Compliant business processes with exclusive choices
from agent specification

Francesco Olivieri’, Matteo Cristani’, and Guido Governatori®*

TDepartment of Computer Science, University of Verona, Italy
*NICTA, Queensland Research Laboratory, Australia

Abstract. In this paper we analyse the problem of synthesising compliant busi-
ness processes from rules-based declarative specifications for agents. In particu-
lar, we consider the approach by [1,2] and we propose computationally efficient
algorithms to combine plans extracted from the deliberation of an agent to gener-
ate the corresponding business processes with exclusive choice patterns.

1 Introduction

The standard architectures for cognitive agents (e.g., the BDI architecture) distinguish
three phases: the deliberation phase where agents deliberate what are their goals; then in
the plan selection phase, the agent selects, based on the outcome of the first phase, which
plan to actuate from her plan library; finally, in the last phase, the agent executes the
selected plan. [1,2], in addition to the inclusion of norms, propose a different approach
where an agent is defined by a set of rules describing the environment where the agent
is situated, the capabilities of the agent (the actions or tasks the agent can perform, the
conditions under which the agent can perform them, and the effects they generate), the
aims of the agent, and the norms the agent is subject to. Given a set of facts describing
a situation, the agent deliberates using its rule base to determine whether a particular
outcome is attainable without violating the relevant norms. Given the information in the
rule base, the deliberation contains information about the tasks to be performed (and
the relative order in which they have to be executed) to reach the objective. Thus, the
deliberation effectively generates a plan. [3,4] propose an efficient algorithm to extract
such plans and to visualise them in form of business process models.

A business process model is a compact (graphical) representation of a set of activi-
ties and the order in which they have to be executed to reach a business objective. The
tasks or activities are connected by control flow connectors. In particular, the basic con-
trol flow connectors are: sequence (task ¢’ directly follows task #), AND split or parallel
split (all tasks in all the branches are executed), exclusive choice or X-OR split (only the
tasks in one of the branches are executed), AND join (all tasks in the incoming branches
must have been executed), and X-OR join (one branch must have been executed). A
business process model can be seen as a set of sequences of tasks, which corresponds
to a set of plans. One of the advantages of business process models being that they pro-
vide an intuitive (graphical) representation that can be understood by the stakeholders

* NICTA is funded by the Australian Government through the Department of Communications
and the Australian Research Council through the ICT Centre of Excellence Program.

of the business process, and that they can be executed by workflow engines. While rules
(and, in general, declarative specifications) can provide powerful and flexible represen-
tation languages, and the individual rules can be easily understood by stakeholders and
domain experts (including rules modelling norms), it can be daunting to understand
what is going on with large knowledge bases. To mitigate this problem, [3,4] propose
to translate a case (set of facts) into a business process model (i.e., a model guaranteed
to comply with the applicable norms and fulfilling the predefined objective).

The approach in [3,4] has the limitation that it synthesises business processes with-
out exclusive choices. This is due to the following two factors: the logic underlying the
declarative agent specifications (Defeasible Logic, a sceptical non-monotonic logic) and
the use of a consistent set of facts as input for the case. However, nothing prevents us
from considering different (and incompatible) sets of facts as input. For each set, we
can generate the resulting business process and we could join them using each business
processes as a branch in a global X-OR block. However, this would defy the purpose
of aiming at compact representations. In this paper, we address the problem of how to
generate business process models with exclusive choice patterns starting from a set of
cases (each represented by a set of facts encoding, for example, standard configurations
and most common choices) and a set of declarative specifications for an agent.

2 Logic

The aim of this section is to give some basic notions of the logic presented in a series of
works [1,2] and to make the reader acquainted with the intuitions behind such a logic
apparatus while avoiding instead the technicalities.

DL is typically sceptical, meaning that it allows rules for opposite conclusions. In
the situation where rules for opposite literals are activated (may fire), the logic does not
produce any inconsistency but it simply does not draw any conclusion unless a prefer-
ence (or superiority) relation states that one rule prevails over the other. A defeasible
theory D is defined as a structure (F, R, >), where (i) F is a set denoting simple pieces of
information that are considered to be always true (e.g., a fact is that “Sylvester is a cat”,
formally cat(Sylvester)), (ii) R contains two finite sets of rules: defeasible rules and
defeaters, (iii) > C R X R is a binary relation. A rule is an expression r : A(r) — C(r),
and consists of: (i) a unique name r, (ii) the antecedent A(r) which is a finite set of
(modal) literals, (iii) an arrow — € {=,~} denoting, respectively, defeasible rules
and defeaters, and (iv) its consequent C(r) which is a single literal (or a chain of modal
literals, see below). A defeasible rule can be defeated by contrary evidence; for exam-
ple the rule representing “cats typically eat birds” is “cat(X) = eat_birds(X)”, means
that if something is a cat, then we may conclude that it eats birds, unless there is ev-
idence proving otherwise. Defeaters are special rules whose only purpose is to defeat
defeasible rules by producing contrary evidence. The superiority relation > is used to
define when one rule may override the conclusion of another one, e.g., given the rules
“r:cat(X) = eat_birds(X)” and “s : domestic_cat(X) = —eat_birds(X)”, if we state
that “s > r”, then Sylvester does not to eat birds.

