

	1.4 Implementation Considerations
	1.5 Conclusion
	References