A defeasible conclusion is a tagged literal and can have one of the following form:
(1) +dgq which means that g is defeasibly provable in D, and (2) —dq which means

that g is refuted, or not defeasibly provable in D. The idea of +0 derivation being that
a given literal g is defeasibly provable if either it is definitely provable, or we argue
by using the defeasible part of the theory. In the latter case, ~¢ must be not definitely
provable, and there must exist an applicable strict or defeasible rule for ¢. Finally, every
attack on such a rule is either discarded, or defeated by a stronger rule supporting g.
The logic of [1,2] is equipped with modal rules and operators to capture the obli-
gations an agent has to comply with and the goal-like mental attitudes of the agent.
However, such components are not needed to synthesis the plans an agent commits to,
and, for the purpose of this paper they can be considered as simple conditions literals.
Given a defeasible theory D, we define the set of positive and negative conclusions
as the extension of the theory. The positive extension is noted by E* (D), the nega-
tive one by E~ (D). More formally the positive and negative extensions are defined as
follows: ET(D) = {p|D+ +dp} and E~ (D) = {p|D+ —dp}.
Observation. An extension is characteristic of a specific set of facts: fixed the rules and
the superiority relation, two different sets of facts may lead to two distinct extensions.

Exclusive choice patterns Here we describe three possible variants to effectively
model exclusive choice patterns in defeasible logic.

When we consider only a single literal ¢, a choice pattern is a set of rules proving
t. Typically, such rules have distinct sets of antecedents. On the contrary, an exclusive
choice pattern must not consider a single literal, but a set of distinct literals, #1,...,#,.
These literals must share, to a certain extent, the same sets of antecedents (activation
elements). What do we mean by fo a certain extent? Recall that literals in our theory are
conceptually divided between condition- and task-literals. Hence, #1,...,t, must have
a common set of activation task-literals, while differing on the activation condition-
literals. For instance, in the following scenario

ri:a,b,ci =1 r:a,b,co =1,

t1 and 1, share the set of common activation task-literals (a and b), while the distinctive
activation condition-literals are ¢; for #;, and ¢, for t,. Hereafter, condition-literals are
denoted by cs with a subscript notation.

The key distinction between a choice and an exclusive choice is that, in the former,
every alternative can be executed at the same time while, in the exclusive choice, once
an alternative is executed, none of the others can. Thus, the logic must exhibit structures
to prevent the execution of all the other alternatives once a choice is made. This can be
easily handled by the use of defeater rules.

Variant 1 sees a preferred task (say #1) while all the other alternatives are of equal
importance with respect to one another. Formally,

r:A=1t
ri: A=t forl<j<n
dij:ti~n~t; forl<j<n
dij:ti~n~t; for1<i,j<mn,i#j.
A the set of common activation task-literals; I; denotes the set of condition-literals dis-
tinctive for task-literal #;. Task #; is the default choice: as such, no activation conditions
are needed. Defeaters dy; and d;; ensure that once an alternative is chosen, no other can.

Variant 2 considers none of the tasks involved to be preferred to the others.

ri: A=t dCij

iti~oty for1 <ij<n,i#j.

A different form of this second variant excludes sets I';s from playing a role in the choice
of which branch to run. We think that such a variation is conceptually weak given that
there should always be some way to discriminate why running an alternative instead of
another. Nonetheless, in the following algorithms, it will be trivially calculated.
Variant 3. There are situations where a branch of the exclusive choice pattern does not
actually perform any action, but it is just used to skip the run to the end of the X-OR
join gate (we can see it like an empty branch).

r:AI =1

ri: A=t forl<i<n

riiti =t forl<i<n

dij: I~ ~t; forl<i<n
dij:ti~>n~t; forl <i,j<nandi#j.

Here, the execution of #; prevents the execution of any other ¢;.

3 Algorithms

In [3,4], we presented methodologies to compute a process graph starting by a set of
declarative specifications being able to describe: (i) the system’s environment, (ii) the
active norms and (iii) a set of goals (called outcomes) the system aims to achieve.
The execution of that step was possible upon previous computations on a series of
algorithms which efficiently compute which actions the system is meant to perform
in order (i) to achieve a set of goals (ii) while it does not to violate certain norms
(or to compensate all the violated ones) [1,2]. The input of [1,2]’s algorithms was (1)
the underlying modal logic (of the type of the one presented in Section 2), and (2) an
assignment to the set of facts. The output was an extension. We recall that, fixed the
rules, distinct set of facts (typically) generate different extensions. Given a set of facts,
some rules are activated to produce certain effects and these effects may, in turn, activate
other rules which produce other effects (and so on). Therefore, the positive extension
represents all the active literals. This means that if the literal stands for a condition,
such a condition is fulfilled (for instance, the norm is not violated or compensated); if
the literal stands for a task, that task will be executed in the corresponding process.
The algorithms of [3,4] started from a single extension. The focus, and novelty, of
the present research being that such an assignment to the set of facts may well not be the
only one resulting in a compliant situation. This is typical in business practices as we
argued above where, instead of a single case, we consider multiple (possibly incompat-
ible) cases corresponding to scenarios the agent has to deal with. Before showing the
algorithmic results for the exclusive choice pattern computation, we briefly describe
of how [3,4]’s algorithms work. The idea of those algorithms is to start from a set of
proved goals and from each one of them to navigate backwards the derivation tree by
considering only those literals in the positive extension. This procedure is then recur-
sively iterated on each of those literals. This schema naturally captures the three main

features of a process graph: (1) sequence, given a literal p, if a belongs to a certain A(r)
such that C(r) = p, then in the graph there is an edge linking node A to node P; (2)
parallel execution, if also literal b is in A(r) then it is natural that nodes A and B are
linked to P by and AND JOIN gate; (3) choice, many rules proving p represent differ-
ent alternatives to obtain p and we link them to P through an OR JOIN gate. Once this
backwards phase ended, the process graph is synthesised by recognising co-occurrence
patterns and by removing condition-literals, substituted by labelled edges.

X-OR Pattens algorithms The algorithms we describe hereafter recognise exclusive
choice patterns. Algorithm 1 (X-OR) has been designed to be a procedure invoked by
the main algorithm of [3,4] after the condition-task elimination has taken place. Let us
understand the basic principles behind it by helping us with the following examples.

Example 1. Let D be the theory, with empty superiority relation, such that
riia,c1 =t mnia,co=>t rity=>b ry:thp=>b dip:ti~r~ty dyitp~ ~ty.

Here, if we have the two distinct assignments F' = {a,c; } and F” = {a,c; }, then task-
literals #; and 1, are in an exclusive choice pattern. Indeed, (i) #; is proved only when
using F’ (and symmetrically for t, with F"), (ii) #; and ¢, share the activation task a, (iii)
c1 (resp. cp) is the unique activation condition for #; (resp. #;), and (iii) the activation
of one task defeats the activation of the other through the presence of defeaters di, and
dy;. Finally, both #; and #, derive b. We can thus close the pattern by linking T and T,
to an X-OR JOIN gate-node, which in turn is followed by B.

Exclusive choice variants described in Section 2 are useful to define some theoreti-
cal properties and to give the reader an understanding of which differences distinguish
one variant from another. Their common, focal point being that the tasks in the exclu-
sive choice share a set of activation task-literals while other sets of condition-literals are
characteristic of which choice-branch to run. Given that Algorithm 1 X-OR’s execution
begins after the condition nodes have been removed from the graph, to gather for such
activation requirements is not trivial, as following Example 2 points out.

Example 2. Let D be the theory, with empty superiority relation, such that

r:b,c3=1 n.d=1n r3.a=Cj
r4:cCl1=C3 rs:t =e re:a,b,d,cy =1t
rpit) =>e rg:e=f dip 1~~~y dr1 1)~ ~t.

Given two assignments to the set of facts (e.g., F' = {a,b,d, c3} and F"" = {a,b,d,c,}),
are t; and 1, in an exclusive choice pattern? Yes, they are. Apparently, the immediately
previous activation task-literals of #; are b and d only (resp. due to r; and r;), while
for #, are a, b and d. What about a for #;? a is the antecedent of r3 for proving c|
which, in turn, is used by r4 to prove c3. Recall that, once the process graph is made,
synthesis Phase 2 sees nodes C; and C3 being removed from the graph and substituted
by a labelled arc connecting A directly to AND-J,,. Thus, task-node A can be seen as
an activation task of T;. Therefore, activation tasks of #; are the same of 1, even if, in
case of 71, they come from four distinct rules, while in case of #, from the single rs. Is
that nonetheless correct? Again, the answer is yes, provided that, for every each 7; in the
exclusive choice pattern, all its activation literals are derived in the same extension.

Before the detailed description of the algorithms, we introduce the two last preliminary
notions. A task dependency graph is essentially a dependency graph where we consider
task-literals only. The task dependency graph of D, TDG(D), is the directed graph
defined as follows: the set of vertices is Vrpg(py = {t|¢ is a task-literal in D}. The set
of arcs is Erpg(py = {(a,b)|3r € Ry[b] : a € A(r) and a,b € Vypg(p); or 3ry,...,1, €
Ryd: a € A(ry),b=C(ry),C(r;) ¢ Vrpgp) j < n, and C(r;) € A(ri11)}. Given the task
dependency graph TDG(D) and a task-literal / in it, define Reachability(l) as the set
of nodes reachable from a /. Formally Reachability(l) = {M € Vrpg(p)|3M1,... M,:
(L,My),(M;,M;11) € Eppgp) and M = M, }. Notice that computing the task depen-
dency graph and the set of reachable nodes is quadratic in the number of vertices.

Algorithm 1 X-OR

1: Compute the task-dependency graph TDG

2: alreadyXed < 0, conditionsLabels < 0, XJoin < 0

3: for T € V\ alreadyXed. 3i, j.t € E;" (D) and 1 ¢ E;r(D) withi,j <m,i# jdo
4 backwardTasks < BACKWARDTASKSPROJ(T)

5: XORtasks < 1FX-OR(T, i,backwardTasks)

6: if XORtasks # 0 then
7
8

XJoin(T;) + Reachability(#)
closure < <j<, XJoin(T;)

0290

: closure < closure\ {P € closure| P depends on Q € closure or P is not a task-node}
10: T finat + X ORtasks N closure
11: V& VU{XOR-St,..1,.XOR-J1, . 1,} With Ty,..., T, € XORtasks
12: for T; € XORtasks \{T fiyq } do
13: E + EU{(L,XOR-S;,...;,)| L €iny(Ti)}\{(L,T;)}
14: EFEU{€= (XOR—STl T”,T,')}
15: label(e) < conditionLabels(T;)
16: if closure # 0 then
17: if T finqs # null then
18: E+—FU {(XOR'JT|,,,,,T"-,Tfinal)} @] {(L-,XOR'JT“..,T“)‘ J1 < j<n Le inv(Tfm[) n
XJoin(T) P\ (LT)| L € iny (T et} " X oin}
9: else
20: for P € closure do
21: E« EU{(L,XOR-Jr, .1,)| 31 < j < n. L € iny (P)NXJoin(T;)}\ {(L,P) | L € iny (P) N

XJoin} U {(XOR—JTI Ty P)}
22: alreadyXed < alreadyXed \JX ORtasks

Algorithm 1 (X-OR) is the main procedure, which invokes its subroutines Algo-
rithm 2 (BACKWARDTASKSPROJ) and Algorithm 3 (IFX-OR). Algorithm 1 is concep-
tually divided in two phases. During the first phase of the main algorithm, it collects the
tasks appearing in an exclusive choice pattern. The second phase starts if an X-OR has
been found and manages the graph operations needed to insert the X-OR SPLIT and
X-OR JOIN into the process graph.

In the first phase, for every task-node, Algorithm 1 gathers (a) the activation tasks
and (b) the activation conditions. It stores the tasks in the set backwardTasks and the
conditions in conditionLabels. conditionLabels is an array of arrays and will be after-
wards used to label edges: for each task that will be present in the X-OR pattern, there
is a set where to store all the activation conditions.

Steps (a) and (b) are performed by Algorithm 2: it stores all nodes with an outgo-
ing edge towards the node under examination in the set premises (T in the algorithm).

Algorithm 2 BACKWARDTASKSPROJ

1: procedure BACKWARDTASKSPROJ(node T)
bwTasks < 0, premises < iny (T), pastPrem < T
while premises # 0 do
Let P be the first element of premises
switch (Node type of P)
case P is a task node:
conditionLabels(P) < conditionLabels(P) U labels(e) for each e € {¢ € E| ¢ =
(P,L) and L € pastPrem}

AR

8: premises < premises \ {P}

9: bwTasks < bwTasks\J{P}

10: case P is and AND-J, node:

11: conditionLabels(P) < conditionLabels(P) U {c is condition-literal | ¢ € A(r)} Ulabels(e) for
eache € {¢' €E| ¢ =(P,L)and L € pastPrem}

12: premises < premisesUiny (P)\ {P}

13: case P is and OR-Jp node:

14: conditionLabels(P) < conditionLabels(T) U labels(e) for each e € {¢ € E| ¢ =
(P,L) and L € pastPrem}

15: premises < premises Uiny (P) \ {P}

16: end switch

17: pastPrem < pastPremU {P}

18: return bwTasks

The information about such nodes is provided by iny (T). We say that, for any node
X, iny(X) ={Y € V| (Y,X) € E} denotes the set of all nodes reaching X. All ele-
ments stored in premises are now analysed. For every of such element P, if P is a task
node, then we do not need to further analyse P’s predecessors: we simply save it in
bwTasks and update conditionLabels(T). We update conditionLabels(T) by adding to
it the label of each edge e connecting P to a node previously analysed (that is, a node
in pastPrem). The edge labelling process recursively collects conditions occurring be-
tween tasks, as illustrated in Example 2. In case P is an AND-J, or an OR-Jy node,
we update premises with P’s immediate predecessors (iny (P)). In case P is an OR-
J node, we update conditionLabels as the previous case, while in case is an AND-J,
node, we also add to conditionLabels all the condition-literals present in A(r). Notice
that subscript r uniquely identifies the corresponding AND-J node.

Once Algorithm 2 has done collecting such information, the execution returns to
Algorithm 1 which invokes Algorithm 3 to discover whether an exclusive choice pattern
actually exists. To do so, Algorithm 3 searches for all eligible task nodes. A node T’
is eligible if (i) task-literal ¢’ is in (at least) a positive extension Ef “not used” by any
other task in the X-OR pattern. For instance, let us assume we are considering an X-OR
pattern between T, T, and T3, and we know that there are five extensions. If #; is in
E,", while 1, is in E; and E7 , then 73 must have been proved in E; or EJ'.

If T/ is eligible, Algorithm 2 is invoked to compute whether the activation tasks
of T/ are the same of T’s. If that is the case, Algorithm 3 lastly inspects whether a
suitable defeaters’ structure exists. The execution now returns to Algorithm 1: if an
exclusive choice pattern has been found, the algorithm passes to the second phase and
performs the operations described hereafter, otherwise it proceeds in controlling the
next candidate node. The computation of tasks in X ORtasks gives knowledge of where
to insert the X-OR SPLIT gate-node (X-OR-St, . T, in notation, where T;-T, are the

nodes in the exclusive choice pattern). We now need to understand where to insert the
X-OR JOIN gate-node (X-OR-J1, T, in notation). For each task T; in X ORtasks we
store in XJoin (a set of sets) the task-nodes reached by T;. If the intersection of such
T;s (closure) is not empty, the exclusive choice pattern is well structured; otherwise
the declarative specifications were poorly written and, consequently, no X-OR-J can be
inserted into the process graph.

Algorithm 3 1FX-OR

1: procedure 1FX-OR(task T, index i, set ThwTasks)
2: Xtasks < {T}, extensions < {i}
for T' € V\ alreadyXed \ Xtasks s.t. 3j ¢ extensions. 1 € E; (D) do
T jTasks < BACKWARDTASKSPROJ(T', /)
if T jTasks = ThwTasks then Xtasks < Xtasks U{T'}, extensions < extensions\U {j}

3
4
5
6: supp < 0

7: if 3'T; € Xtasks s.t. conditionLabels = () then

8: for T; € Xtasks with j # i do

9: if 3d € Rdﬂ[wtj].A(d) = {l,’} then

10 for Ty € Xtasks with k # i, j do

11: if 3d € Ryp[~1;).A(d) = {1} then supp < supp U{T;}
12: if (supp # 0) then return supp

13: supp < 0

14: for T; € Xtasks do

15: for T; € Xtasks with k # j do
16: if 3d € Ryp[~1j].A(d) = {t;} then
17: if 3d € Ryp[~1].A(d) = {t;} then supp < supp U{T;}

18: return supp

When closure is not empty, we need to remove from it all the gate-nodes along with
those nodes that depend on nodes in closure. The operations described above serve
exactly to this purpose: to eliminate nodes like F from closure. Finally, if one of the
task in closure belongs to X ORtasks as well, we have an instance of Variant 3. We first
identify such a task-node (T ;. in notation), and then we link the X-OR-Jt, T, to it
(Lines 17-18). In both circumstances, edges from a node in X join towards a node in
closure are erased and substituted to proper connect them to the new inserted X-OR-
ST,....T, node (resp. Lines 18 and 21).

The structure of the algorithms and the operations used in the algorithms indicate
that the complexity of the problem investigated in this paper remains polynomial. A
thorough analysis is left for future work.

4 Conclusion and related work

In this paper we addressed the theoretical issue of how to synthesise compliant business
process models incorporating exclusive choice patterns from declarative agent specifi-
cations. We proposed computationally efficient algorithms to merge alternative plans
into a single business process model. The suitability of the approach to model real life
applications is left for future work.

Our approach departs from the standard BDI architecture and agent programming
languages implementing it [5,6], and extensions with norms in several respects [7].

While in the above mentioned approaches the agent has to select predefined plans from
a library, we propose that the agent generates on the fly a set of plans to meet the
objectives without violating the norms. [8] present norm-aware agents; a norm-aware
agent can deliberate on its goals, norms, and sanctions before deciding which plan to
select and execute. In this respect, our agents are norm-aware. [9] provide an account
of goals by integrating BDI failure mechanisms with HTN planning techniques. HTN
planing is notoriously undecidable even if no variables are allowed, or PSPACE-hard
if some restrictions are given. The main feature of their CANY is that, if a plan fails,
alternative plans are tried. Compared to theirs, our framework has the advantage that
we generate all the possible plans at design time. [10] “force” the notion of obligation
within the STRIPS framework for agent planning. Their framework is lacking in at least
two aspects if compared to ours: (i) they cannot specify the motivational aspects of BDI
agents, (ii) their framework cannot generate alternative plans or process graph as we do.

References

1. Governatori, G., Olivieri, F., Rotolo, A., Scannapieco, S., Cristani, M.: Picking up the best
goal - an analytical study in defeasible logic. In Morgenstern, L., Stefaneas, P.S., Lévy, F.,
Wyner, A., Paschke, A., eds.: RuleML 2013. Volume 8035 of Lecture Notes in Computer
Science., Springer (2013) 99-113

2. Governatori, G., Olivieri, F., Scannapieco, S., Rotolo, A., Cristani, M.: The rationale behind
the concept of goal. Theory and Practice of Logic Programming (in Press)

3. Olivieri, F., Governatori, G., Scannapieco, S., Cristani, M.: Compliant business process
design by declarative specifications. In Boella, G., Elkind, E., Savarimuthu, B.T.R., Dignum,
F., Purvis, M.K., eds.: PRIMA 2013. Volume 8291 of Lecture Notes in Computer Science.,
Springer (2013) 213-228

4. Olivieri, F.: Compliance by design: Synthesis of business processes by declarative specifica-
tions. PhD thesis, Griffith University and University of Verona (2015)

5. Dastani, M.: 2APL: a practical agent programming language. Autonomous Agents and
Multi-Agent Systems 16(3) (2008) 214248

6. Bordini, R.H., Hiibner, J.F.: BDI agent programming in agentspeak using Jason (tutorial
paper). In Toni, F., Torroni, P., eds.: CLIMA VI. Volume 3900 of Lecture Notes in Computer
Science., Springer (2005) 143-164

7. Andrighetto, G., Governatori, G., Noriega, P., van der Torre, L.W.N., eds.: Normative Multi-
Agent Systems. Leibniz-Zentrum fuer Informatik

8. Alechina, N., Dastani, M., Logan, B.: Programming norm-aware agents. In van der Hoek,
W., Padgham, L., Conitzer, V., Winikoff, M., eds.: AAMAS, IFAAMAS (2012) 1057-1064

9. Sardifia, S., Padgham, L.: A BDI agent programming language with failure handling, declar-
ative goals, and planning. Autonomous Agents and Multi-Agent Systems 23(1) (2011) 18-70

10. Panagiotidi, S., Vdzquez-Salceda, J.: Towards practical normative agents: A framework
and an implementation for norm-aware planning. In Cranefield, S., van Riemsdijk, M.B.,
Vazquez-Salceda, J., Noriega, P., eds.: COIN@ AAMAS&WI-IAT. Lecture Notes in Com-
puter Science, Springer (2012) 93-109

